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Using an efficient polynomial-time ground state algorithm we investigate the Ising spin glass state
at zero temperature in two dimensions. For large sizes, we show that the spin state in a central
region is independent of the interactions far away, indicating a “single-state” picture, presumably
the droplet model. Surprisingly, a single power law describes corrections to this result down to the
smallest sizes studied.

I. INTRODUCTION

Spin glasses are prototypical disordered models [1–4]
studied in statistical mechanics, with applications in var-
ious fields such as machine learning, neural networks, and
optimization [5–9]. Despite considerable effort, the na-
ture of the spin glass state in three dimensions below the
transition temperature Tc remains uncertain. In equi-
librium it is not possible to study very large sizes nu-
merically because relaxation is very slow in Monte Carlo
[10] simulations, and because a large number of samples
have to averaged over. Because we don’t know how large
are corrections to the asymptotic scaling behavior, it is
difficult to judge whether results obtained in numerics
show the asymptotic behavior or just a pre-asymptotic
crossover.

The two main scenarios which have been proposed for
the nature of the spin glass state are the droplet picture
[11–14] and the replica symmetry breaking (RSB) [15–
17] picture. An important distinction between these two
approaches is that the droplet theory is a one-state pic-
ture, and RSB is a many-state picture.1 To explain what
this means we have to note that the state of the system
can possibly depend chaotically on system size. Because
of this, to describe spin glasses we need the “metastate”
proposed by Newman and Stein (NS) [18, 19] and by
Aizenmann and Wehr (AW) [20]. These two versions of
the metastate are generally thought to be equivalent but
the AW metastate is more convenient for our purposes
so we will consider that here. For more information on
the metastate in spin glasses see e.g. Ref. [21].

The basic idea of the metastate is to measure how some
part of the system, expressed in terms of correlations,
depends on changes in other parts of the system. Ideas
related to the metastate can be found in other works,
were distribution of window overlaps or probabilities of

1 We work in zero magnetic field so states come in pairs, re-
lated by flipping all the spins. Hence we should strictly use the
terms “one-pair” and “many-pairs” rather than “one-state” and
“many-states”. However, here we prefer to use “state” rather
than “pair”.

susystem configuration changes induced by changes of the
boundary conditions were investigated for spin glasses
[22–24], random-field systems [25] and others [24]. To
construct the AW metastate, take a large system of linear
size L and divide it into an inner region of size M (< L)
and an outer region. Determine the state of the system,
and record the spin correlations in a small central region
of size K (�M) in the middle of the inner region. This
is illustrated in Fig. 1 for L = 8,M = 4,K = 2. Then
change the bonds in the outer region only and recompute
the correlations in the small central region. Repeat this
many times and, for M,L → ∞, see if the central cor-
relations are independent of the outer bonds, which cor-
responds to a one-state picture, or whether they change
as the outer bonds are changed, which corresponds to a
many-state picture.

At least in zero magnetic field, numerics in three
dimensions seems to favor a many-state picture, see
e.g. [26], but supporters of the droplet picture suggest
that there are large corrections to scaling for the sizes
which can be reached, and the observed behavior is just
a crossover.

The above is for three dimensions. However, in two di-
mensions the situation is different for two reasons. Firstly
there is overwhelming evidence that the transition only
occurs at zero temperature [27–30], and secondly there
are highly efficient polynomial-time algorithms for com-
puting the ground state [31–35] at least if there are peri-
odic boundary conditions in no more than one direction.
It is generally accepted, though not rigorously proved
except for a half-plane [36], that the droplet picture (a
one-state picture) applies in two dimensions and more
generally when the transition is at T = 0. Although
there was some confusion in the past due to an expo-
nent relating energy to size being apparently different for
“domain wall” and “droplet” excitations, which would
contradict the droplet theory, it was later shown by one
of us and Moore [37, 38] that this apparent difference is
due to corrections to scaling being large for droplet ex-
citations (though small for domain walls), and for large
enough sizes the exponents are the same.

In this paper we use efficient ground state methods for
a large range of sizes to directly address the one-state
versus many-state issue in two dimensions by investigat-
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ing the AW metastate at T = 0. We find a one-state
picture, i.e. consistent with the droplet theory, since, in
the limit of large system size, correlations at the center
don’t depend on the bonds far away. Of particular inter-
est is whether there are large corrections to scaling which
could prevent this result being deduced from small sizes
only. In fact there are not. The extrapolation to infinite
size follows a single power law down to very small sizes.
This is in contrast to certain other quantities for which
large sizes are needed to observe the true scaling behavior
[37, 38].

The plan of this paper is as follows. In Sec. II we define
the model and the quantities we calculate. Our results
are described in Sec. III and our conclusions summarized
in Sec. IV.

II. THE METHOD

We use the standard Edwards-Anderson [39] of the
Ising spin glass in zero field, for which the Hamiltonian
is given by

H = −
∑
〈ij

JijSiSj , (1)

where the nearest-neighbor interactions Jij are indepen-
dent Gaussian random variables with zero mean and
standard deviation 1, and the Si, which take values ±1,
lie at the sites of a square lattice of size L×L. We work
at T = 0. Because the bond distribution is continuous,
the ground state is unique, apart from inversion of all the
spins as discussed in footnote 1.

We use a fast polynomial-time algorithm [31–33] for
which periodic boundary conditions can be applied at
most in one direction. In order to preserve the symmetry
of the square lattice we take free boundary conditions in
both directions.

The setup is shown in Fig. 1 for L = 8 (we need L to
be a multiple of 4). The lattice is divided into “inner”
and “outer” regions separated by the (blue) dashed line
in the figure. For all lattice sizes L the inner region is
of size M = L/2, so if we label a site by (x, y) where x
and y take values 1, 2, · · · , L, then the values of x and
y for sites in the inner region have x and y in the range
L/4 + 1 to 3L/4. After determining the ground state we
record the four nearest-neighbor spin correlations for the
spins on the central square (colored red in the figure) for
which the x and y values are L/2 and L/2 + 1.

Note that we fix the ratio M/L to be 1/2 as L increases
but the region where we compute the spin correlations is
always just the central square (so the size is K = 2).
Hence we consider the limit where L/K and M/K be-
come large with L/M fixed.

Having recorded the spin orientations in the central
square for a particular choice of the bonds we then change
the bonds in the outer region only (shaded in green in
Fig. 1) and recompute the ground state. This leads to
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FIG. 1: (color online) The setup for size L = 8. The bound-
ary between the interior and exterior regions is indicated by
the dashed blue line. For all sizes L, the inner region is of
size M = L/2, so M = 4 here. Also, for all sizes we just mea-
sure the spin correlations in the central square (size K = 2),
which is shown in red. The rest of the interior region is shown
in black. The exterior region, whose bonds are changed af-
ter each run, is in green. Note that we take free boundary
conditions.

FIG. 2: (color online) Comparison between pairs of ground
states for L = 128 which differ by changes of the bonds in the
outer regions. Black squares indicate spins which a different.
The left figure shows an example where few small clusters in
the inner region are flipped, while the right figure shows a flip
of mainly one big cluster.

strong changes of the configuration in the outer region,
basically half of the spins, and some changes in the inner
region, where the bonds have not changed. Two exam-
ples for difference between such pairs of ground states
are shown in Fig.2. The ground states in the inner re-
gion typically differ only by small regions or by one large
region, respectively.

We repeat for many sets of outer bonds but the same
inner bonds and denote the corresponding average by
[. . .]out. For i and j nearest-neighbor sites on the central
square we compute the average

Cmeta
ij =

∣∣∣ [SiSj ]out∣∣∣, (2)

which is known as a “metastate” average. Here we take
the modulus to get rid of the random sign. Normally in
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spin glasses one takes the square, but there is a reason
discussed in connection with Fig. 4 why we prefer to take
the modulus here. Almost identical results for the inter-
cept a and exponent λ in Eq. (5) below are obtained if
we use the square rather than the modulus. Note that
the modulus is performed only after the average over the
outer bonds is done. For each configuration of both in-
ner and outer bonds SiSj = ±1 since the ground state
is unique apart from spin inversion. Thus, if the state
in the central region is completely independent of the
outer bonds one has Cmeta

ij = 1. However, if the state in
the central region depends on the outer bonds one has
Cmeta
ij < 1.
Next we average over the inner bonds to get

Cmeta,av = [Cmeta
ij ]in = [

∣∣∣ [SiSj ]out

∣∣∣ ]in . (3)

To get the best statistics we also average over the four
nearest neighbor pairs in the central square in Fig. 1.

According to a one-state picture

Cmeta,av → 1 for L→∞ (droplet theory), (4)

while in a many-state picture, Cmeta,av tends to a value
less than 1 in this limit.

III. RESULTS

We have performed computations for sizes, L = 8 to
L = 256 using an efficient polynomial time algorithm
[31–33] For each size we average over 100 choices of the
outer bonds for a given choice of the inner bonds. This
procedure is then repeated for 1000 values of the inner
bonds so altogether we do 105 ground state computations
for each size.

The upper panel of Fig. 3 plots 1 − Cmeta,av against
1/L. To compute the error bars, we first average over the
four nearest neighbor pairs in the central square, to get
a single number for each sample. Since different samples
have statistically independent values for both the inner
and outer bonds, the results for different samples are sta-
tistically independent and so error bars can be computed
in the standard way from these results. Also shown is a
fit to the function

1− Cmeta,av = a+
b

Lλ
, (5)

which gives

a = −0.004± 0.005 (6)

b = 0.89± 0.08 (7)

λ = 0.66± 0.05 . (8)

The quality of this fit is Q = 0.99, very close to 1, which
is a bit surprising. This may, partly, be a statistical coin-
cidence, and partly due to the values of Cmeta

ij not being
Gaussian distributed (as can be inferred from Fig. 4), so
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FIG. 3: (color online) The upper panel plots 1 − Cmeta,av

against 1/L for different sizes as well as a best fit according
to Eq. (5). The fit parameters are a = −0.004 ± 0.005, λ =
0.66 ± 0.05, b = 0.89 ± 0.08. The lower hand panel plots the
same data against 1/L0.7. This power is chosen because the
best fit with a fixed to be 0 gives c = 0.70 ± 0.02.

the true fit probability can not be obtained directly from
the χ2 per degree of freedom.

Our main result is that the extrapolated value a is zero
to within very small error bars which provides evidence
that Cmeta,av → 1 for L → ∞ indicating a one-state
picture.

If we fix a = 0, a fit gives λ = 0.70 ± 0.02 with the
same quality Q = 0.99 of the fit. The lower panel in
Fig. 3 plots 1−Cmeta,av against 1/L0.7. It is remarkable
than an excellent straight-line fit is obtained for all sizes
from L = 8 upwards. Hence single-state behavior could
be deduced even for small sizes. However, one would not
be confident that this is the correct behavior without also
having the results for large sizes.

Note that the changes in the inner region are composed
of clusters seperated by domain walls, see Fig. 2. Thus,
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FIG. 4: (color online) The cumulative probability distribu-
tion of Cmeta

ij is plotted for different sizes. If P (Cmeta
ij ) is the

probability distribution of Cmeta
ij averaged over both the in-

ner bonds and the four central nearest-neighbor pairs shown
in Fig. 1, then the cumulative distribution Π(y) is defined
by Π(y) =

∫ y

0
P (x) dx. The order of the lines in the fig-

ure is the same as in the legend. The distribution is actu-
ally discrete; the only values of Cmeta

ij which can occur are
0, 0.02, 0.04, · · · , 1.00 since we take 100 sets of outer bonds
for each set of inner bonds, and SiSj can only take the values
±1 at T = 0. Note that the allowed values of Cmeta

ij are uni-
formly spaced. This is because we defined Cmeta

ij in Eq. (2)
with a modulus. However, if we had defined it with a square
instead, which would usually be more natural for spin glasses,
the allowed values of Cmeta

ij would not be uniform.

the value of the exponent λ is likely related [22, 24, 25] to
the fractal nature of the domain walls . The domain-wall
lengths l scale as Ldf where df is the fractal dimension.
Since the number of affected bonds scales as l, the prob-
ability that a bond from the O(L2) bond in the inner
region is affected should scale as L2/Ldf = L2−df , i.e.,
λ = 2 − df. With estimates of df = 1.274(2) [40] and
df = 1.27319(9) [41] we arrive at values with are compat-
ible with the value λ ≈ 0.7 obtained above.

To get a more detailed picture, Fig. 4 plots Π(Cmeta
ij ),

the cumulative distribution of Cmeta
ij , defined in Eq. (2),

averaged over the different sets of inner bonds and the
four central nearest-neighbor pairs in Fig. 1. We see that
for a substantial fraction of the choices of the inner bonds
one has Cmeta

ij = 1. This fraction increases with increas-
ing size and apparently tends to 1 for L→∞. For these
samples there is strictly no change in the relative spin
orientation of a central nearest-neighbor pair when the
outer bonds are changed. Note that the probability dis-

tribution of Cmeta
ij , inferred from the cumulative distri-

bution shown in Fig. 4, is very far from Gaussian, as
discussed above in connection with with Q-factor of the
fits in Fig. 3.

IV. CONCLUSIONS

We have confirmed the single-state picture for the T =
0 spin glass state in d = 2 by using powerful numerical
techniques which permit a study of large system sizes.
We have shown directly that, at T = 0 and for d = 2, the
spin glass state in a region only depends the bonds in the
vicinity of that region and not on the bonds far away.

An important result is that extrapolation to infinite
system size is very smooth. A single inverse power of L
describes the decay of 1 − Cmeta,av to zero down to the
smallest size studied L = 8, see Fig. 3. Our estimates for
this power, λ, are 0.66±0.05 in an unconstrained fit, and
0.70± 0.02 if the extrapolated value is fixed to zero.

The smooth trend with size shown in Fig. 3 down
to the smallest size L = 8 is reminiscent of the do-
main wall energy. In early work, using sizes only up to
L = 12, Bray and Moore[28] found the stiffness exponent
for the size dependence of domain wall excitations to be
θ = −0.294 ± 0.009. Remarkably, this is very close to
recent results[41] using efficient methods [31–35] which
included sizes between L = 8 and 10, 000 and which
found θ = −0.2793 ± 0.0003. However the situation for
the energetics of droplet excitations is different, since for
these one needs quite large sizes to see the asymptotic
behavior [37]. The reason for this difference is unclear.
Unfortunately, it is also unclear what sizes are needed
in three dimensions to determine the nature of the spin
glass state on large length scales. Furthermore, the situa-
tion in three dimensions is more complicated because, in
addition to the droplet and RSB pictures, there are ad-
ditional possibilities such as like the “trivial-non-trivial”
and “chaotic-pair” pictures [42].
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