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Abstract. We describe a percolation problem on lattices (graphs, networks),
with edge weights drawn from disorder distributions that allow for weights (or
distances) of either sign, i.e. including negative weights. We are interested in
whether there are spanning paths or loops of total negative weight. This kind of
percolation problem is fundamentally different from conventional percolation
problems, e.g. it does not exhibit transitivity, hence, no simple definition of
clusters, and several spanning paths/loops might coexist in the percolation
regime at the same time. Furthermore, to study this percolation problem
numerically, one has to perform a non-trivial transformation of the original
graph and apply sophisticated matching algorithms. Using this approach, we
study the corresponding percolation transitions on large square, hexagonal and
cubic lattices for two types of disorder distributions and determine the critical
exponents. The results show that negative-weight percolation (NWP) is in a
different universality class compared to conventional bond/site percolation. On
the other hand, NWP seems to be related to the ferromagnet/spin-glass transition
of random-bond Ising systems, at least in two dimensions.
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1. Introduction

Percolation [1] is one of the most-fundamental problems in statistical mechanics. Many phase
transitions in physical systems can be explained in terms of a percolation transition. The pivotal
property of percolation is connectivity. One can describe this in terms of weighted graphs (often
also called networks) with nonzero or zero weights, corresponding to occupied/connected or
unoccupied/disconnected edges. Here, we extend the problem to negative weights, and ask for
the existence of system spanning paths or loops with total negative weight. As an example,
one can imagine an agent traveling on a graph, who has, while traversing an edge, either to
pay some resource (positive weight) or he is able (once) to harvest some resource (negative
weight). Paths including negative edge weights also appear in the context of domain walls in
random-bond Ising systems [2]. One percolation problem is whether there exists a path (or loop)
spanning the full system with negative total weight, such that each edge is traversed at the most
once. Hence, the percolating objects are paths and it is sufficient to look for minimum-weighted
(or ‘shortest’) paths (MWPs). Percolation properties of string-like objects have been studied
occasionally [3]–[8], but to our knowledge never allowing for negative weights. One realizes
immediately that the negative weights lead to properties that are fundamentally different from
conventional percolation. For example, negative-weight percolation (NWP) lacks transitivity:
if there is a valid (negative-weight) pathS→ A→B from S to B via A, it is possible that the
path S→ A is not valid, as for the paths 0–1–2–3/0–1 in figure1. Hence, there is no simple
definition of percolation clusters in this case. Note that, since strings are thus considered, several
percolating strings or loops might coexist in the same sample. This is indeed observed, see
below.

Here, we study NWP numerically. First, we introduce the model. Then we outline the
algorithm to obtain MWPs, since no standard shortest-path algorithm can be used. The results
for different types of two-dimensional (2d) and 3d systems, in particular, the critical exponents
describing the percolation transitions, show that NWP is fundamentally different compared to
conventional percolation and from previous models with string-like percolation. Thus, the study
of percolation models exhibiting negative weights might lead to many new insights concerning
the behavior of disordered systems.
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Figure 1. An example graph, exhibiting 7 nodes 0, . . . , 6 with positive and
negative edge weights (numbers at lines). Numbers in black boxes denote the
total weight of the MWP from node 0 to the corresponding node.

2. Model and algorithm

We consider 2d and 3d regular lattice graphsG = (V, E) with side lengthL, where adjacent
sitesi, j ∈ V are joined by undirected edgese= (i j ) ∈ E. Note that there is no dilution in these
systems. Weightsω(e) are associated with the edges, representing quenched random variables.
We consider either bimodal (±J) or ‘Gaussian-like’ (Gl) distribution of the edge weights, where
ρ denotes the fraction of negative or Gaussian-distributed edge weights, respectively, among
edges with unit weight (fraction 1− ρ). The bimodal weights are taken to be±1 and the
Gaussian weights have zero mean and unit width. More formally, the distributionP(J) of
the bond strengthJ for the different cases reads

(±J) : P(J) = (1−ρ)δ(J − 1) +ρδ(J + 1),

(Gl) : P(J) = (1−ρ)δ(J − 1) +ρ exp(−J2/2)/
√

2π.

These weight distributions explicitly allow for loopsL with negative weight, given byωL≡∑
e∈L ω(e). For any nonzero value ofρ, a sufficiently large system will exhibit at least small

loops with negative total weight. To support intuition: from the point of view of minimum
weight paths, it is rewarding for the path segments to avoid edges with a large positive weight
and highly beneficial to lie on edges with a weight smaller or equal to zero. For the Gl model,
edges with a large positive weight will most likely not contribute to a path and can as well be
regarded as being absent. We investigate (i) MWPs in the presence of negative weighted loops
on square lattices with periodic boundary conditions (BCs) in one and free BCs in the other
direction. The path ends are allowed to terminate on the free boundaries. Further, we study
(ii) minimum-weighted configurations of negative-weighted loops on square, 2d hexagonal and
cubic lattices with fully periodic BCs, see figure2. In either case, we find critical values of
ρ above which (i) negative-weight paths appear that span the lattice across the direction with
periodic BCs or (ii) percolating loops emerge that span the lattice along some direction.

In the subsequent sections, we will impose different percolation criteria, depending on
whether we characterize MWPs or loops. By construction, MWPs are ofO(L) in the direction
with the free BCs. Thus, an MWP is called percolating only if its extension in the direction
with the periodic BCs is as wellO(L), see figure2 (left). For the loops it is possible to relax
this condition: a loop is called percolating if it spans the lattice along at least one direction, see
figure2 (middle/right). Since we are looking for MWPs on undirected graphs in the presence of
negative weights, the traditional ‘shortest path’ algorithms cannot be applied. The reason is that
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Figure 2. Left: MWP (red) in the presence of negative-weight loops (blue) for
L = 64, middle (right): 2D (3D) loop configuration forL = 64(24). Spanning
loops are colored red. Each sample is taken slightly above the respective critical
point ρc for ±J disorder. Dashed lines denote free BCs, solid lines indicate
periodic BCs.
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Figure 3. Illustration of the mapping procedure. (a) Original latticeG with edge
weights, (b) auxiliary graphGA with proper weight assignment: black edges
carry the same weight as the respective edge in the original graph and gray edges
carry zero weight. (c) MWPM: bold edges are matched and dashed edges are
unmatched. (d) Loop configuration (bold edges) that corresponds to the MWPM.

for applying these traditional algorithms, a special condition must hold: for the distanced(i ) of
any shortest path from a source 0 toi 6= 0, d(i ) = min j ∈N(i )(d( j ) +ω( j, i )) holds, whereN(i )
denotes the set of neighbors ofi . This equation is not fulfilled in our case, as can be seen from
figure1 for node 4. It has minimum distance−1 to node 0, but is connected to node 5 via an edge
of weightω(5, 4) = −1 andd(5) = −2. Hence, a different approach has to be applied. MWPs
and loop configurations are determined through an appropriate transformation of the original
graph, detailed in [9], and obtained a minimum-weighted perfect matching (MWPM) [10, 11]
by using exact combinatorial optimization algorithms.

Here, we give a concise description of the mapping, pictured as a three-step procedure
illustrated in figure3:

1. Each edge, joining 2 sites onG, is replaced by a path of three edges. Therefore, 2
‘additional’ sites have to be introduced for each edge ofG. Therein, one of the two edges
connecting an additional site to an original site gets the same weight as the corresponding
edge inG. The remaining two edges get zero weight. The original sites are then ‘duplicated’
along with their incident edges. For each of these pairs of duplicated sites, one additional
edge (zero weight) is added that connect the two sites of a pair. The resulting auxiliary
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graphGA is depicted in figure3(b), where additional sites appear as squares and duplicated
sites as circles. Figure3(b) also illustrates the weight assignment onGA. Note that there
are different equivalent choices for the weight assignment, see discussion below. A more
extensive description of the mapping can be found in [2].

2. An MWPM on the auxiliary graph is determined2. An MWPM is a minimum-weighted
subsetM of the edges contained inGA, such that each site ofGA is met by one edge in
M. This is illustrated in figure3(c), where the bold edges representM for the given weight
assignment. The dashed edges are unmatched. Due to construction, the auxiliary graph
consists of an even number of sites and since there are no isolated sites, it is guaranteed
that a perfect matching exists.

3. Finally, it is possible to find a relation between the matched edgesM on GA and a
configuration of negative-weighted loopsC onG by tracing the steps of the transformation
(1) back. Note that each edge contained inM that connects an additional site (square) to a
duplicated site (circle) corresponds to an edge onG that is part of a loop, see figure3(d).
More precisely, there are always two such edges inM that correspond to one edge onG. All
the edges inM that connect like sites (i.e. duplicated–duplicated, or additional–additional)
carry zero weight and do not contribute to a loop onG. Later, a depth-first search can be
used to exploreC and to determine the properties of the individual loops. For the weight
assignment in figure3(a), there is only one loop with weightωL = −2 and length̀ = 4.

Note that the result of the calculation is a collectionC of loops (and one path for (i), see
below), such that the total loop weight is minimized. Hence, one obtains a global collective
optimum of the system. Clearly, all loops that contribute toC possess a negative-weight. Note
thatC can be empty and that sub paths are neither allowed to intersect nor to terminate at some
site within the lattice.

Also note that while the original graph (figure3(a)) is symmetric, the transformed
graph (figure3(b)) is not. This is due to the details of the mapping procedure and the
particular weight assignment that has been chosen. Regarding the weight assignment, there
are different possibilities that all lead to the same set of matched edges on the transformed
lattice, corresponding to the minimum-weight collection of loops on the original lattice. Some
of these weight assignments lead to a more symmetric transformed graph, see e.g. [9]. However,
this is only a technical issue that does not affect the resulting loop configuration. Albeit the
transformed graph is not symmetric, the resulting graph (figure3(d)) is again symmetric. So
as to induce an MWP, as in problem (i), special care is needed. We have to allow the paths
explicitly to terminate at a certain node. Therefore, two extra sites are introduced in the graph.
One extra site is connected to each of the free boundaries by adding edges with weight zero
to the transformed graph that join the site with the sites of the corresponding boundary. Any
subsequent MWPM will contain a path of minimal weight, joining the extra sites. This does
not necessarily coincide with the ‘shortest’ path, as explained above, but yields the minimal-
weighted path in the presence of negative-weighted loops. In contrast to the loops, MWPs can
carry a positive weight in principle, but, as will be seen, this will not be the case close to and
beyond the percolation transition that is interesting.

2 For the calculation of minimum-weighted perfect matchings we use Cook and Rohes blossom4 extension to the
Concorde libraryhttp://www2.isye.gatech.edu/∼wcook/blossom4/
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Table 1. Critical points and exponents for the paths and loops. From left to right:
disorder type (RBP: random bond percolation, P: path, L: loop,±J: bimodal, Gl:
Gaussian-like), lattice geometry (sq: square, hex: hexagonal, cu: cubic), critical
point ρc (note that there is no entry for RBP since the disorder parameterρ

introduced here has no analog in usual random percolation), critical exponent of
the correlation lengthν, percolation strengthβ, exponentγ , Fisher exponentτ
and fractal dimensiondf at criticality.

Type Geometry ρc ν β γ τ df

RBP 2d sq – 4/3 5/36 43/18 187/91 91/48
P±J 2d sq 0.1032(5) 1.43(6) 1.03(3) 0.76(5) 2.52(8) 1.268(1)
L±J 2d sq 0.1028(3) 1.49(9) 1.09(8) 0.75(8) 2.58(6) 1.260(2)
L±J 2d hex 0.1583(6) 1.47(9) 1.07(9) 0.76(8) 2.59(2) 1.264(3)
L-Gl 2d sq 0.340(1) 1.49(7) 1.07(6) 0.77(7) 2.59(3) 1.266(2)

RBP 3d cu – 0.88 0.41 1.80 2.18 2.53
L±J 3d cu 0.0286(1) 1.02(3) 1.80(8) – 3.5(3) 1.30(1)

3. Minimal-weighted paths

Within this problem, the aforementioned collectionC consists of a set of loops, which might be
empty, and an MWP spanning the lattice between the free boundaries. Since MWP is anyway
of O(L) in the vertical direction by construction, we call the path percolating, if its projection
on the horizontal axis (i.e. itsroughness r) covers the full systems. We studied 2d lattices with
±J disorder and sampled over up to 3.5× 104(L = 128) realizations of the disorder to perform
averages, subsequently denoted by〈. . .〉. Firstly, we investigate the percolation probability. For
a very small fractionρ of negative edge weights, the path will cross the lattice in a rather
direct fashion, since overhangs are likely to increase the weight of the path and hence the
weight of the whole configurationC. Increasingρ also increases the spanning probability
Px

L (ρ), i.e. the probability of the horizontal extension to beO(L). It is expected to scale
as Px

L (ρ) ∼ P̃x[(ρ − ρc)L1/ν], where the critical exponentν describes the divergence of the
correlation length at the critical pointρc, at which percolating paths appear in the limit of large
system sizes, and̃Px is a scaling function. A data collapse, obtained using the method described
in [12], yieldsρc andν as listed in table1 with a ‘quality’ S= 0.79 of the scaling assumption. It
is to be noted that the value ofν found here is clearly distinct from the value 4/3 of conventional
bond percolation, that would give a much worse quality ofS= 5.20. Note that many negative
weights are needed to allow the MWP to percolate. And indeed, the path weight becomes
negative aboveρω

c = 0.0869(2) with a probability that approaches unity quickly. Therein, the
finite-size scaling behavior of the probabilityPω

L that the path weight is negative is described by
a similar scaling relation as above (S= 1.55) and characterized by an exponentνω consistent
with the value ofν stated above, see figure4.

We further found thatPx
L (ρ) < 1 even for largeρ, where the spanning probability seems to

saturate slightly above 0.8. The reason is, as already mentioned, that we actually do not optimize
the length of a single path, but the weight of the whole configurationC. However, this behavior
is clearly distinct from conventional percolation theory.
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Figure 4. Results for 2d±J paths: (a) rescaled probabilityPω
L that the path

weight is negative for different system sizesL, (b) illustrates the qualitySof the
critical exponentνω and (c) shows the unscaled data nearρω

c .

Next, we consider the probabilityP∞

L ≡ 〈`〉/Ld that a bond belongs to the path, where
〈`〉 is the mean path length. It exhibits the finite-size scaling behaviorP∞

L (ρ) ∼ L−β/ν P̃∞[(ρ −

ρc)L1/ν], whereβ signifies the percolation strength [1]. Here, we fixedρc andν as obtained
above and determined the value ofβ (S= 0.97) listed in table1. Adjusting all the three
parameters in the above scaling assumption yieldsρc = 0.1027(1), ν = 1.45(4) andβ = 1.06(2)

with a qualityS= 0.76. Note that the values agree within the errorbars.
We also determined some quantities (see also table1) just atρc = 0.1032(5) with additional

simulations up toL = 512(2× 103 samples). We studied the associated finite-size susceptibility
χL = L−d(〈`2

〉 − 〈`〉2). Its finite size-scaling atρc can be described using the exponentγ via
χL ∼ Lγ /ν. Furthermore, the mean path length shows the critical behavior〈`〉 ∼ Ldf , wheredf

denotes the fractal exponent of the paths. Here, calculations atρc = 0.1027(1) would result
in a slightly smaller value ofdf. We further find the roughness exponentdr from 〈r 〉 ∼ Ldr

to be compatible with unity. Note that the obtained exponents satisfy the scaling relations
df = d − β/ν andγ + 2β = dν. We also measured the mean path weight〈ωp〉 at the percolation
pointρc and found that〈ωp〉 ∼ 〈`〉 for L → ∞ seems to hold.

We can further probeC not only to investigate the MWP, but to yield exponents that
describe the small loops. A detailed study of the scaling behavior (length` as function of the
spanning lengthR, not shown here) atρc shows that they seem within error bars to exhibit
the samefractal dimensiond̃f = df as the MWPs. The loops also exhibit a mean (negative)
weight that increases linearly with the loop length`. Further, one expects the distributionn` of
loop lengths̀ to exhibit an algebraic scalingn` ∼ `−τ , whereτ signifies the Fisher exponent.
Here, finite-size effects and the presence of the path lead to a suppression of large loops and
thus to a deviation from the expected scaling behavior already for rather small values of`.
In this question, we find the most reliable valueτ if we account for corrections to scaling
via n` ∼ `−τ/(1 +b`ω), see table1 and inset of figure6. In principle, at criticality, the Fisher
exponent and fractal dimension are related through the scaling relationτ − 1 = d/df. This would
lead us to expectτ ≈ 2.58.

Finally, in 2d we can associate a cluster with each loop. The respective volumev is
measured as the number of enclosed plaquettes. It scales as〈v〉 ∼ Rd̃v with d̃v = 2.00(1),
revealing the compact nature of the loops’ interior.
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Figure 5. Results for the 2d±J loops: (a) mean number〈N〉 of percolating
loops for different system sizesL. The inset shows the unscaled data nearρc,
(b) rescaled probabilityP∞

L (ρ) that an edge belongs to a percolating loop. The
inset shows the local slopes as function of 1/L, describing the scaling of〈`〉 atρc.

4. Minimal-weighted loop configurations

Here, we studied 2d (hex, 3d) lattices with size up toL = 128 (192, 48) and 4.5× 104 (1.2× 104,
1.6× 104) samples. First, we analyze the largest loop for a given realization of the disorder. We
find the linear extensions of the loops by projecting it onto all perpendicular axes. A loop is said
to percolate if it spans the lattice, i.e. if its projection completely covers at least one axis. Again,
note that this percolation criterion is different from the one imposed for the MWPs described
above. From the probabilityPs

L(ρ) that a loop spans the lattice, we estimateρc andν listed in
table1. The qualities of the scaling law were found to beS±

2d = 1.09, S±

hex = 0.79, SGl
2d = 0.91

and S±

3d = 1.9. Further, it is interesting to note that the mean number of spanning loops〈N〉

satisfies a similar scaling relation as the percolation probability, see figure5(a), governed by
the same values forρc andν as Ps

L(ρ). In either case, we find〈N〉 > 1 for large values ofρ,
as mentioned already in the introduction, see also [8]. As above, the probabilityP∞

L (ρ) that an
edge belongs to the percolating loop can be used to determine the exponentβ, see figure5(b)
and table1. Herein, the qualities of the scaling law wereS±

2d = 1.88, S±

hex = 0.32, SGl
2d = 1.16

and S±

3d = 2.08. Interestingly, the values ofρc, ν andβ for the 2d loops with±J disorder are
reasonably close to those of the 2d random-bond Ising model withρc = 0.103(1), ν = 1.55(1)

andβ = 0.9(1), see [13] and references therein. This probably means that the 2d ferromagnet
to spin-glass transition atT = 0 can be explained in terms of a percolation transition in the
following way: for a spin-glass, one starts with a ferromagnetic configuration and searches
for loops in the dual lattice with negative weight. These loops correspond to clusters of spins,
which can be flipped to decrease the energy. If these loops are small, i.e. not percolating, the
ground state is ferromagnetic, otherwise the ground state exhibits spin-glass order. A different
argument relating this transition to a percolation transition was also briefly mentioned in a
study, which focuses on the critical slowing down of polynomial-time algorithms atT = 0 phase
transitions [14].

Right at ρc, we studied 2d (hex, 3d) systems up toL = 512 (768, 96) with 3.2× 104

(1.6× 103, 6.4× 103) samples. We foundγ , for the 2d systems listed in table1 with qualities
Q±

2d = 0.61, Q±

hex = 0.10 andQGl
2d = 0.51. In 3d, due to the very small percolation probability
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at criticality, excluding the spanning loops (main plot), gray data points were
omitted from the fit. The inset showsn` for the case of MWPs, where the fit
accounts for corrections to scaling (see text).

0.0014(1) at ρc our results are less clear. Hence, we can draw no conclusions for that
case. Regarding the fractal dimension, spanning loops and the non-spanning loops exhibit
within error bars the same exponentsdf = d̃f in 2d (values ofdf listed in table1). As in the
MWP case, the non-spanning loops are compact (〈v〉 ∼ R2). On the other hand, in 3d, we find
d̃f = 1.43(2) different fromdf = 1.30(1).

Also regarding the mean weight〈ω`〉 for given length̀ , we find in 2d that spanning and
non-spanning loops exhibit both〈ω`〉 ∼ ` (i.e. ∼ Ldf for the spanning loops), while in 3d the
quality of the data is again not sufficient to observe a clear power law.

The distribution of loop-lengths, excluding the truly spanning loops, is in 2d in good
agreement with a power-law decayn` ∼ `−τ , see figure6 and table1. In 3d, we find again
strong finite-size effects and hence the most reliable estimate ofτ using a scaling form
n` ∼ `−τ/(1 +b`ω) .

Finally, we address the performance of the algorithm. We do not want to measure the
running time in terms of central processing unit (CPU) minutes, since this is machine-dependent
and is also influenced by external factors, such as which other processes are running. Hence,
we have to look at the algorithm more closely. So as to determine an MWPM, the algorithm
attempts to find an optimal solution to an associateddual problem [10, 11]. Therein, the basic
task of the algorithm is to findaugmentingpaths that improve the solution to the latter. While
executing, the solution to the dual problem is adjusted several times. As a measure for the
algorithm performance, we consider the numberNda of such adjustment operations, until the
algorithm terminates. Figure7 shows the average number of these operations per lattice site
〈nda〉 = L−d

〈Nda〉 in the case of a Gaussian-like distribution of the edge weights. The value of
〈nda〉 increases with increasingρ and curves for different system sizes deviate from each other
as the critical point is approached from below. Atρc it scales like〈nda〉 ∼ L2.074(4). Moreover,
the corresponding susceptibilityχda, i.e. the fluctuations of thenda, diverges at the critical point,
where it scales asχda ∼ L1.41(4), as can be seen from the inset of figure7. In the case of a±J
distribution of the edge weights, we found similar but slightly different results (not depicted):
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here, datasets that describe the scaling of〈nda〉 for different system sizes, fall onto one universal
curve everywhere. This holds also forχda, which is peaked slightly below the critical point at
ρ ≈ 0.096.

5. Conclusions

We have introduced a percolation problem, where edge weights with possibly negative values
are attached to the edges. A system is called percolating if spanning loops or paths of negative
weight exist. Hence, this model might be fundamentally different from classical percolation
problems. We studied systems in 2d and 3d up to large system sizes. In all the cases, the
universality class is indeed clearly different from standard bond/site percolation. Further,
the values of the fractal exponents obtained for the paths/loops differ from those reported
in the context of shortest paths or hulls of percolation clusters, so far. Nevertheless, the
numerical values for the exponents found here are close to those of disorder-induced single
defects (df = 1.261(16)) and multiple defects (df = 1.250(3)) in a 2d elastic medium at zero
temperature [15]. We observe universality in 2d, hence the properties are independent of the
type of weight distribution, lattice geometry and the same for loops or paths. We also studied
(not shown here) a related problem, where the loops are allowed to intersect. The corresponding
mapping was recently used in a different context to determine exact ground states [16] and
extended ground states of Ising spin glasses [17]. We found again the same critical exponents.
On the other hand, we observe in 2d the same behavior as for theT = 0 ferromagnet to spin-
glass transition for the random-bond Ising model, hence this physical transition can be probably
explained by a percolation transition in the spirit of the model we have introduced here. Hence,
studying percolation problems with negative weights and similar generalizations might be a key
approach to describe many yet not well-understood phase transitions in terms of percolation
transitions. We also anticipate applications to other fields like social problems (see introduction)
or other types of networks.
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