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We consider a directed variant of the negative-weight percolation model in a two-dimensional,
periodic, square lattice. The problem exhibits edge weights which are taken from a distribution
that allows for both positive and negative values. Additionally, in this model variant all edges are
directed. For a given realization of the disorder, a minimally weighted loop/path configuration
is determined by performing a non-trivial transformation of the original lattice into a minimum
weight perfect matching problem. For this problem, fast polynomial-time algorithms are available,
thus we could study large systems with high accuracy. Depending on the fraction of negatively
and positively weighted edges in the lattice, a continuous phase transition can be identified, whose
characterizing critical exponents we have estimated by a finite-size scaling analyses of the numerically
obtained data. We observe a strong change of the universality class with respect to standard directed
percolation, as well as with respect to undirected negative-weight percolation. Furthermore, the
relation to directed polymers in random media is illustrated.
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I. INTRODUCTION

In statistical physics, one of the central targets is to
study systems that exhibit continuous phase transitions.
Due to the diverging correlation length in the critical
region, long-range correlations are not affected by de-
tails of microscopic interactions, but depend on symme-
try properties of the underlying model only. For that
reason models that exhibit continuous phase transition
can be grouped in universality classes, which are charac-
terized by a set of critical exponents and their functional
relations, i.e. scaling laws [1]. One of the most basic and
intensively studied universality classes is that of stan-
dard percolation [2, 3], which addresses the question of
connectivity. Based on a tunable parameter p, sites or
links in a given lattice get occupied or stay empty. Then,
the central objects of interest are clusters consisting of
adjacent and occupied sites. Above a certain value of
p = pc, i.e. the critical point, a lattice-spanning cluster
emerges in the thermodynamic limit. Even the model is
probably the simplest possible model exhibiting a phase
transition, its importance comes from the following facts.
First, it allows to study basically all fundamental aspects
of phase transitions within a very basic framework. Sec-
ond, many much more complex phase transitions can be
traced back to an underlying percolation transition, e.g.,
the percolation of Fortuin-Kasteleyn clusters [4] in the
Ising model.

In standard percolation, there is no directional infor-
mation in the connectivity pattern. Thus, not surpris-
ingly, the critical exponents describing this phase transi-
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tion differ from those that describe the phase transition
in directed percolation (DP) [5], which is a variant of
standard percolation, where the links carry a direction,
leading to an anisotropic behavior. Note that this di-
rectionality can be interpreted as time direction, making
DP relevant for the description of non-equilibrium pro-
cesses. In particular, because of the anisotropic nature
of the cluster building process in DP, correlations are not
governed by one but two correlation lengths: ξ‖ and ξ⊥.

Also, in standard percolation, the links do not carry
any weights, thus, one can assume all weights being one,
i.e., they are in particular positive. Recently, a percola-
tion model called “negative-weight percolation” (NWP)
was introduced [6], where random weights are attached
to the links, and, in particular, weights of either sign are
allowed. Algorithmically, this means special global op-
timization polynomial-time “matching” algorithms have
to applied, see Sec. II. This leads, interestingly, to a
new type of behavior giving rise to a different universal-
ity class compared to standard percolation. In a series of
papers [7–13], NWP has been studied in different dimen-
sions and different variants.

It has been shown that two distinct phases can be
identified depending on a disorder parameter ρ, which
controls the amount of negative weights. (i) for small ρ
the geometric objects are rather small and straight-lined,
which reflects a self-affine scaling, (ii) for large ρ the geo-
metric objects scale self-similar and can wind around the
lattice. In Ref. [6] the disorder-driven phase transition
was investigated by means of finite-size scaling analy-
ses and it turned out that the critical exponents were
universal in 2D (different lattice geometries and disor-
der distribution were studied). Further studies regard-
ing isotropic NWP address the influence of dilution on
the critical properties [7], the upper critical dimension
(du =6) [8], another upper critical dimension (dDPL

u =3)
for densely packed loops far above the critical point [9],
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the mean-field behavior on a random graph with fixed
connectivity [10], the Schramm-Loewner evolution prop-
erties of paths in 2D lattices [12], and loop-length distri-
butions in several dimensions [11].

Nevertheless, all this work was for non-directed lattices
or graphs. Thus, as compared to the change which occurs
when moving from standard to directed percolation, it is
valid to ask whether the directed variant of NWP, which
is introduced and studied in this work, gives again rise
to a new type of behavior.

Note that, while DP is defined as a local growth pro-
cess, the path-like clusters in NWP emerge due to global
optimization. This is also true for directed polymers in
random media (DPRM) [14], but unlike NWP, DPRM
does not feature a phase transition. Nevertheless, it will
be outlined in this article that NWP and DPRM are par-
tially related to each other.

Next, we outline the model and the numerical proce-
dures. NWP can be defined on any graph, in particular
finite-dimensional lattices, which we consider here. In
particular we study here a directed, weighted, periodic,
simple square lattices with side length L. The direction
of the edges is arranged as follows: All horizontal edges
point to the left and all vertical ones point up. Edge
weights are drawn from a distribution which provides
both positive and negative values. The proportion of
negative and positive weights can be tuned by a disorder
parameter ρ.

We study paths and loops in the lattice. For each path
or loops a weight is defined which consist of the sum
of the weights of the edges contributing to the loop or
path. For a given realization of the disorder, an optimal

configuration consisting of one path and zero or possibly
a finite number of system-spanning loops is determined.
The configuration must fulfill some constrains: The path
must be fixed at the bottom right, the loops and the
path are not allowed to intersect one another, and the
total sum of all weights of the loops and the path must
be an exact minimum. The algorithm is very similar to
the undirected case, the changes which are necessary are
explained in Sec. II.

Fig. 1 shows such optimal configurations for different
values of ρ in a lattice of size L=32. The main question
we are interested in is, whether there is a system span-
ning path or system spanning loops, i.e., whether at least
one object percolates. Note that for analyzing geomet-
rical properties we are using the path. The loops arise
(unavoidably) from the global nature of the underlying
optimization problem, see the technical details in Sec.
III and allow us to study the percolation transition at
ρ = ρc, i.e., whether the full lattice admits one or several
percolating objects. Note that here, due to the construc-
tion of the underlying lattice with directed edges, small
loops can not occur, in contrast to the undirected NWP.
In particular, this is true for ρ<ρc (cf. Fig. 1(a)) where
just a finite path appears and loops are absent. At the
critical point ρ=ρc there appears a lattice-spanning loop
in the depicted example Fig. 1(b), since there are enough

FIG. 1: Illustration of minimum-weight configurations con-
sisting of loops (gray) and one path (black) in a directed 2D
square lattice of side length L = 32 with periodic boundary
conditions. The path is forced to start at the right bottom
corner. For small values of ρ, there does not appear a loop
and also the path does not span the lattice. At ρ = ρc one
percolating loop occurs. For large values of ρ, there are many
spanning loops and also the path is percolating.

negatively weighted edges in the lattice. Also a percolat-
ing path and no percolating loop might appear for some
realizations. Above the critical point ρ > ρc the num-
ber of lattice-spanning loops increases and even the path
winds around the lattice (cf. Fig. 1(c)). Thus, this article
we study the disorder-driven, geometric phase transition
and determine its characterizing critical exponents, in
particular with respect to the parallel and perpendicular
correlation lengths.

As an interpretation of the NWP problem, one can
imagine an agent that takes a trip in a graph along the
path.Whenever he travels along a positively weighted
edge, the agent has to pay some resource according to
the positive value. On the other hand, he will harvest
some resource, if he travels along a negatively weighted
edge. Therefore, the optimal path/loop configuration ob-
tained in the context of the NWP problem provides the
optimal route of the agent (path), possibly in competi-
tion with other agents (loops), to gain as many resources
as possible. Only paths or loops which lead to a larger
amount of harvested resources as compared to the paid
resources will occur.

The remainder of this article is organized as follows.
In Sec. II, we introduce the model in more detail and
explain the algorithm. In Sec. III, we describe the finite-
size scaling technique that has been used to estimate the
critical exponents numerically and present our results.
We close with a summary in Sec. IV.

II. MODEL AND ALGORITHM

The underlying graph G = (V,E) at hand is a 2D
directed square lattice whose edges point either to the
left or up. Its boundaries are periodic meaning the lattice
can be considered as placed on a torus in a topological
sense. Each edge eij ∈ E carries a weight ωij that is
taken from a “Gauss-like” distribution characterized by
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a tunable disorder parameter ρ:

P (ω) = (1 − ρ)δ(ω − 1) + ρ exp(−ω2)/
√

2π,

0 ≤ ρ ≤ 1. (1)

The shape of the lattice is quadratic in all simulations,
so the number of nodes is N = |V | = L2.

Given such a graph and a realization of the disorder,
an optimal configuration consisting of an arbitrary num-
ber of loops, i.e., closed paths, and one additional path
(possibly with zero length is computed. The configura-
tion must fulfill following requirements: i) One endpoint
of the path must be pinned at the bottom right corner.
However, it is also allowed that no path occurs. ii) The
loops and the paths are not allowed to cross or touch
each other. iii) The configurational energy

E =
∑

L∈C

ωL (2)

has to be minimized. Here ωL denotes the total of all
edge weights belonging to loop or path L. Note that
Eq. 1 provides real numbers, so the optimal configura-
tion is unique for each realization of the disorder. Since
the number of loops is not specified and even the path
might not appear (zero length), also an empty configu-
ration might be valid. This would be the case, e.g., if all
edges carried a positive weight. Loops and also the path
can solely appear, if their weight is negative, otherwise E
would not be minimal, since an empty configuration has
E = 0. Furthermore, since all edges point either to the
left or up, loops can appear only, if they span the lattice
in either horizontal or vertical direction. Therefore, their
smallest length is L. As a matter of fact, the typical
length of the loops is 2L in the vicinity of the critical
point.

In order to find the optimal configuration, we trans-
form the original graph to an appropriate auxiliary graph
first. Subsequently, a minimum-weight perfect matching

(MWPM) [15–17] provides all information to reconstruct
the original graph exhibiting the correct loop/path con-
figuration. Fig. 2 is an illustration of the algorithmic
procedure for a given realization of the disorder for a pe-
riodic lattice of size L = 3. For reasons of clarity, only
loops but no path can occur here. Guided by Fig. 2,
we give a concise description how the algorithm works.
Afterwards, we explain in which way the algorithm must
be altered, so that the appearance of a path becomes
possible.

(1) First all original nodes are duplicated. For each
pair of duplicated nodes, one additional edge with zero
weight is added linking both nodes of a pair. The two du-
plicated nodes of one pair (represented black and white
in Fig. 2(b)) are treated differently. Considering just one
pair, if an adjacent edge has pointed to the original node,
this edge will be linked to one of the duplicated nodes (in
Fig. 2(b) this node is the black one). On the other hand,
if the edge has pointed away from the original node, it
will be connected to the other duplicated node (in Fig.

(a) (b)

(d)(c)

FIG. 2: Illustration of the algorithmic procedure for a peri-
odic lattice of size L=3. For the sake of clarity, the procedure
is just depicted for a directed lattice that does not contain a
finite path. In Sec. II it is described how the construction
of the auxiliary graph must be altered in order to force a
path in the lattice that starts at the bottom right corner and
terminates at any node. (a) Original lattice with weighted,
directed edges. (b) Auxiliary graph with proper weight as-
signment. The thick edges carry the weight as the respective
edges in the original graph. The weights of all other edges are
zero. (c) Illustration of the MWPM: black edges are matched
and gray ones are unmatched. For the sake of clarity, edge
weights are not depicted. (d) Reconstruction to the original
lattice taking the MWPM result into account.

2, this node is white). Subsequently, each of the original
edges is replaced by a path of three edges and two ad-

ditional nodes (in Fig. 2(b), these nodes are depicted as
squares). One of the two edges that are connected with
the duplicates of the original nodes is assigned with the
weight of the original edge. The other two edges carry
zero weight. The resulting auxiliary graph is illustrated
in Fig. 2(b), where bold edges carry the original weights
and the thin ones carry a weight of zero. A more ex-
tensive and pedagogical description of the mapping (for
the undirected variant of the model, where the auxiliary
graph is slightly different) can be found in Ref. [18].

(2) A MWPM is determined on the auxiliary graph
via exact combinatorial optimization algorithms [19]. A
perfect matching is a subset of edges M which ensures
that each node in the graph has exactly one incident edge
∈ M . There are several subsets that fulfill this condition.
The MWPM is that perfect matching which has the low-
est total weight. For the given example, the MWPM is
illustrated in Fig. 2(c). Edges that belong to the MWPM
are represented bold and black.
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(3) After determining the MWPM, the original graph
can be reconstructed. If and only if the edge that links
two additional nodes (in Fig. 2(c) these nodes are illus-
trated as squares) does belong to the MWPM, the cor-
responding edge in the original graph is not part of the
optimal loop/path configuration. If, on the other hand,
the two additional nodes are not matched to each other,
by the definition of the MWPM, they have to be matched
to duplicated nodes, respectively. In this case the corre-
sponding edge of the original graph is part of a loop. In
this way the complete optimal loop/path configuration
can be determined. In the presented example (cf. Fig.
2(d)) the optimal configuration consists of one loop with
total weight −2.

As the algorithm has been presented, it is not possible
to find a path that is pinned in the bottom right corner.
In order to enable such a path, the auxiliary graph must
be expanded. After constructing the auxiliary graph as
described above, the white duplicate of the original node
in the bottom right corner gets connected via a path
consisting of three edges (all carry zero weight) and two
nodes to the black duplicates of all other original nodes.
This means technically the path is also a loop, but the
“returning” part of the loop is “hidden” with respect
to the original lattice, such that it appears as a path
there. Such an auxiliary graph is not planar and contains
many additional edges, therefore, we do not depict this
additional specification in the illustration Fig. 2.

III. RESULTS

The NWP model exhibits a geometrical continuous
phase transition. For a small amount of negative weights,
the path would appear rather short and loops would not
appear at all, if the system size were chosen sufficiently
large. This can be seen in Fig. 1. For small values of ρ,
the formation of loops is suppressed, because each pos-
sible loop has length O(L) and thus would collect too
many positively weighted edges. This is clearly different
in the undirected variant of the model, where also small
loops will appear, even if ρ is small [6]. On the other
hand, if ρ is large, the path might grow very long and
even multiple loops will occur.

The two regions, in which lattice-spanning, i.e., perco-
lating, loops or paths will or, respectively, will not occur
with high probability, are separated by a certain value
of ρ = ρc(L), the critical point. In the thermodynamic
limit, i.e., L → ∞, there are no lattice-spanning objects
in the lattice, if ρ < ρc = ρc(∞). On the other hand,
if ρ > ρc, there will appear some percolating objects al-
ways.

In this section we determine the critical point and es-
timate the critical exponents that characterize the phase
transition via a finite-size scaling analysis. Note that a
common scaling assumption [3] that is typically used for
undirected models cannot be applied here. Therefore,
due to the anisotropic nature of the underlying lattice

(parallel and perpendicular to the natural diagonal ori-
entation), there are two different correlation lengths that
have a different asymptotic behavior

ξ‖ ∼ |ρ − ρc|−ν‖ , ξ⊥ ∼ |ρ − ρc|−ν⊥ (3)

in the thermodynamic limit, with ν‖ and ν⊥ being the
critical exponents describing the power-law divergence of
the correlation lengths, respectively. At the critical point,
their finite-size scaling is assumed to be [20]

ξ‖ ∼ Lθ‖

ξ⊥ ∼ Lθ⊥ . (4)

For anisotropic percolation models a phenomenological
finite-size scaling theory is introduced in Ref. [20]. It is
expected that cluster related quantities y(L, ρ) can be
rescaled according to

y(L, ρ) = L−b θ‖/ν‖f [(ρ − ρc)L
θ‖/ν‖ ]

= L−b θ⊥/ν⊥f [(ρ − ρc)L
θ⊥/ν⊥ ], (5)

where f [·] is an unknown scaling function and b rep-
resents a dimensionless critical exponent that describes
the asymptotic behavior of y(L, ρ) in the thermody-
namic limit. According to Eq. 5, if ρc, θ‖/ν‖ and b

are chosen properly, all data points of y(L, ρ)Lb θ‖/ν‖

have to lie on one single curve. Therefore, y(L, ρ) can
be measured numerically for different values of L and ρ
and, subsequently, y(L, ρ)Lb θ‖/ν‖ can be plotted against
(ρ − ρc)L

θ‖/ν‖ . Then, the unknown constants ρc, θ‖/ν‖
and b can be adjusted until the data “collapses” to one
curve indicating that the correct values of the constants
are found. The same also applies for θ⊥/ν⊥ instead of
θ‖/ν‖. Note, that Eq. 5 shows the scaling behavior of
systems that are sufficiently large only [21]. All data col-
lapses in this article are made with a computer-assisted
scaling analysis [22].

This data collapse approach allows only to determine
the ratios θ⊥/ν⊥ and θ‖/ν‖. In order to find an estimate
for ν‖ and ν⊥, we additionally determine θ‖ and θ⊥ di-
rectly by applying Eqs. 4. For that reason, the path is
forced on the lattice, because, as evident from Fig. 3(a),
the correlation lengths can be estimated by taking mea-
surements of the path. The measurements are taken at
the estimated critical point ρc = 0.3789 that has been
found with the data collapse technique described above
and will be presented below. For the ease of presen-
tation, we do not have to deal with the ratios θ/ν, we
have switched the order here and show the determina-
tion of θ‖ and θ⊥ first. Fig. 3(b) shows that a very clean
power law behavior is visible, leading to θ‖=0.83(2) and
θ⊥=0.53(2).

To actually determine the critical point and obtain the
other critical exponents, we have monitored several ob-
servables in the vicinity of the expected value of the
critical point (p ∈ [0.377, 0.382]) for different system
sizes. Since we could use fast optimization algorithms,
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FIG. 3: (a) Sketch of ξ‖, ξ⊥ and xend. (b) Plot shows ξ‖
(red. χ2 = 1.1), ξ⊥ (red. χ2 = 1.5), xend (red. χ2 = 2.1) and
σE (red. χ2 = 3.8) as a function of L. Merely system sizes
from L = 181 to 724 have been considered for the power-
law regression curves. The measurements are taken at the
estimated value of the critical point ρc = 0.3789.
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FIG. 4: Percolation probability Pperc(ρ) as a function of ρ in
the vicinity of the critical point (inset). The data is collapsed
to one curve by using the scaling assumption Eq. 5 (main
plot).

we could study rather large system sizes in the range
L = 256 to L = 724 with good statistics: The data have
been obtained by averaging over 20000 (L=256), 16000
(L = 362), 10000 (L = 512) and 8000 (L = 724) realiza-
tions of the disorder, respectively.

Fig. 4 shows the percolation probability Pperc(ρ) as
a function of the disorder parameter ρ as well as the
rescaled data collapse. Since the percolation probability
is a dimensionless quantity, b = 0 is set in Eq. 5. The
estimates ρc = 0.3791(2), ν‖ = 1.17(14) and ν⊥ = 0.75(9)
provide the best data collapse with quality S =1.2, which
denotes the mean-square distance of the data points to
the unknown scaling function in units of the standard
error [22].

We have also measured the average number of lattice-
spanning objects 〈N〉, see Fig. 5. Note that, in contrast
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FIG. 5: Average number of spanning loops 〈N〉 as a function
of ρ in the vicinity of the critical point (inset). The data is
collapsed to one curve by using the scaling assumption Eq. 5
(main plot).

to standard percolation, more than one object can be
spanning. By using again the data-collapse approach, we
have found ρc =0.3789(2), ν‖=1.18(10) and ν⊥=0.75(6)
with quality S =2.3.

Another quantity that has been under scrutiny is the
order parameter

Pnode ≡
〈l〉
Ld

, (6)

which is the probability that an edge belongs to either
a percolating loop or percolating path. The total num-
ber of all edges that belong to the percolating objects
is given by l. d = 2 signifies the dimension of the lat-
tice. The asymptotic behavior of the order parameter is
governed by an additional critical exponent β, the per-
colation strength [23]. As evident from Fig. 6, we have
found ρc = 0.3788(2), ν‖ = 1.18(18), ν⊥ = 0.75(11) and
β = 1.42(21) with quality S = 1.3. It should be noted
that several combinations of ρc and the exponents pro-
vide valid data collapses. Therefore, we considered
Pnode versus L at the critical point (plot not shown
here), which exhibits only one fitting parame-
ter. We found for large system sizes a power law
behavior, which is compatible with β = 1.42(21),
which we therefore take as final estimate.

Next, we consider the associated finite-size susceptibil-
ity

χL = L−d(〈l2〉 − 〈l〉2), (7)

whose asymptotic behavior is guided by the critical expo-
nent γ. As can be seen from Fig. 7, the best data collapse
is provided by ρc =0.3789(3), ν‖=1.18(26), ν⊥=0.76(17)
and γ=0.00(5) with quality S =0.8.

Right at the critical point, we studied the distribution
of path-lengths excluding the lattice-spanning ones. As
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evident from Fig. 8, the distribution is in good agreement
with a power law decay nl∼ l−τ with τ =0.780(2).

NWP is defined as a global optimization problem (cf.
Sec. II) to find the minimally weighted configuration con-
sisting of loops plus one path. Since in the directed poly-
mer problem [14] minimally weighted paths are also se-
lected by global optimization in a random media, these
two models might be related. The DPRM can be de-
scribed as follows: A weighted square lattice, in which
all edges carry a positive weight, gets cut along its di-
agonal and then it is oriented as a triangle, whose right
angle is up. Then all edges become directed and point
either to bottom right or bottom left. On such a lattice,
for a given realization of the disorder, one looks for the
minimally weighted path that goes from the apex to the
base. It has been shown in Ref. [24] that ζ◦=2/3, where

 0.001

 0.01

 0.1

 1  10  100

n l

l

nl ~ l -0.780(2)

L = 256

FIG. 8: Distribution of the path lengths l at the critical point
excluding those which percolate. 1200000 realizations of the
disorder have been considered. For the fit (red. χ2 =1.0) path
lengths from l=2 to 100 have been taken into account only.

ζ◦ is the roughness exponent defined by D ∼ tζ
◦

. D de-
scribes the mean distance between the base center and
the endpoint of the path and t is the size of the triangle.
Furthermore, it is also shown in Ref. [24] that ω◦ =1/3,

which is defined by σE ∼ tω
◦

. σE denotes the standard
deviation of the weight of the optimal path. A relation
between these two exponents is given by the scaling rela-
tion ω◦=2ζ◦−1 [24]. There are some differences between
the optimal path in DPRM and the path that appears in
directed NWP. First of all, the directed NWP includes
the disorder parameter ρ which allows us to investigate
a percolation transition, which is completely absent for
DPRM, since all paths are system spanning by construc-
tion. There are also smaller technical differences: For the
directed NWP, one looks for an optimal configuration of
loops plus one path in NWP. The loops, which cannot
be crossed by the path, have to be negatively weighted
as well and, therefore, block several negatively weighted
edges that cannot be picked up by the path. Thus, this
path can not be considered as optimal on its own. Fur-
thermore, while the lengths of the paths in DPRM are
always equal, the lengths of the paths in NWP differ con-
siderably.

Nevertheless, in spite of one big and the two smaller
differences, directed NWP and DPRM exhibit some scal-
ing which is comparable. This is not unnatural, since
both models describe some optimal paths in disordered
lattices: In order to compare both models, we iden-
tify D ↔ xend, where xend is the distance between the
endpoint of the path and the line of predominant di-
rection (cf. Fig. 3(a)) and t ↔ ξ‖. Then we consider

xend∼ξ ζ
‖ ∼Lθ‖ζ and σE ∼ξ ω

‖ ∼Lθ‖ω for the NWP model.

As evident from Fig. 3(b), xend scales with θ‖ζ =0.53(2)
and σE with θ‖ω = 0.26(2). Consequently, ω = 0.31(3)
and ζ = 0.64(4), which are in good agreement with the
exponents of the DPRM model.
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Note that in our model the path is included to deter-
mine its geometrical properties, in particular its exten-
sion parallel and perpendicular to the preferred (diag-
onal) lattice direction. Nevertheless, we have also per-
formed simulations for the model without a path, just to
study the percolation properties of loops alone. All re-
sults (for somehow smaller system sizes, not shown here)
for the percolation properties remain the same within er-
ror bars.

IV. SUMMARY

In this work with have studied the directed variant of
the negative-weight percolation model. This model de-
fined as a global optimization problem. The model can
be studied numerically efficiently, since a mapping to the
minimum-weight perfect matching problem exist, such
that fast polynomial-time optimization algorithms can
be applied. Thus, large systems can be studied numer-
ically with good statistics giving rise to high-quality re-
sults. The model exhibits a continuous phase transition,
that is characterized by the appearance of loops and a
path where at least one of them is large, i.e., system-
spanning. We have studied this percolation transition by
extended numerical simulations and their analysis based
on a finite-size scaling method. By investigating sev-
eral cluster-related observables we found estimates for
the percolation threshold, which we summarized here as
ρc = 0.3789(3), several critical exponents ν‖ = 1.18(10),
ν⊥ = 0.75(6), β = 1.42(21), γ = 0.00(5) and an expo-
nent that describes the power-law decay of the path-
length distribution τ = 0.780(2). For the values of
the correlations lengths, we have taken the esti-
mates which yielded the smallest statistical error
bars (from the data collapse of the average num-
ber 〈N〉 of percolatin loops). These values are

compatible with the estimates from the scaling of
other quantities. Finally, we tested the scaling
relation 2β = ν‖ + ν⊥ − γ [25], which is a stan-
dard relation for directed percolation. For the
left side we get 2.84(42) while for the right side we
get 1.93(21). Thus within one-sigma, the scaling
relation is not fulfilled, while within two-sigma,
the left and right side are compatible. Thus, it
is presently not fully clear whether the scaling
relation is fulfilled. If not, it could be due to
the fact that the percolating objects are line-like
rather that bulk-like. Note that for standard pdi-
rected ercolation near a wall, for the results ob-
tained using a series expansion the scaling rela-
tion is clearly violated [26]. Nevertheless, in the
case of a violation it would be different from the
undirected NWP case, where the standard scal-
ing relations for percolation hold [6, 8].

Additionally, we have shown that the directed
negative-weight percolation model is related to directed
polymers in random media (DPRM), although the
DPRM does not exhibit a percolation transition (except
when diluting the system where just the standard perco-
lation transition appears.)
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