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Abstract A method for solving binary optimization problems was proposed by Karanda-
shev and Kryzhanovsky that can be used for finding ground states of spin glass models. By
taking a power of the bond matrix the energy landscape of the system is transformed in such
a way, that the global minimum should become easier to find. Inthis paper we test the combi-
nation of the new approach with various algorithms, namely simple random search, a cluster
algorithm by Houdayer and Martin, and the common approach ofparallel tempering. We
apply these approaches to find ground states of the three-dimensional Edwards-Anderson
model, which is an NP-hard problem, hence computationally challenging. To investigate
whether the power-matrix approach is useful for such hard problems, we use previously
computed ground states of this model for systems of size 103 spins. In particular we try to
estimate the difference in needed computation time compared to plain parallel tempering.

Keywords spin glass model· binary minimization· energy landscape transformation·
Monte Carlo method· NP-hardness

1 Introduction

Spin glasses in physics are magnetic systems characterizedby random competing interac-
tions [1–4]. Models of them prominently feature disorder and frustration resulting in a very
complex energy landscape. However these models also represent optimization problems,
that can be applied in many other scientific fields [2,4]. Unfortunately the actual problem,
which is to find the systems’ ground states, turns out to be NP-hard [5]. Consequently many
elaborate algorithms were adopted over the years, specifically to find ground states or to
investigate spin glasses at finite temperature and performing the limit T → 0 [6–13]. Also
special computers [14] were build with this challenge in mind. For this kind of optimization
problems Karandashev et al. [15] more recently proposed a complementary approach, in
which one tries to simplify the problem with a simple transformation of the energy land-
scape. Approaches based on the same basic idea but using other transformations [16–19]
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have been applied to few optimization problems. Nevertheless, though the idea is tantaliz-
ing and Ref. [15] and its follow-up [20] have shown it to basically work, it has yet to prove,
whether it can actually be useful and compete with established methods when applying it to
really hard optimization problems. The goal of this work is to test this approach with a few
different algorithms on the 3D Edwards-Anderson model[21]and try to estimate the amount
of time, which can be saved by using it.

2 Model

The Edwards-Anderson model [21] of spin glasses consists ofa D-dimensional lattice of
side lengthL filled with N = LD Ising spinssi = ±1. The spins are coupled by nearest-
neighbor bondsJi j = ±1 with periodic boundary conditions. Given a spin configuration S
and the bond matrixJ with standard deviationσJ the state’s energy can be calculated as

E(S) = −
1

N2σJ
∑
i, j

Ji jsis j. (1)

This definition follows [15] with the sum prefactor acting asa normalization to make differ-
ent matrices comparable. There is two major differences between our setup and the one in
[15]. Firstly we are looking atD = 3 systems instead ofD = 2, which is important, because
the problem of finding ground states for spin glass models wasfound to be NP-hard[5] in
three or higher dimensions. Secondly the mentioned paper uses gaussian couplingsJi j. In
that case spin flips resulting in no change of energy∆E = 0 are extremely unlikely to appear,
while for our binary case they are very common, which allows for a better convergence of
the algorithms.

3 Algorithms

3.1 Simple random search

The first and simplest algorithm that comes to mind when trying to find a ground state
for this model is probably the simple random search (SRS). This was the focus of [15],
inspired by the dynamics of the Hopfield model of neural networks [22], which can be seen
an equivalent to spin-glass models. The algorithm acts as a simple descent in the energy
landscape from a random starting point:

1. Iterate over all spins. Flip every spin with∆E < 0.
2. Stop, if no spin was flipped in the last sweep. Otherwise return to step 1.

This method can be expected to get stuck in local minima of theenergy landscape most of
the time. Hence the search would have to be repeated many times from different random
starting configurations for a realistic chance of finding theglobal minimum. However in
contrast to the paper [15] we were not able to actually find ground states using this algorithm
verbatim, because we study here a harder problem. We can however make a simple but
effective amendment by also allowing spin flips with∆E = 0, which makes the algorithm
more similar to a Monte Carlo simulation at zero temperature. Of course the stop criterion
has to be changed as well: the search terminates, if no spin flip with ∆E < 0 could be found in
the last 100 sweeps. The improvement is quite noticeable andshould not be underestimated.
However it is only helpful, because spin flips with∆E = 0 are quite common, as mentioned
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before. For easy distinction we will call this the altered SRS and the former the unaltered
SRS.

3.2 Houdayer-Martin algorithm

In a follow-up paper [20] Karandashev et al. also utilized a cluster algorithm introduced by
Houdayer and Martin [12] (HM). In the original paper [12] it was used as a local search
in a more sophisticated genetic renormalization algorithm. The basics idea of HM is to flip
clusters of spins instead of single spins. In detail, it works as follows:

1. Pick any spin with∆E < 0 or, if none exists, simply a random spin with uniform proba-
bility. Virtually flip spin and use it as seed for new cluster.Set total cluster energy change
∆Ec = ∆E.

2. Pick neighbor spin of current cluster with smallest∆E. Virtually flip spin and add it to
cluster, and update∆Ec = ∆Ec +∆E.

3. Continue at step 4, if no spins are left or if 20 spins were flipped since the cluster
achieved the smallest total energy change∆Ec. Otherwise return to step 2.

4. Flip the cluster, which achieved a minimal∆Ec, but only if ∆Ec < 0.
5. Stop, as soon as three times the resulting clusters have not been flipped. Otherwise return

to step 1.

This algorithm also considers flips which seem bad at first, and can therefore escape local
minima. But though it is much better than the unaltered SRS, surprisingly it was not able to
find ground states either. Consequently we alter it in basically the same way as with the SRS.
Spins with∆E = 0 are preferred over random ones as seeds and clusters with nochange in
energy are flipped as well. And a much more lenient stop criterion is applied, which waits
for 1000 consecutive failures to find a cluster, that lowers the energy. Again this improves
the algorithm noticeably, considerably slowing it down at the same time.

3.3 Monte Carlo and parallel tempering

A common physical approach to the problem is to evolve the system at a certain tempera-
ture T using a Monte Carlo simulation(MC)[23]. For Metropolis dynamics used hereafter
one simply picks for each step a random spin (with uniform probability) and flips it with
probability min(1,exp(−∆E/T )). Theoretically one can reach equilibrium at low tempera-
ture, hence the ground state should be encountered. Nevertheless, for such systems it takes
a very long time to actually reach equilibrium, since the dynamics get stuck in metastable
states due the existence of many low-lying local minima. This issue can be tackled by using
the Metropolis-coupled Markov-chain Monte Carlo (MC3) algorithm [24], now known in
Physics as the replica-exchange or parallel-tempering (PT) approach [25,8].

1. Createi = 1, . . . ,M replicas of the given samples of the disorder each assigned to a
different temperatureTi with T1 < T2 < .. . < TM.

2. Perform a Monte Carlo sweep ofN updates for each replica.
3. M −1 times pick random pair(i, i + 1) of replicas at neighboring temperaturesTi,Ti+1

and exchange them with probability

pexch= min

{

1,exp

[

−

(

1
Ti

−
1

Ti+1

)

· (Ei −Ei+1)

]}

.
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4. Stop after a specified number of iterations. Otherwise return to step 2.

Here we simply chose a set of 21 equally spaced temperaturesT1 < T2 . . . < T21 in [0.3,1.35].
A well-considered choice of tailored temperatures can improve the efficiency of the algo-
rithm but such would be overdue for the tests we will perform.But we perform a cheap
overrelaxation sweep, which simply iterates over all spinsflipping those with∆E = 0, after
each Monte Carlo sweep for a bit of improvement. At the end we pick the lowest temper-
ature replica and apply the unaltered SRS once, just to make it more likely that we do not
strand just a few steps away from the global minimum.

3.4 Double-descend algorithm

Karandashev et al. proposed a different approach for findingground states[15]. The basic
idea is to consider thek-th power of the bond matrixJk resulting in a change of the energy
landscape. Particularly the global minimum is expected to deepen while expanding its at-
traction area. But at the same time the global minimum shiftsa little in configuration space.
Explicitly Karandashev et al. [15] state a deepening by a factor of 1.35 and a shift by a
Hamming distance of 0.026N for the casek = 2. Based on this the double-descent algorithm
for valuek (DDk) involves two main steps:

1. Start from random configuration and search for the ground state of the system with bond
matrix Jk, k > 1.

2. Continue from the configuration obtained in this way to search for the ground state of
the original system with bond matrixJ.

In the first step the global minimum of the transformed systemshould be easier to find and,
because of its small distance, the global minimum of the original system should be eas-
ily reached from there in the second step. The actual search in both steps can be carried
out with any algorithm of choice. In Ref. [15] the simple random search was used and the
best performance was observed for the choicek = 3. The follow-up paper [20] also used
the Houdayer-Martin algorithm giving better results. Further adjustment has to be made if
one wants to use Monte Carlo or parallel tempering on a transformed system, because the
typically occurring energies will differ in magnitude for different values ofk. Hence, one
would have to use different sets of temperatures. By simply multiplying the exponentiated
matrix with the ratio of original and new standard deviationσJ this is avoided. However
these combinations will not be discussed here in detail, as they turned out to have no notable
advantage over temperature-less algorithms for this purpose. Normal Monte Carlo simula-
tions fare quite similarly to the SRS, while taking much longer. Parallel tempering suffers
extreme slowdown fork > 1 due to the reasons outlined in Sect. 4.2. Though tests showed
an increase in success rates, it was not large enough to vindicate a closer look under these
circumstances.

4 Test results

4.1 Success rates

We implemented the double-descend method using the sparse matrix package included in
the Eigen library [26]. First we will take a look at the distribution of energies found by basic
SRS and the DD3 incorporating it in Fig. 1 together with the distribution of ground-state
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Fig. 1 Energy distributionP(E) of ground states of the samples and of the energies of the configurations
found by the unaltered (∆E < 0) and altered (∆E ≤ 0) simple random search. On top of that we differentiate
between the simple use of the SRS (k = 1) and the variant using a double-descend approach DD3 withk = 3.

energies. We considered 1000 samples of the disorder forL = 10. The ground states had been
calculated previously using the algorithm detailed in [9,10]. Note that only the availability of
presumably true ground states of the NP-hard minimum-energy spin-glass problem renders
the evaluation of the DDk algorithms reliable. For testing the different algorithmsconsidered
in this work, for each sample (and type of algorithm) 103 independent runs with random
initial spin configurations were performed, and the lowest-energy configuration was kept as
potential ground state each time. Like in [15] the DD3 version of the unaltered SRS is much
closer to the ground states, suggesting a better chance of finding them. However the adjusted
SRS (allowing for spin flips with∆E ≤ 0) is already better and yet combined with the DD3
the improvement turns out to be much smaller compared to the adjusted SRS approach. This
is just one example of what we found holds for all algorithms we tested with this approach:
The better an algorithm is on its own, i.e., fork = 1, the less it will benefit from the double-
descend approach.

Next we take a look at the measured probabilityP0 of finding a ground state as a function
of the matrix powerk in Fig. 2. It can be seen, that even powersk do worse than odd powers
most of the time and can thus be mostly neglected. Contrary tofindings in [15]k = 3 does
not seem to be optimal withP0 < 10−5. Hence, when using only 1000 independent runs,
one will not find a true ground states for most samples. Nevertheless, the accuracy seems
to steadily increase only becoming worse fork > 20. However this benefit does not come
without a cost, as we will see in the following section.
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Fig. 2 Probabilityp0 of finding a ground state using the simple random search in a double-descend approach
with different matrix powersk.

4.2 Timing

To evaluate the efficiency of the algorithms, we timed all algorithms on the same computer,
an Intel Core 2 Duo E6550, differentiating between the setuptime tSetup and the run time
tRun. The setup timetSetup is the time needed for setting up an algorithm including the cal-
culation of the matrix powersJk and thus increases immensely withk in the same way for
all algorithms. As we have to repeat the algorithm many times, this is usually eclipsed by
the run timetRun of an algorithm spent after the setup, which is shown in Fig. 3. As evident
the run time increases as well. The first increase happens from k = 1 −→ k = 2 because
it executes the incorporated algorithm twice for allk > 1. The further growth happens be-
cause the number of non-zero elements in the bond matrix increases with growing powerk.
This second effect then saturates, in this case fork > 10, because almost half of all matrix
elements become non-zero. For complex algorithms this slowdown for growing value ofk
becomes quite notable and at the same time the benefit of considering powers of the bond
matrix becomes smaller, as seen before. Notably the inclusion of ∆E = 0 flips for the SRS
and HM algorithms become useless, because fork > 3 spin flips with∆E = 0 rarely occur
anymore. As a consequence, we used the original variant for the first (k > 1) part, i.e., the
descent was stopped if no∆E < 0 flip was encountered (unaltered variant). This saved quite
a bit of running time, while hardly altering the probabilityof finding ground states.

Now we include the effect of multiple restarts with random initial configurations in our
considerations. AssumingP0 is again the probability of finding a ground state in a single run,
the probability of finding at least one ground state afterM runs isq = 1− (1−P0)

M. Using
this we are able to compare the efficiency of different algorithms by defining a weighted
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Fig. 3 Run timetRun of the simple random search in a double-descend approach withdifferent matrix powers
k.

time

tq = tSetup+ tRun
log(1−q)

log(1−P0)
(2)

needed for finding ground states, assuming a target probability q. We chooseq = 0.99 here,
but any other choice would just differ by a prefactor. Fig. 4 shows this weighted time for the
combinations of the simple random search, Houdayer-Martinalgorithm and parallel temper-
ing, which are the most efficient of their kind (the underlying data ofP0, tSetupandtRun is not
shown here for briefness). For the simple random search we used a combination of unaltered
SRS in the first step and altered SRS in the second one. The sameunaltered SRS also proved
most practical when combined as the first step together with the altered Houdayer-Martin
algorithm in the second. While this turned out to be useful for parallel tempering of short
durations, for 104 iterations any combination tried only served to lower the probability P0,
Thus, we show here as an example (marked by PT in Fig.4) the combination with unaltered
HM in the first step where the matrix powersk > 1 are considered.

So far, when looking at average running times, the setup building on the Houdayer-
Martin algorithm seems most successful with plain paralleltempering being slower by more
than one order of magnitude, despite having about 70% success rate on a single run. How-
ever our comparison so far has disregarded that for different samples of the disorder for
some samples the ground states are much harder to find than forothers. Thus, we actu-
ally find a distribution of vastly different probabilitiesP0 for different samples. For Fig. 5
we calculated the weighted timestq from the individualP0 values which were obtained by
averaging over 105 independent runs per sample for HM (k = 21) and plain PT with 104

iterations averaged over 102 independent runs per sample. Using these histograms ofP0 we
determined the distributionsP(tq) using logarithmic binning. Now the difference in timing
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Fig. 4 Weighted timestq for finding ground states with the simple random search(SRS),the Houdayer-Martin
algorithm(HM) and parallel tempering(PT) with 104 iterations in a double-descend approach with different
matrix powersk.

between both algorithms looks much smaller. In both cases the distribution has a long tail
complying with a power law of exponentγ =−1.5. This can be seen as a sign of the univer-
sal hardness of the problem. Note furthermore that the expectation value of the distribution
is not defined, which means that there are rare instances withvery long running time, which
dominate the average. Hence, the spin glass ground-state problem is very hard.

Note also that for the result shown in Fig. 4 behavior was skewed, because the HM
combination can for some samples find ground states with a fewshort runs, while PT always
needs at least one slow run. To dependably succeed for all samples would take both a more
similar amount of time.

5 Conclusion

As we have seen, the double-descend approach, based on considering powers of the inter-
action matrix in the first descent, can enhance the probability of finding ground states for
almost all algorithms used with it, with the big exception being long-time parallel temper-
ing. But at the same time the first descend in the transformed energy landscape also greatly
slows down compared to the second one. Furthermore we found that the better an algorithm
is the less of an improvement it can receive from this. Because of this we opt for using
simpler algorithms for the descend in the transformed landscape.

The definition of a weighted timetq in (2) allowed us to compare different algorithm
combinations under the assumption, that we can do multiple runs, i.e., restarts from different
initial random conditions. Although a double descend approach incorporating the Houdayer-
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Fig. 5 Distribution of the weighted timetq for finding ground states with the Houdayer-Martin algo-
rithm(HM) in a double-descend approach withk = 21 on one hand and plain parallel tempering(PT) with
104 iterations on the other hand. The added lines are power laws with exponentγ = −1.5.

Martin algorithm seemed to come out on top of the establishedPT, a look at the distribution
of tq showed only little advantage. Considering we have not even made any effort to tune
the PT to the problems at hand, PT, as a very simple to implement method, appears still to
be a meaningful choice when computing spin-glass ground states. Also so far we have only
compared to already known ground states, but for use in practice we would first have to
establish a method for assessing whether the ground state has actually been reached, while
many such checks are already available for PT. Overall the double descend approach, while
an interesting concept, does not seem to have, in the moment,practical use above other
approaches.
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