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Abstract A method for solving binary optimization problems was pregd by Karanda-
shev and Kryzhanovsky that can be used for finding groundsstatspin glass models. By
taking a power of the bond matrix the energy landscape ofytsies is transformed in such
a way, that the global minimum should become easier to findhispaper we test the combi-
nation of the new approach with various algorithms, namietypke random search, a cluster
algorithm by Houdayer and Martin, and the common approagbaddllel tempering. We
apply these approaches to find ground states of the threendional Edwards-Anderson
model, which is an NP-hard problem, hence computationdibllenging. To investigate
whether the power-matrix approach is useful for such haatblpms, we use previously
computed ground states of this model for systems of siZespihis. In particular we try to
estimate the difference in needed computation time condgarplain parallel tempering.

Keywords spin glass model binary minimization- energy landscape transformation
Monte Carlo method NP-hardness

1 Introduction

Spin glasses in physics are magnetic systems charactényzexhdom competing interac-
tions [1-4]. Models of them prominently feature disorded &mstration resulting in a very
complex energy landscape. However these models also egpreptimization problems,
that can be applied in many other scientific fields [2,4]. Unfoately the actual problem,
which is to find the systems’ ground states, turns out to beéhBife-[5]. Consequently many
elaborate algorithms were adopted over the years, spdgiftoafind ground states or to
investigate spin glasses at finite temperature and penfigrithie limitT — 0 [6-13]. Also

special computers [14] were build with this challenge indniRor this kind of optimization

problems Karandashev et al. [15] more recently proposedvglnentary approach, in
which one tries to simplify the problem with a simple transfation of the energy land-
scape. Approaches based on the same basic idea but usimgratisformations [16—19]
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have been applied to few optimization problems. Neverdslthough the idea is tantaliz-
ing and Ref. [15] and its follow-up [20] have shown it to badig work, it has yet to prove,
whether it can actually be useful and compete with estaddishethods when applying it to
really hard optimization problems. The goal of this workddést this approach with a few
different algorithms on the 3D Edwards-Anderson modelfig try to estimate the amount
of time, which can be saved by using it.

2 Model

The Edwards-Anderson model [21] of spin glasses consists»imensional lattice of
side lengthL filled with N = LP Ising spinss = +1. The spins are coupled by nearest-
neighbor bonds);; = £1 with periodic boundary conditions. Given a spin configioras
and the bond matrid with standard deviatioo; the state’s energy can be calculated as

E(S) =~ o T 41951 1)
1]

This definition follows [15] with the sum prefactor actingaasormalization to make differ-
ent matrices comparable. There is two major differencesds our setup and the one in
[15]. Firstly we are looking ab = 3 systems instead & = 2, which is important, because
the problem of finding ground states for spin glass modelsfaa@sd to be NP-hard[5] in
three or higher dimensions. Secondly the mentioned pafser gesussian couplingl;. In
that case spin flips resulting in no change of en&tgy= 0 are extremely unlikely to appear,
while for our binary case they are very common, which allowrsef better convergence of
the algorithms.

3 Algorithms
3.1 Simple random search

The first and simplest algorithm that comes to mind when ¢ntim find a ground state
for this model is probably the simple random search (SRS} Was the focus of [15],

inspired by the dynamics of the Hopfield model of neural neks/§22], which can be seen
an equivalent to spin-glass models. The algorithm acts asples descent in the energy
landscape from a random starting point:

1. lterate over all spins. Flip every spin wittE < 0.
2. Stop, if no spin was flipped in the last sweep. Otherwiserneto step 1.

This method can be expected to get stuck in local minima oétrexgy landscape most of
the time. Hence the search would have to be repeated many tiora different random
starting configurations for a realistic chance of finding gfiebal minimum. However in
contrast to the paper [15] we were not able to actually findigdestates using this algorithm
verbatim, because we study here a harder problem. We canvleoweake a simple but
effective amendment by also allowing spin flips wille = 0, which makes the algorithm
more similar to a Monte Carlo simulation at zero temperat@fecourse the stop criterion
has to be changed as well: the search terminates, if no gpimith AE < 0 could be found in
the last 100 sweeps. The improvement is quite noticeablslamald not be underestimated.
However it is only helpful, because spin flips wifE = 0 are quite common, as mentioned
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before. For easy distinction we will call this the alteredSS&nd the former the unaltered
SRS.

3.2 Houdayer-Martin algorithm

In a follow-up paper [20] Karandashev et al. also utilizeduster algorithm introduced by
Houdayer and Martin [12] (HM). In the original paper [12] ia® used as a local search
in a more sophisticated genetic renormalization algorithihe basics idea of HM is to flip
clusters of spins instead of single spins. In detail, it vgaak follows:

1. Pick any spin wittAE < O or, if none exists, simply a random spin with uniform proba-
bility. Virtually flip spin and use it as seed for new clustget total cluster energy change
AE; = AE.

2. Pick neighbor spin of current cluster with smalld$. Virtually flip spin and add it to
cluster, and updat&E; = AE; + AE.

3. Continue at step 4, if no spins are left or if 20 spins wengpéd since the cluster
achieved the smallest total energy chadd®. Otherwise return to step 2.

4. Flip the cluster, which achieved a mininzsE., but only if AE; < 0.

5. Stop, as soon as three times the resulting clusters habeeo flipped. Otherwise return
to step 1.

This algorithm also considers flips which seem bad at fird, @an therefore escape local
minima. But though it is much better than the unaltered SB&yrisingly it was not able to
find ground states either. Consequently we alter it in blgittee same way as with the SRS.
Spins withAE = 0 are preferred over random ones as seeds and clusters wittange in
energy are flipped as well. And a much more lenient stop @ites applied, which waits
for 1000 consecutive failures to find a cluster, that lowbeseénergy. Again this improves
the algorithm noticeably, considerably slowing it downtet same time.

3.3 Monte Carlo and parallel tempering

A common physical approach to the problem is to evolve théegyst a certain tempera-
ture T using a Monte Carlo simulation(MC)[23]. For Metropolis dynics used hereafter
one simply picks for each step a random spin (with uniformbptality) and flips it with
probability min(1,exp(—AE/T)). Theoretically one can reach equilibrium at low tempera-
ture, hence the ground state should be encountered. Nelesshfor such systems it takes
a very long time to actually reach equilibrium, since the ayics get stuck in metastable
states due the existence of many low-lying local minimasT$gue can be tackled by using
the Metropolis-coupled Markov-chain Monte Carlo (f)Glgorithm [24], now known in
Physics as the replica-exchange or parallel-temperiny &Bproach [25, 8].

1. Createi = 1,...,M replicas of the given samples of the disorder each assigned t
different temperatur@ with Ty < To < ... < Tu.

2. Perform a Monte Carlo sweep Wfupdates for each replica.

3. M —1 times pick random paifi,i + 1) of replicas at neighboring temperaturgsrT; 1
and exchange them with probability

acronfsen] (371 e
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4. Stop after a specified number of iterations. Otherwisgmeb step 2.

Here we simply chose a set of 21 equally spaced temperdftuzes;. .. < T»1in [0.3,1.35].
A well-considered choice of tailored temperatures can awprthe efficiency of the algo-
rithm but such would be overdue for the tests we will perfoBat we perform a cheap
overrelaxation sweep, which simply iterates over all sflipping those withAE = 0, after
each Monte Carlo sweep for a bit of improvement. At the end sk fhe lowest temper-
ature replica and apply the unaltered SRS once, just to makere likely that we do not
strand just a few steps away from the global minimum.

3.4 Double-descend algorithm

Karandashev et al. proposed a different approach for fingingnd states[15]. The basic
idea is to consider thie-th power of the bond matrid¥ resulting in a change of the energy
landscape. Particularly the global minimum is expectedeepén while expanding its at-
traction area. But at the same time the global minimum shifitle in configuration space.
Explicitly Karandashev et al. [15] state a deepening by #ofacf 1.35 and a shift by a
Hamming distance of. 026N for the cas& = 2. Based on this the double-descent algorithm
for valuek (DDK) involves two main steps:

1. Start from random configuration and search for the grotate sf the system with bond
matrix J¥, k > 1.

2. Continue from the configuration obtained in this way toreledor the ground state of
the original system with bond matrik

In the first step the global minimum of the transformed syssbould be easier to find and,
because of its small distance, the global minimum of theimaigsystem should be eas-
ily reached from there in the second step. The actual searbloth steps can be carried
out with any algorithm of choice. In Ref. [15] the simple rand search was used and the
best performance was observed for the chéiee 3. The follow-up paper [20] also used
the Houdayer-Martin algorithm giving better results. Rertadjustment has to be made if
one wants to use Monte Carlo or parallel tempering on a toam&fd system, because the
typically occurring energies will differ in magnitude foifférent values ok. Hence, one
would have to use different sets of temperatures. By simplitiptying the exponentiated
matrix with the ratio of original and new standard deviatmnthis is avoided. However
these combinations will not be discussed here in detaihasturned out to have no notable
advantage over temperature-less algorithms for this merpdormal Monte Carlo simula-
tions fare quite similarly to the SRS, while taking much lengParallel tempering suffers
extreme slowdown fok > 1 due to the reasons outlined in Sect. 4.2. Though tests showe
an increase in success rates, it was not large enough taateda closer look under these
circumstances.

4 Test results
4.1 Success rates
We implemented the double-descend method using the spatsix package included in

the Eigen library [26]. First we will take a look at the disuiion of energies found by basic
SRS and the DD3 incorporating it in Fig. 1 together with thstrithution of ground-state
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Fig. 1 Energy distributionP(E) of ground states of the samples and of the energies of the coafiigns
found by the unalteredAE < 0) and altered4E < 0) simple random search. On top of that we differentiate
between the simple use of the SRS1) and the variant using a double-descend approach DD3«witB.

energies. We considered 1000 samples of the disorder#£at0. The ground states had been
calculated previously using the algorithm detailed in [§, Note that only the availability of
presumably true ground states of the NP-hard minimum-grepin-glass problem renders
the evaluation of the DBalgorithms reliable. For testing the different algorithoessidered

in this work, for each sample (and type of algorithm) 18dependent runs with random
initial spin configurations were performed, and the lowastrgy configuration was kept as
potential ground state each time. Like in [15] the DD3 vangibthe unaltered SRS is much
closer to the ground states, suggesting a better chancealofdithem. However the adjusted
SRS (allowing for spin flips witdd E < 0) is already better and yet combined with the DD3
the improvement turns out to be much smaller compared todjfusted SRS approach. This
is just one example of what we found holds for all algorithnestested with this approach:
The better an algorithm is on its own, i.e., foe 1, the less it will benefit from the double-
descend approach.

Next we take a look at the measured probabgyf finding a ground state as a function
of the matrix powek in Fig. 2. It can be seen, that even powkedo worse than odd powers
most of the time and can thus be mostly neglected. Contraiipdings in [15]k = 3 does
not seem to be optimal witRy < 10~°. Hence, when using only 1000 independent runs,
one will not find a true ground states for most samples. Nbe@ss, the accuracy seems
to steadily increase only becoming worse kor 20. However this benefit does not come
without a cost, as we will see in the following section.
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Fig. 2 Probability pp of finding a ground state using the simple random search in bldalescend approach
with different matrix powers.

4.2 Timing

To evaluate the efficiency of the algorithms, we timed albaltpms on the same computer,
an Intel Core 2 Duo E6550, differentiating between the séitup tserypand the run time
trun. The setup timéseypis the time needed for setting up an algorithm including thie ¢
culation of the matrix powerd* and thus increases immensely witin the same way for
all algorithms. As we have to repeat the algorithm many tint@s is usually eclipsed by
the run timetryn of an algorithm spent after the setup, which is shown in FigA3evident
the run time increases as well. The first increase happensKre 1 — k = 2 because
it executes the incorporated algorithm twice forlat 1. The further growth happens be-
cause the number of non-zero elements in the bond matrigases with growing powé«
This second effect then saturates, in this casé forl0, because almost half of all matrix
elements become non-zero. For complex algorithms thisdgamm for growing value ok
becomes quite notable and at the same time the benefit ofdewimgj powers of the bond
matrix becomes smaller, as seen before. Notably the imciu#iAE = O flips for the SRS
and HM algorithms become useless, becausé for3 spin flips withAE = 0 rarely occur
anymore. As a consequence, we used the original varianhéofirst k > 1) part, i.e., the
descent was stopped if &tE < O flip was encountered (unaltered variant). This saved quite
a bit of running time, while hardly altering the probabili§/finding ground states.

Now we include the effect of multiple restarts with randoritiéh configurations in our
considerations. Assumirfgy is again the probability of finding a ground state in a single r
the probability of finding at least one ground state afferuns isq = 1 — (1 — Py)M. Using
this we are able to compare the efficiency of different athons by defining a weighted
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Fig. 3 Run timetgyn, of the simple random search in a double-descend approachliffégrent matrix powers
k.
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needed for finding ground states, assuming a target pratyadpiMe choose = 0.99 here,
but any other choice would just differ by a prefactor. Fighéws this weighted time for the
combinations of the simple random search, Houdayer-Malgarithm and parallel temper-
ing, which are the most efficient of their kind (the undertyshata ofR, tserupandtryn is not
shown here for briefness). For the simple random search ectaisombination of unaltered
SRS inthe first step and altered SRS in the second one. The.seitered SRS also proved
most practical when combined as the first step together Wwahattered Houdayer-Martin
algorithm in the second. While this turned out to be usefulpfarallel tempering of short
durations, for 16 iterations any combination tried only served to lower thebability P,
Thus, we show here as an example (marked by PT in Fig.4) thbioation with unaltered
HM in the first step where the matrix powets- 1 are considered.

So far, when looking at average running times, the setugimgilon the Houdayer-
Martin algorithm seems most successful with plain parédielpering being slower by more
than one order of magnitude, despite having about 70% ssicatson a single run. How-
ever our comparison so far has disregarded that for diffesamples of the disorder for
some samples the ground states are much harder to find thahfens. Thus, we actu-
ally find a distribution of vastly different probabilitig® for different samples. For Fig. 5
we calculated the weighted timggfrom the individualP, values which were obtained by
averaging over 10independent runs per sample for HKM=£ 21) and plain PT with 19
iterations averaged over Athdependent runs per sample. Using these histogramswé
determined the distributior®(ty) using logarithmic binning. Now the difference in timing

tq = tSetup+ trRun
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Fig. 4 Weighted timesy for finding ground states with the simple random search(SiR€}loudayer-Martin
algorithm(HM) and parallel tempering(PT) with 4@erations in a double-descend approach with different
matrix powersk.

between both algorithms looks much smaller. In both casesligtribution has a long tail
complying with a power law of exponept= —1.5. This can be seen as a sign of the univer-
sal hardness of the problem. Note furthermore that the ¢afiec value of the distribution

is not defined, which means that there are rare instancesrigtiong running time, which
dominate the average. Hence, the spin glass ground-staikepr is very hard.

Note also that for the result shown in Fig. 4 behavior was skkvbecause the HM
combination can for some samples find ground states with afient runs, while PT always
needs at least one slow run. To dependably succeed for ghlsamvould take both a more
similar amount of time.

5 Conclusion

As we have seen, the double-descend approach, based oderorgipowers of the inter-
action matrix in the first descent, can enhance the prolgaloiifinding ground states for
almost all algorithms used with it, with the big exceptioringelong-time parallel temper-
ing. But at the same time the first descend in the transformedyg landscape also greatly
slows down compared to the second one. Furthermore we ftvatthe better an algorithm
is the less of an improvement it can receive from this. Begafsthis we opt for using
simpler algorithms for the descend in the transformed leaoks.

The definition of a weighted timg, in (2) allowed us to compare different algorithm
combinations under the assumption, that we can do multipls, ii.e., restarts from different
initial random conditions. Although a double descend apphdncorporating the Houdayer-
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Fig. 5 Distribution of the weighted timey for finding ground states with the Houdayer-Martin algo-
rithm(HM) in a double-descend approach wikhk= 21 on one hand and plain parallel tempering(PT) with
10* iterations on the other hand. The added lines are power lathsewponenty = —1.5.

Martin algorithm seemed to come out on top of the establi§tied look at the distribution
of tq showed only little advantage. Considering we have not evadenany effort to tune
the PT to the problems at hand, PT, as a very simple to implemethod, appears still to
be a meaningful choice when computing spin-glass grourndsstalso so far we have only
compared to already known ground states, but for use inipeaate would first have to
establish a method for assessing whether the ground stchally been reached, while
many such checks are already available for PT. Overall thbléalescend approach, while
an interesting concept, does not seem to have, in the momeatical use above other
approaches.
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