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Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences
can be achieved via the knowledge of the score distribution of random sequences. But this requires
obtaining the distribution in the biologically relevant high-scoring region, where the probabilities
are exponentially small. For gapless local alignments of infinitely long sequences this distribution
is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments
and global alignments of finite lengths can only be obtained numerically. To obtain result for the
small-probability region, specific statistical mechanics-based rare-event algorithms can be applied.
In previous studies, this was achieved for pairwise alignments. They showed that, contrary to
results from previous simple sampling studies, strong deviations from the Gumbel distribution occur
in case of finite sequence lengths. Here we extend the studies to the for practical applications in
Molecular Biology much more relevant case of multiple sequence alignments with gaps. We study the
distributions of scores over a large range of the support, reaching probabilities as small as 10−160, for
global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling,
eliminating the sequence-length dependence, the distributions for multiple alignment differ from
the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian
correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

I. INTRODUCTION

One important task in bioinformatics is the analysis of
nucleotide or amino acid sequences, e.g. found in DNA,
RNA, or proteins. A vast amount of sequence data ex-
ists and can be found in large data bases like PDB [1]
or UniProt[2]. A particular important group of methods,
widely used for queries to such data bases, is sequence
alignment [3, 4]. Naturally appearing DNA or amino
acid sequences are aligned in a way that is most likely
to resemble their actual evolutionary relationship. Such
alignments may contain gaps, where in the correspond-
ing evolutionary processes insertion or deletion of genetic
material occurred. The degree of similarity, i.e., related-
ness, is quantified by a so-called (optimum) alignment
score. Different alignment algorithms exist, usually em-
ploying fast heuristics, like BLAST [5].

Since the alignment score is just a natural number, one
needs to assess the significance of an alignment. This is
achieved typically via calculating the cumulative proba-
bility p(S ≥ SO) to find a score S bigger than or equal to
the observed score SO within a suitably defined null en-
semble of random sequences. This approach corresponds
to the calculation of p-values within standard hypoth-
esis tests. In most cases, like for standard database
queries, the significance analysis is based on sequences
where the letters are drawn identically and independently
distributed (i.i.d.) using given probabilities. Therefore it
is desirable to find the score distribution of alignment
scores for the specified null ensemble. An analytical so-
lution for the score distribution only exists for the limit-
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ing case of gapless local alignments with infinite sequence
lengths [6], which is not so relevant for biological analysis
but of academic interest. According to this theory, the
probability function p(S) follows a Gumbel (or extreme-
value) distribution:

pG(S) = λ exp
(

−λ(S − S0)− e−λ(S−S0)
)

. (1)

For local alignments of sequences of finite length and
with allowing for gaps in the alignment the distribution
has to be analysed numerically. Simple sampling stud-
ies can easily randomly generate and align, e.g., 106 se-
quence pairs in computationally feasible time. This leads
to sampling the distribution in the high probability re-
gion with lowest statistically reliable probabilities still at
p ≈ 10−5. Early numerical studies using such a sim-
ple sampling approach indicated the Gumbel distribu-
tion to be a good estimate also for gapped alignments of
finitely long sequences [7]. However, biological sequences
are in most cases very similar to each other. The relevant
alignments therefore generally lie in the high-scoring, ex-
tremely low-probability tail of the distribution. Unfortu-
nately, this tail is not covered by the simple sampling ap-
proach. To obtain results for the low-probability region,
one of us (AKH) applied a statistical mechanics-based
rare-event simulation to the problem of pairwise local se-
quence alignment [8]. This work showed that the Gumbel
distribution significantly deviates from the obtained score
distribution in the distribution tails. Subsequent studies
indicated that a Gaussian correction to this distribution
suits well to gain a better description of the score dis-
tribution. Interestingly, the strength of this corrections
decreases with increasing sequence length [9]. Below we
will show that this Gumbel distribution with correction
factor leads to a better fitting distribution, but is still
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only an incomplete description of the data. These meth-
ods only have been used so far for pairwise local sequence
alignment with and without gaps. It is the main purpose
of this work, to extend the application of these methods
to multiple local sequence alignment, where more than
two sequences are compared within one alignment. Mul-
tiple sequence alignments are vastly used for analysing
three or more sequences with an assumed evolutionary
relation. Resulting alignments are amongst other things
used to estimate the phylogenetic history of sequences or
to find highly conserved protein domains. Similar pro-
tein functions can result from actual evolutionary rela-
tion or from convergent evolution, i.e. similar functions
developed in independent branches of the phylogenetic
tree. Significance analyses could help distinguishing the
two cases. Due to the expensiveness of local multiple
sequence alignment, its counterpart global multiple se-
quence alignment is much more common. However, local
multiple sequence alignment is especially suited for find-
ing functionally important regions within whole protein
families.

Note that for global sequence alignment no analyti-
cal solution for the score distribution exists. Studies of
real datasets [10] and subsequent studies following essen-
tially a simple sampling approach [11] suggest the three-
parameter Gamma distribution as a good model:

pgamma(S) =

{

λγ(S−µ)γ−1e−λ(S−µ)

Γ(γ) S > µ

0 S ≤ µ,
(2)

with the Gamma function Γ(x), and parameters λ, γ, and
a shift µ. Due to the nature of the studies, the sampled
region was again restricted to the high-probability region
of the score distribution. As a second application of the
rare-event simulation, we studied the score distributions
of i.i.d. random sequences in the low-probability region
of pairwise and multiple global sequence alignments.

The remainder of this work is organized as follows.
First, we will formally define the alignments we studied
and state the alignment algorithms we used. Next, we ex-
plain the statistical mechanics-based large-deviation ap-
proach, which allowed us to sample the alignments dis-
tribution of random sequences over a large range of the
support. In the main section, we show our results, for
gapped multiple alignments of two, three and, in case
of global alignment, four sequences. The main results
are that again the Gumbel distribution is not sufficient
to model the data and that the distribution for multi-
ple alignments, even more relevant for practical applica-
tions in Molecular Biology, cannot be obtained from the
pairwise alignments results, justifying the present numer-
ically demanding study. Finally, we present a summary
and an outlook.

II. SEQUENCE ALIGNMENTS

Sequence alignment algorithms aim to find the opti-
mal scoring alignment of two or more sequences. DNA
and amino acid sequences are given by a representing
sequence of letters from an alphabet Σ. It is |Σ| = 4
for DNA sequences consisting only of the four bases.
In contrast, there are 20 different amino acids, leading

to |Σ| = 20 for the respective sequences. Let ~x(i) =

x
(i)
1 , x

(i)
2 , . . . , x

(i)
Li

∈ ΣLi be the ith sequence of length Li

in a set of Nseq sequences. A multiple alignment A is
defined as a set of tuples of indices

A = {(l
(1)
k , l

(2)
k , . . . , l

(Nseq)
k )}; k = 1, 2, . . . ,K

1 ≤ l
(i)
k < l

(i)
k+1 ≤ Li.

(3)

A pair of letters (x
(i)

l
(i)
k

, x
(j)

l
(j)
k

) is called a match if x
(i)

l
(i)
k

=

x
(j)

l
(j)
k

. Otherwise it is called a mismatch. Note that in

each tuple Nseq letters are joined, so some pairs in this
tuple may match while other pairs may form a mismatch.

If l
(i)
k+1 = l

(i)
k + 1 and l

(j)
k+1 = l

(j)
k + 1 + M with M > 0,

i.e., the indices l
(j)
k + 1, . . . , l

(j)
k + M do not appear in

any tuple, sequence ~x(i) is said to have a gap of length

M in respect to sequence ~x(j). Also if l
(k)
1 = 1 +M > 1

or l
(k)
K = Li − M < Li one speaks of a gap of the k’th

sequence.
To find the alignment most likely resembling the ac-

tual evolutionary relationship, an objective score func-

tion S(A, { ~x(i)}) is used. Usually, the score is based

on sums of pairwise scores s(x
(i)

l
(i)
k

, x
(j)

l
(j)
k

), which are taken

from so-called substitution matrices given by biologists.
Typically, the scores are proportional to log of muta-
tion (mismatch) or conservation (match) probabilities in
evolutionary models. Therefore, scores for matches are
positive, while scores for mismatches are smaller, usually
negative. Two widely used sets of substitution matrices
are the PAM [12] and BLOSUM [13] substitution matrix
sets. Gaps are penalised depending on their lengths with
some length-dependent function g(M). The gap penal-
ties are intended to model log of probabilities of the oc-
currence of insertion or deletion events in evolutionary
processes.
To wrap this up, the score of a global pairwise align-

ment is the sum over all matches, mismatches, and the
penalties of all gaps g. A multiple alignment is scored by
the sum-of-pairs score, i.e., its score is the sum over all
pairwise scores:

S(A, { ~x(i)}) =
∑

i<j

(

∑

k

s(x
(i)

l
(i)
k

, x
(j)

l
(j)
k

)−
∑

g

g(Mg)

)

,

(4)
where the sum

∑

g runs over all gaps.
The aim of the alignment comparison is that the more

similar two sequences are, the higher the resulting score.
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Nevertheless, the score does not depend only on the se-
quences but also on the alignment. For example, even
for two equal sequences, one can find alignments with
a very small score. Thus, one is seeking for the optimal
alignment AO which is the alignment with the maximum
score

Smax({
~x(i)}) = max

A
S(A, { ~x(i)}) ,

maximized over all possible alignments. In subsequent

sections S is used synonymously with Smax({
~x(i)}). In

this work, affine gap costs

g(M) = α+ β(M − 1) (5)

were used. Thus, a high penalty α can be given for
opening a gap and a smaller penalty β for extending
one. Although even for two sequences there are expo-
nentially many alignments, an optimal pairwise global
alignment, i.e., Nseq = 2, with affine gap costs can easily
be found in polynomial time by the algorithm by Needle-
man and Wunsch[14] with Gotoh’s extension[15]. For
multiple global alignments the progressive heuristics by
Feng and Doolittle [16] was used in this work: All pos-
sible sequence pairs are aligned with pairwise alignment
first. A guide tree is constructed using the different ob-
tained pairwise scores. Sub-alignments are then aligned
to each other by aligning the highest-scoring sequence
pair, taking into account the existing alignments.
Another important alignment method next to global

sequence alignment is local sequence alignment. Here,
from each sequence a subsequence is chosen and only
the subsequences are aligned. This means for each se-

quence start- and endpoints l
(i)
s , l

(i)
e of the subsequences

are subject to optimization as well. Thus, the optimal
local alignment has to maximise the score over all possi-
ble alignments of all possible subsequences. This is also
equivalent to not penalising gaps at the beginning and
the end of sequences. With the algorithm by Smith and
Waterman[17] this is possible also in polynomial time
O(LNseq) for a set of Nseq sequences, if each has the
length Li = L.

III. METHOD

In the approach used [8], a sequence pair, correspond-
ingly here a set of K sequences, is viewed as a “state”
C of a physical system with “energy” E = −S. A
“temperature” T is introduced and the states are sam-
pled according to the rules of the canonical ensemble
in statistical mechanics. Specifically, a Markov chain
C0 → C1 → . . . is generated. In each step t a trial state
C′ is generated from the current state Ct by randomly
choosing and replacing one residue in the sequence set
[25]. The alignment score S(C′) is calculated and the
trial state accepted, i.e., Ct+1 = C′, with the Metropo-
lis probability [18] P (Ct → C′) = min [1, exp(∆S/T )]

with ∆S = S(C′) − S(Ct). If not accepted, the cur-
rent configuration is kept, i.e., Ct+1 = Ct. The equi-
librium distribution of the sampled states is known to be
Q(C) = P (C) exp (S(C)/T ) /ZT with the partition func-
tion ZT =

∑

C P (C) exp (S(C)/T ). The score distribu-
tion, biased by the scale parameter (or “temperature”)
T is then:

pT (S) =
∑

{C|S(C)=S}

Q(C)

=
∑

{C|S(C)=S}

exp (S/T )

ZT

P (C)

=
exp (S/T )

ZT

p(S)

The unbiased distribution then is p(S) =
pT (S)ZT exp(−S/T ). After rescaling via pRT =
pT exp(−S/T ) only the correct values for the parti-
tion functions ZT remain unknown. Determining them
is possible after covering different probability regions,
starting with the one for T = ∞. To cover the entire
score range, simulations are done at different temper-
atures. The efficiency of simulations is then improved
further by using the parallel tempering technique [19–21],
which works as follows. Simulations of the system are
done for NT different temperatures T1 < T2 < · · · < TNT

,
i.e., an independent configuration Ci is simulated for
each temperature Ti, i = 1, . . . , NT . The configurations
at neighbouring temperatures (Ti, Ti+1) are swapped in
suitably chosen simulation time intervals with a swap
probability Psw(Ci ↔ Ci+1) = min(1, exp[−∆β∆S])
with ∆β = 1/Ti+1 − 1/Ti and ∆S = S(Ci+1) − S(Ci).
One time step t consists here of one Monte Carlo
sweep, i.e., a number of Metropolis steps equal to
the total number of residues in a configuration, and
a subsequent sweep of NT − 1 exchange attempts
of randomly selected temperature pairs. To sam-
ple only weakly correlated data, the autocorrelation
cS(t) = {〈S(t0)S(t0 + t)〉 − 〈S〉

2
}/{
〈

S2
〉

− 〈S〉
2
} is

calculated and a relaxation time τ determined for which
cS(τ) = 1/e. Only every τ th value is considered when
sampling the data. Equilibrium is ensured by starting
to sample after an equilibration time t0. To determine
this time, two sets of initial conditions are simulated.
One set of simulations is initialised with randomly
generated sequence sets, i.e., with low scoring sequence
sets. The other set of simulations is initialised with sets
of identical sequences, only consisting of the letter a
with the highest pairwise score s(a, a) [26], i.e., with
maximum scoring sequence sets. The equilibration time
t0 is reached when the average scores of the different
regions have reached the same value within error bars.
Compare Fig. 1 which shows the first 10,000 time steps
of the simulations for the simulations done for Nseq = 3
sequences of lengths L = 40 for different temperatures
T .
Having covered the whole distribution range, it is now

possible to determine the partition functions ZT . As-
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FIG. 1: Equilibration times for different temperatures: First
10,000 Monte Carlo sweeps in the parallel tempering time
series averaged over 30 different realisations for random (bot-
tom branch) and high scoring (top branch) initial conditions,
respectively. System: Nseq = 3 sequences of length L = 40, lo-
cal alignment. A selection of the used temperatures is shown.
At lower temperatures it takes more time for equilibration.

suming for T = ∞ the biased distribution approximates
the true distribution PT (S) ≈ P (S) the partition func-
tion, or normalisation constant, becomes Z∞ ≈ 1. After
rescaling, the other distributions differ from the unbiased
distributions only by ZT which can be determined by a
shift between neighboring functions Ti−1,i on the loga-
rithmic scale, logZi. The shift between T1 = ∞ and the
unbiased distribution is defined as logZ1 = 0. The con-
secutive shifts are determined by minimising the function

f(logZi) =
∑

S∈[Ss,Se]

{
(

log pRTi
(S) + logZi

)

−

(

log pRTi−1
(S) + logZi−1

)

}2.

(6)

in the overlapping score region [Ss, Se] of the two neigh-
boring distributions. The shifted distributions are then
pST = pRT ·ZT . For most score ranges, several values from
the different biased distributions are available. For each
value S of the score distribution a weighted average over
all available data is calculated:

p(S) =
1

∑

T wT (S)

∑

T

wT (S)p
S
T . (7)

wT is the inverse relative error of the corresponding dis-
tribution pT (S) before rescaling and shifting:

wT (S) =

√

nT

pT (S)(1− pT (S))
(8)

where nT is the number of used samples for temperature
T . This finally gives values for a wide range of the dis-
tribution p(S) down to regions of very low probabilities.

IV. RESULTS

The rare-event simulations were performed for local
and global alignments. If not mentioned otherwise, the
alignments were calculated using the BLOSUM62 substi-
tution matrices and gap penalties according to (5) with
(α = 12, β = 1). These values were used in the previous
large-deviation studies [8, 9] and therefore allow a direct
comparison between results for pairwise and multiple se-
quence alignment.

A. Local multiple sequence alignments

Rare-event simulations for local pairwise sequence
alignments have shown that the Gumbel distribution
alone is not a good description of the score distribution
of gapped local sequence alignments. The introduction
of a Gaussian correction to the Gumbel distribution (1)
improved the agreement between analytical distribution
and data. The corrected distribution is

pC = pG · exp[−λ2(S − S0)
2]

= λ exp
(

−λ(S − S0)− λ2(S − S0)
2 − e−λ(S−S0)

)

.

(9)
The strength of the Gaussian correction is indicated by
the fit parameter λ2 and has been shown to decrease
with increasing sequence length for pairwise alignments.
λ2 was observed to decrease with a power-law for small
gap costs and faster than a power-law for high gap costs.
In the case analysed here, (α = 12, β = 1), the de-
crease is expected to be just in the power-law region.
Subsequently the distributions obtained with the rare-
event simulations for multiple local sequence alignment
of Nseq = 3 sequences will be presented and later on
compared to the results for pairwise alignment.

1. Score distributions for local multiple sequence alignments

Simulations for local multiple sequence alignments of
Nseq = 3 sequences of length L = 40 were performed
for 60 different realisations of the driving randomness,
each over 5 · 104 sweeps. The score distribution was ob-
tained as described in sec. III. A fit of the Gumbel
distribution without (1) and with (9) Gaussian correc-
tion was performed. The data and the fits are shown in
Fig. 2. The deviation of the Gumbel distribution from
the data in the tail of the distribution is clearly visible.
The better performance of the fit of the Gumbel distri-
bution with Gaussian correction is also indicated by the
χ2 value per degree of freedom, χ2/ndf = 1.5 in con-
trast to the value for the distribution without Gaussian
correction, χ2/ndf = 343.1. Thus, the behavior for the
low-probability tail for pairwise alignment could be con-
firmed for the alignment of Nseq = 3 sequences. We
performed another fit where the Gumbel distribution
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FIG. 2: The distribution for local alignments of Nseq = 3 se-
quences of length L = 40 as obtained by the rare-event simula-
tion. Fits of the Gumbel distribution to the whole distribution
as well as constrained to the score range [Sl = 21, Su = 115],
i.e., P (S) ≤ 10−10, are shown. Also shown is the better suited
fit of the Gumbel distribution with a Gaussian correction.
The inset shows the high probability region.

without Gaussian correction was restricted to the distri-
bution range with P (S) ≥ 10−10, which corresponds to
the interval [Sl = 21, Su = 115]. Simple sampling would
only cover probabilities P (S) > N−1

samples by creating and
aligning Nsamples i.i.d. random sequence sets. Therefore,
the restricted distribution range is still generously large,
requiring more than Nsamples > 1010 samples if it were to
be obtained by simple sampling. The restricted fit agrees
with the data in the high-probability region, visible in
the inset. This is also indicated by a somehow better
χ2-value of χ2/ndf = 63. Of course the fit now obvi-
ously deviates strongly in the distribution tail. Indeed,
the Gumbel distribution with correction constrained to
the same score range still performs better than without
correction (χ2/ndf = 9.45). Over the complete obtained
distribution range this results in a significant overestima-
tion of λ2 and a strong underestimation of P (S) in the
tail of the distribution. The results of these fits show
that the behaviour of the distribution can not be fully
studied with just a simple sampling approach.

Figure 3 shows the fit of the Gumbel distribution with
Gaussian correction to the data for local alignment of
Nseq = 3 sequences for different sequence lengths. The
fit performed as well as for the example case of L = 40.
However, varying the range of the distribution on which
the fit is performed results in a change of parameter val-
ues not accounted for by the standard error calculated
during the fit. Therefore parameter fits for every system
were performed with varying window sizes. All windows
start at the minimum score Sl for which the simulations

L λ 104λ2 S0
χ2

ndf
Sl [Sl/Smax]

40 0.25570(7) 0.968(4) 32.163(4) 8.2 200[0.152]

50 0.25378(5) 0.7441(15) 35.568(4) 7.3 225[0.14]

60 0.25164(6) 0.6045(17) 37.9981(13) 6.7 225[0.114]

80 0.247685(25) 0.4889(4) 41.744(7) 3.7 750[0.284]

TABLE I: Parameters for the fit of the Gumbel distribution
with Gaussian correction to the obtained data for local mul-
tiple sequence alignments (Nseq = 3). Parameter values are
convergence values: A fit was performed for each parameter
value as a function of the window size of the distribution.
χ2 values were calculated for these convergence values of the
parameters in the Gumbel distribution in respect to the ob-
tained distribution data.

yielded a data point (i.e., this point is fixed for each
system) and ends at a variablescore Su ≤ Smax, where
Smax is the maximum possible score, i.e., for two equal
sequences with the highest scoring letter. For the anal-
ysed system sizes for multiple local sequence alignment
with Nseq = 3 the parameters seemed to converge. Fig-
ure 4 exemplarily shows the parameter curve for λ(Su).
For sequence lengths up to L = 60 it seems reason-
able to estimate the parameters by fitting an exponen-
tial function with a constant. For a parameter g we use
g(Su) = gb + C exp(−k · Su) with fit parameters gb, C,
and k for an appropriate part of the value curve obtained.
The new fit parameter gb approximates the value against
which parameter g(Su) converges. For L = 80 this ap-
proach already appears less promising. Restricting the
window for the fit is necessary to gain a feasible value
for the parameters. Parameter values were obtained in
the way described and are shown in Tab. I, including the
range of windows chosen, but should be taken with the
according caution. We will see that this lack of confidence
is not the result of expanding the analyses to multiple se-
quence alignment. The same analysis of the distributions
found for pairwise alignments rather shows that the fit
performs even worse there. The analytical solution [6]
does assume infinitely long sequences. Generally a de-
crease of the parameter λ2, indicating the strength of
the Gaussian correction, can be observed, see Tab. I. The
decrease of λ2 with increasing sequence length indicates
that the correction is partially due to a finite size ef-
fect, disappearing for long sequences. This decrease has
already been found in the study of pairwise alignment
distributions [9] and can be confirmed here for multi-
ple alignments. As even the corrected function and the
acquisition of its parameters is still quite makeshift, as
visible from the χ2/nfd values shown in tab. I, beginning
considerably larger than one, we did not conduct a more
quantitative analysis of the decrease of λ2.
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probability region.
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FIG. 4: The fit parameters found for different window sizes
(Smin, Send). Several sequence lengths L for Nseq = 3 are
shown.

2. Comparison to pairwise alignment

As the simulations for multiple sequence alignment
were computationally expensive especially in the case
of local alignments, only short sequences up to L =
80 could be used for score distribution analysis in the
present work. For a better comparison with the data
for pairwise alignment, where mostly longer sequences
were studied [9] we have performed additional simula-
tions for shorter sequences also for pairwise alignments.
As we implemented a parallel version of the algorithm
for the MSA simulations, we could also obtain the dis-
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FIG. 5: The fit parameters found for different window sizes
(Smin, Send). Several sequence lengths L for Nseq = 2 are
shown.

tribution of scores over a larger range of the support,
compared to the previous work. We fitted the data to
the Gaussian-corrected Gumbel distribution. Obtained
values are shown in Tab. I. Restricting the fit to the
range of the support, which was addressed in the previ-
ous work where known, reproduces the parameter values
found before. But when we extended the distribution
range for the fit further, it yielded different parameter
values. Figure 5 shows the fit value of λ for Nseq = 2 for
different window sizes. This resulted in a small but visi-
ble linear decrease of the parameter value, showing that
in fact even the corrected Gumbel distribution is not suf-
ficient to describe the obtained data over a large range
of the support. The lower boundary of the window, Sl,
was varied as well, eliminating small S values. The linear
decrease of parameters could be observed for varying Sl

while fixing Su = Smax as well as for varying Su again,
but with different, higher, boundaries Sl. Furthermore,
χ2 values were obtained for actually performing the fit to
the whole support obtained and are shown together with
parameter values in Tab. II. They also indicate that the
fit of the corrected Gumbel distribution does not per-
form as well for pairwise local sequence alignment as for
multiple local sequence alignment.

Thus, instead of comparing parameters of fitted distri-
butions, we rather compare the data itself. This requires
some scaling to get rid of sequence-length dependencies.
The results in Ref. [22] indicate that for lengths (L,L′)
of a sequence pair, by rescaling the S-axis with Smax and
by rescaling the log probabilities by log p(Smax|L,L

′) the
curves for different pairs of sequence lengths fall approx-
imately on top of each other. This means

log p(S|L,L′)

log p(Smax|L,L′)
≈ f(S/Smax) (10)
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L λ 104λ2 S0
χ2

ndf

30 0.3243(4) 12.2506(13) 12.755(29) 21.2

40 0.31857(18) 9.175(7) 15.096(19) 26.5

50 0.30084(2) 7.597(5) 15.50(3) 34.5

60 0.29452(12) 6.3636(27) 16.675(23) 40.9

80 0.2824(12) 4.8321(17) 17.42(4) 43.4

TABLE II: Parameters for the fit of the Gumbel distribu-
tion with Gaussian correction to the obtained data for local
pairwise sequence alignments (Nseq = 2). As no convergence
of parameter values were observed, all values, including χ2,
are given as obtained by fitting over the whole range of the
support for which data has been obtained.

where f(.) is a universal function of the relative score

Q = S/Smax. Thus, for sequence lengths L̂, L̂′ and a

different score Ŝ but with the same relative score Q, i.e.,
Ŝ = S/SmaxŜmax one obtains

log p(S|L,L′) ≈ log p

(

SŜmax

Smax

∣

∣

∣
L̂, L̂′

)

log p(Smax|L,L
′)

log p(Ŝmax|L̂, L̂′)
.

(11)
Figure 6 shows selected distributions for Nseq = 2 and
Nseq = 3 with rescaled score- and probability axes. The
distributions for pairwise alignments coincide in the low
probability region as well as the distributions for multi-
ple alignments. There is only a deviation in the small re-
gion of high-probabilities which disappears with increas-
ing sequences length. There is however an overall dif-
ference between pairwise and multiple alignments. The
distributions do not coincide and the curvature is sig-
nificantly stronger for Nseq = 3. Thus, the deviation
from the Gumbel distributions is stronger for multiple
alignments and distributions of scores for multiple align-
ments can not be estimated easily from the data obtained
for pairwise alignment distributions. Nevertheless, the
knowledge of one distribution of arbitrary length Lmakes
it possible to estimate distributions for other sequence
lengths L′ also for multiple alignment of Nseq = 3 se-
quences. The same can be expected for Nseq > 3. But a
more precise analysis would require more simulation work
for multiple sequence alignments with more sequences.
These analyses could potentially yield a method to esti-
mate the distributions for Nseq > 3 by readily obtained
distributions with less sequences. Nevertheless, for an
actual study the numerical demand for the alignment of
even more sequences appears to be too high. Here, the
implementation of a good working heuristics for multiple
local sequence alignments with gaps would be helpful.

B. Global multiple sequence alignments

We could adopt the large-deviation approach easily
to global pairwise and multiple sequence alignment with
and without gaps. We below first present the analysis of
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FIG. 6: The distributions for various L and Nseq with rescaled
scores and probabilities. The distributions coincide for low
probabilities and identical number of sequencesNseq but differ
among pairwise and multiple alignments. Inset: High prob-
ability region in which the distributions deviate from each
other (even for same Nseq).

the high-probability tail for pairwise sequence alignment
and compare it to previous simple sampling results. Fur-
thermore, we expanded the method to multiple sequence
alignment and compare to the results for pairwise se-
quence alignment.

1. Pairwise global sequence alignments

We are not aware of any previous large-deviation study
for multiple or for pairwise global alignment. Here we
first show our results for pairwise global alignment. For
a direct comparison to the results of Pang et al. [11], sim-
ulations were performed for alignments with identical gap
costs of (α = 7,β = 1), see Fig. 7. First we performed a fit
of the Gamma distribution (2), which was found in Ref.
[11] to fit the data well, to the high-probability region
P (S) > 10−3 of the obtained distributions. For pairwise
alignment of sequences of lengths L = 50, 100, 200 we ob-
tained parameters similar to the sampling results [11], as
shown in tab. III. As visible in Fig. 7, this fit does not
match the data in the tail of the distribution. Extend-
ing the fit to regions with lower probabilities yielded sig-
nificantly different parameter values. Nevertheless, this
leads to a strong deviation in the high-probability region.
For a more elaborate study one could also obtain data for
the low-scoring side of the distributions (by means of neg-
ative “temperatures” in the large deviation simulations).
Nevertheless, the results indicate that the assumption of
scores distributed according to the Gamma distribution
is somewhat flawed. Thus, we also applied a Gaussian
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L Pang[11] high P (S)

50 γ 41.00 33(6)

λ 0.63 0.60(5)

µ -84.60 -66(5)
χ2

ndf
1.43

100 γ 49.16 48(6)

λ 0.55 0.57(4)

µ -115.44 -95(5)
χ2

ndf
1.05

200 γ 52.24 59(12)

λ 0.44 0.50(5)

µ -153.25 -123(12)
χ2

ndf
0.74

TABLE III: Parameters for the fit of the Gamma distribution
to the obtained data for global multiple sequence alignments
as found in [11] and as found with the large-deviation simu-
lations with the fit restricted to P (S) > 10−3.

correction

pgc(S) =

{

λγ(S−µ)γ−1e−λ(S−µ)

Γ(γ) eλ2S
2

S > µ

0 S ≤ µ,
(12)

with the Gamma distribution (2) and the Gaussian cor-
rection with the parameter λ2 indicating its strength.
Fig. 7 shows the fits of the different distributions. Clearly,
the Gamma distribution with the Gaussian correction
covers the distribution best over the whole probability
range.

2. Multiple global sequence alignments

The results for the multiple global alignment of Nseq =
3 sequences of length L = 40 are shown in Fig. 8. In-
cluded are the distributions obtained with the progressive
heuristics as well as with the computationally much more
expensive exact algorithm. The significant difference in
the low-scoring region of the distributions is clearly vis-
ible. In the high-scoring region the heuristics seems to
work better, i.e., approaches the exact optimum align-
ments, which is visible in the better consensus between
the two probability distributions. Shown are also fits
to the (uncorrected) Gamma distribution. The distri-
bution fits only well for the distribution obtained with
the heuristics, but not for the distribution obtained with
the exact algorithm, i.e. the Gaussian correction does not
seem to be necessary for multiple alignments of Nseq > 2
sequences when using the heuristics. For Nseq = 2 the
correction was found to be necessary in any case. But
for pairwise alignment, there is only one possible pair
of sequences to be aligned, which is done by the dy-
namic programming algorithm. The true optimal align-
ment is found. In contrast, when using the heuristics,
for Nseq > 2 sequences the first sequence pair is aligned
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FIG. 7: The alignment score distribution as obtained with
the rare-event simulations for the global alignment of Nseq =
2 sequences of length L = 100, here with gap costs (α =
7, β = −1) for direct comparison with [11]. Shown are the
fits of the Gamma distribution with and without Gaussian
correction as well as the fit of the Gamma distribution to the
high-probability region (P (S) > 10−3, S = [Rmin = −40 :
Rmax = 23]) only. Inset: High probability-region.

with the dynamic programming algorithm. The follow-
ing sequences are aligned to this initial alignment. If
the sequences are very dissimilar, the initial alignment
does not reflect the structure of the multiple alignment
very well. This means, especially in the low-scoring re-
gion scores lower than the true optimal scores are found
with progressive alignment. The different behaviour in
the high-probability region between pairwise and multi-
ple alignments is one possible explanation for the differ-
ence in parameter behaviour. Generally, the exact algo-
rithm is computationally too expensive for multiple se-
quence alignment and the heuristics is used. It should be
noted that for the score statistics this use of the heuris-
tics renders the Gaussian correction unnecessary. Further
observations for global multiple sequence alignment were
made for the case of using the heuristics if not stated
otherwise.

3. Comparison of pairwise and multiple sequence alignment

Figure 9 shows the values of fit parameter λ2 for differ-
ent sequence lengths and different number of sequences.
The most obvious observation to be made is that for
Nseq = 2 the λ2 values are positive, i.e., correcting the
curvature of the distribution to lower probabilities, con-
verging strongly towards zero. For multiple alignments
of Nseq > 2, however, λ2 values are relatively close to 0.
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FIG. 8: Distributions obtained for the global alignment of
Nseq = 3 sequences of length L = 40 with the exact algo-
rithm and the heuristics. The lines show the fit of the un-

corrected Gamma function against the data. The inset shows
the high-probability region, in which both distributions differ
significantly from each other and the fit for exact alignments
deviates significantly from the data.

This is compatible with the fact that a Gamma distri-
bution without Gaussian correction seems to fit the data
well when using the heuristics. Thus, when obtaining
score distributions for significance analysis of sequence
alignments, one actually needs to simulate multiple align-
ments explicitly, including large-deviations techniques. It
is not possible to deduce the distributions from the (large-
deviation) results of pairwise alignment.

The behavior of the parameter γ as function of se-
quence length is shown in Fig. 10 for the three cases
Nseq = 2, 3 and 4. While the correction parameter λ2 de-
creases with sequence length or is basically zero anyway,
the parameter γ increases. For γ → ∞ the Gamma distri-
butions converges to the normal distribution. Thus, for
long enough sequences, the distribution of global align-
ment scores converges to a normal distribution. This
can be understood in the following way: Neglecting gaps,
which is in particular true for very large scores, the pair-
wise scores can approximately assumed to be i.i.d. ran-
dom numbers. The overall sequence score is a sum over
these values. For L → ∞ the central limit theorem holds,
resulting in a Gaussian distribution.

Same as for local sequence alignments, the probabil-
ity distributions can be rescaled according to (11). The
rescaled distributions are found in Fig. 11. Again, for
identical number of sequences, the distributions coin-
cide again for different sequence lengths L in the low-
probability region. Again, there is a significant differ-
ence between the distributions for different number of
sequences Nseq, indicating that indeed significance anal-
ysis for multiple sequence alignments cannot be based on
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FIG. 9: The parameter λ2 as found for the distributions of
global alignment for different sequence lengths L and different
number of sequences Nseq. Drawn lines are guides for the eye.
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FIG. 10: The parameter γ as found for the distributions for
global alignment of different sequence lengths L and different
number of sequences Nseq.

the results for pairwise alignments, i.e., dedicated mul-
tiple sequence alignment studies have to be performed
explicitly, as done is this work. Note that the initial de-
viation for higher probabilities seems more distinct than
for local alignments, but it should be kept in mind that
the sequence lengths shown for global alignments differ
more than for local alignments, because more data was
available.
The strong difference of the resulting distribution of

pairwise and multiple alignments could be influenced by
the use of a heuristics for multiple alignments. For small
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sequence length, we were able to compare the results of
both algorithms. Figure 12 shows the rescaled distri-
bution obtained for L = 40 for pairwise alignment and
in case of multiple sequence alignment with Nseq = 3 the
rescaled distributions obtained with the heuristics as well
as with the exact algorithm. The distributions obtained
from heuristics and exact algorithm, respectively, differ
only in a small region, while the results from pairwise
and multiple alignment differ everywhere. Thus, the dif-
ferent development of distributions does not seem to be
a result of the application of a heuristics.

C. Comparison of local and global alignments

Finally, the score distributions of local and global se-
quence alignment can be compared. For mostly dissim-
ilar sequences the selection of best-scoring subsequences
can increase the alignment score. Since the probabil-
ity of the sampling of a specific sequence set is indepen-
dent of the alignment algorithm, dissimilar sequence sets
would score higher in local sequence alignment, where
no negative scores S are possible. This means that the
low-scoring region of the distribution for local alignments
should be skewed towards higher alignment scores com-
pared to the distribution of global alignments. This can
be observed in a comparison of score distributions with
the different alignment types for the same sequence set
properties, as shown in Fig. 13. Here, as an example, the
obtained distributions for Nseq = 3 sequences of length
L = 60 are shown. As can be seen, the maximum of the
distribution for global alignments is found for negative
scores, the maximum for local alignments is positive (as
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FIG. 12: Distributions obtained for global alignment of
Nseq = 2 and Nseq = 3 sequences of length L = 40 (with the
exact algorithm as well as with the heuristics for Nseq = 3).
The log(P ) values are rescaled with (11) and the scores
with S/Smax. The inherit difference between Nseq = 2 and
Nseq = 3 is obviously not based the use of an heuristics. The
inset show the high-probability region, in which all three ob-
tained distributions differ. In case of Nseq = 3 this difference
is small compared to the exact algorithm and is due to the
bad performance of the heuristics in the low-scoring region.

local alignments can only have scores S > 0).
On the other hand, most high-scoring global align-

ments, which have only few negative scoring residue-
pairings or gaps, would not yield better scores by se-
lecting (smaller) subsequences. This means that in the
high-scoring region, many sequence sets yield the same
score in local and global alignment. Therefore the dis-
tributions of local and global sequence alignment can be
expected to agree for higher scores. This can exactly be
seen in Fig. 13. This agreement might allow to estimate
statistics of computationally expensive local alignments
in the high-scoring region by means of the cheaper global
alignment. However, for practical applications in Molec-
ular Biology, local alignment results typically in scores
which are located in the intermediate region, where it dif-
fers from global alignments. Thus, knowing the distribu-
tion of random-sequence scores for global alignment alone
would not be sufficient to estimate the local-alignment
score distribution here.

V. SUMMARY AND OUTLOOK

We have studied the distribution of scores of multi-
ple sequence alignments in the ensemble of i.i.d. random
protein sequences. The statistical mechanics-based large
deviation simulations used here allowed us to numerically
measure the distribution of alignment scores in the bio-
logically most relevant region of small probabilities, e.g.,
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∼ 10−100. Data for these low-probability regions was not
available before.
Analysis of the distribution for multiple local sequence

alignment showed that the Gumbel distribution alone
does not describe the data as found previously for pair-
wise alignments [9]. Further analysis showed that the
suggested Gaussian correction improves the behaviour,
but still is not sufficient to describe the whole distribu-
tion. Nevertheless the results indicate that for a known
distribution for a certain number of sequences Nseq and
fixed sequence lengths L, distributions for other sequence
lengths but the same Nseq can be found by rescaling.
Also for pairwise global sequence alignment, were pre-

viously only simple-sampling results were available, we
could obtain the distribution of scores over a large range
of the support. We could reproduce the previous simple-
sampling results [11] only by restricting the fits to the
high-probability region. Extending the analysis to the
low-probability region showed significant deviations of
the Gamma distribution fit from the data. Again, a
Gaussian correction improves the fit of the distribu-
tion. The comparison between multiple and pairwise
global alignments revealed different characteristics of the
fit parameters. While the parameter λ2 indicating the

strength of the Gaussian correction was found to be pos-
itive but decreasing with sequence length for pairwise
alignments, it was almost negligible (actually slightly
negative) for multiple alignments, also converging to-
wards zero. The application of fast heuristics seems to
be the reason for this difference in behaviour, because
the behavior for multiple alignment was comparable to
the behavior of pairwise alignment when using the pro-
gressive heuristics. However, in the biologically relevant
low-probability region the heuristics performs well and
for small sequence length the distributions found with
the exact algorithm and the heuristics do not differ.

It is interesting to note the behavior in the limit of
infinitely long sequences, which is for biological appli-
cations not so relevant but of fundamental interest, in
particular with respect to the analytical results. Similar
to previous studies for pairwise alignments, in this limit
the distribution of scores are compatible with standard
distributions: For long sequences the score distribution
of local alignments appears to converge to the Gumbel
distribution, the score distribution of global alignments
to a normal distribution. Since in many actual applica-
tions, multiple alignments with more than ten sequences
are not uncommon, simulation of sequence sets with a
higher number of sequences (Nseq > 4) appears sensi-
ble in future studies. Nevertheless, due to the computa-
tional complexity of the exact algorithm which depends
strongly on Nseq, this requires the design and implemen-
tation of faster algorithms, e.g., in particular efficient
heuristics for multiple local sequence alignment.

Also it would be desirable, to extend these alignment
simulations to more refined ensembles of random se-
quences, e.g., for biologically more specific ensembles like
transmembrane proteins [23], or sequences with correla-
tions.
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