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We study numerically the distributions of the length L of the longest increasing subsequence (LIS)
for the two cases of random permutations and of one-dimensional random walks. Using sophisticated
large-deviation algorithms, we are able to obtain very large parts of the distribution, especially also
covering probabilities smaller than P (L) = 10−1000. This enables us to verify for the length of the
LIS of random permutations the analytically known asymptotics of the rate function and even the
whole Tracy-Widom distribution, to which we observe a rather fast convergence in the larger than
typical part. For the length L of LIS of random walks, where no analytical results are known to
us, we test a proposed scaling law and observe convergence of the tails into a collapse for increasing
system size. Further, we obtain estimates for the leading order behavior of the rate functions of
both tails.

I. INTRODUCTION

We study the distribution of the length L of the longest
increasing subsequence (LIS) [1] of different ensembles
of random sequences. Here, a subsequence of a given
sequence is obtained by removing arbitrary entries and
keeping the order of the remaining entries. In particu-
lar, the remaining entries are not necessarily neighbors
in the given sequence. For a LIS it is required that the
remaining entries are increasing from left to right and
the number of remaining elements is maximal. An ap-
plication of the LIS is for aligning whole genomes [2].
The first mention of this problem seems to be from Sta-
nis law Ulam [3], and is therefore also known as “Ulam’s
problem”. In his study the mean length L of LIS on ran-
dom permutations (RP) of n integers were scrutinized
by means of Monte Carlo simulations and it was conjec-
tured that in the limit of large n, the length converges to
L = c

√
n, with some constant c, which was later proven

to be c = 2 [4]. In the following years much work was
published scrutinizing the large deviation behavior of this
problem and explicit expressions for both the left (lower)
and right (upper) tail were derived rigorously [5–7]. In-
terestingly, for the LIS of the random permutation it was
shown that the distribution P (L) of its length is a Tracy-
Widom distribution [8]. The Tracy-Widom distribution
was at that time only known from random matrix theory,
where it described the distribution of the largest eigen-
values of the Gaussian unitary ensemble (GUE), an en-
semble of Hermitian random matrices. In physics it came
into focus after an explicit mapping of a 1+1 dimensional
polynuclear growth model [9]. Subsequently other map-
pings of 1+1 dimensional growth models belonging to the
Kardar-Parisi-Zhang universality like an anisotropic bal-
listic deposition [10] were found. Other models in which
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the Tracy-Widom distribution appears, include the to-
tally asymmetric exclusion process [11] and directed poly-
mers [12]. For a pedagogical overview about the relations
of different models exhibiting a Tracy-Widom distribu-
tion, we recommend Ref. [13]. Fluctuations in growth
processes following the Tracy-Widom distribution could
also be observed in experiments, e.g., from growing liq-
uid crystals where the Tracy-Widom distribution of the
GUE appears for circular growth and of the Gaussian or-
thogonal ensemble (GOE) for growth from a flat surface
[14, 15].

The Tracy-Widom distribution seems to occur always
together with a third order phase transition between a
strongly-interacting phase in the left tail and a weakly-
interacting phase in the right tail, whose crossover is
characterized by the Tracy-Widom distribution [16]. For
these third order phase transitions, the probability den-
sity function behaves in the left tail as P (x) ≈ e−nΦ−

with the role of the free energy played by the rate func-
tion Φ−(x) ∼ (a−x)3 for x→ a from the left, where a is
the critical point of the transition, i.e., the scaled mean
value. Here, n is some large parameter, e.g, the system
size. The O(x3) leading order behavior of Φ− gener-
ally leads to a discontinuity in the third derivative of the
free energy and therefore to a third order phase transi-
tion. This seems to be a characteristic sign predicting
the main region of the distribution to follow a Tracy-
Widom distribution. Therefore the behavior of the far
tails of problems of this universality are of great inter-
est to understand this connection better. Consequently
the large deviations of some of these models were studied
thoroughly [16, 17].

For the distribution of the length of the LIS of ran-
dom permutations there are also analytical results for
the large deviations, i.e., the behavior for large values of
n including the far tails [5–8], which also show the char-
acteristic behavior of the above mentioned left-tail rate
function. For the case of the length of the LIS of random
walks, bounds for the behavior of the mean are known
[18] and there is also numerical work which is concerned
with the distribution in the typical region [19], i.e., those
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LIS which occur with a high enough probability of about
≥ 10−6. We deem it worthwhile to look also for this
system closer at the tails of the distribution for finite
systems.

For the purpose of studying the large deviations of
this problem numerically, we will utilize sophisticated
large deviation sampling methods to observe the distri-
bution of the length L for two ensembles of random se-
quences. This way we can observe directly the far tails of
the Tracy-Widom distribution for the random permuta-
tion case [8] and can confirm the known large n asymp-
totics [7]. The second ensemble are one-dimensional ran-
dom walks with increments from a uniform distribution.
While we can observe the scaling proposed in Ref. [19]
for the main region, the tails are subject to considerable
finite-size effects. Nevertheless the distributions collapse
over larger regions for larger sizes n. Also, we give esti-
mates for the leading order behavior of the rate functions
governing the left and right tail of the distribution P (L).

This study will first introduce the different ensembles
of interest and the algorithms used to obtain the distri-
bution of the length in Sec. II. In Sec. III we will show
the results we gathered and interpret them. We conclude
this study in Sec. IV.

II. MODELS AND METHODS

To define the longest increasing subsequence (LIS), we
have to define a subsequence first. Given some sequence
S = (S1, S2, . . . , Sn) a subsequence of length L is a se-
quence s = (Si1 , Si2 , . . . , SiL) (1 ≤ ij ≤ n, ij < ij+1

for all j = 1, . . . , L) containing only elements present
in S in the same order as in S, though possibly with
gaps. An increasing subsequence has elements such that
every element in s is smaller than its predecessor, i.e.,
Sij < Sij+1 for j = 1, . . . , L− 1. The LIS is consequently
the longest, i.e., the one with the highest number L of
elements, of all possible increasing subsequences. Note
that the LIS is not uniquely defined, but by definition
its length is unique. As an example two different LIS
are marked by overlines and underlines in the following
sequence: S = (3, 9, 4, 1, 2, 7, 6, 8, 0, 5)

In this study the sequence S is either drawn from the
ensemble of random permutations of n consecutive in-
tegers or from the ensemble of random walks with in-
crements δj (j = 1, . . . , n) from a uniform distribution
δj ∼ U(−1, 1), such that

Si =
i∑

j=1

δj . (1)

An example of each sequence with the corresponding LIS
marked is shown in Fig. 1. Here the typical difference
between the random permutation and random walks are
visible: The entries of the random walk are strongly cor-
related such that the random walk typically consists of
runs with downward or upward trends, such that the LIS

is typically confined in an upward trend and its entries
therefore are close together. The random permutation,
on the other hand, typically shows LIS with entries over
the whole range. Therefore it is plausible that the distri-
butions of the length of the LIS for these two ensembles
differ [19].
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FIG. 1: Visualization of random sequences of length n =
1000 where the value is plotted over the corresponding index.
Marked with circles are the entries of one possible LIS. (a)
random permutation, (b) random walk.

To find the LIS of any given sequence, we use the pa-
tience sort algorithm, which is originally a sorting algo-
rithm. This choice is mainly motivated by the simplicity
of the algorithm if one is only interested in the length of
the LIS. We will only introduce the very simple version
to obtain the length, but a comprehensive review of the
connection of patience sort with the LIS can be found in
Ref. [4]. In short, the patience sort algorithm works as
follows: We iterate over the n entries Si and place each
into an initially empty stack (or pile) aj on the smallest
j such that for the top entry top(aj) > Si holds. Note
that this will always ensure that the top entries of a are
ascendingly sorted, such that we can determine j by a bi-
nary search in O(lnn). Finally, the number of non-empty
stacks aj is equal to the length L of the LIS.

A. Large-deviation Sampling

To be able to gather statistics of the large-deviation
regime numerically [20], we need to apply a sophisticated
sampling scheme. Therefore we use a well tested [21–23]
Markov chain Monte Carlo sampling which treats the
system as a physical system at some artificial tempera-
ture with the observable of interest as its energy. Since
the algorithm has been presented comprehensively in the
literature, we here only state the details specific to the
current application. In our case, we identify the state of
the system with the sequence, the length L with the en-
ergy and sample the equilibrium state at temperature Θ
using the Metropolis algorithm [24, 25]. Controlling the
temperature allows us to direct the sampling to different
regimes of the distributions, to eventually cover the dis-
tributions over a large part of the support. To evolve our
Markov chain of sequences, we have to introduce change
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moves, which modify a sequence and consequently the
energy L. For the random permutation we swap two
random entries and for the random walk we replace one
of the increments δj (cf. Eq. (1)) by a new random num-
ber drawn from the same uniform distribution. These
changes are accepted according to the Metropolis accep-
tance ratio

Pacc = min(1, e−∆L/Θ), (2)

where ∆L is the change in energy due to the change move.
This Markov chain of sequence realizations will converge
to an equilibrium state. As usual with Markov chain
Monte Carlo simulations, we need to ensure equilibration
and that the samples are decorrelated [25].

As should be intuitively plausible, in equilibrium the
realizations will generally have a lower than typical en-
ergy for low temperatures and typical energies for high
temperatures. We can also introduce negative tempera-
tures for larger than typical energies. This way the tem-
perature can be tuned to guide the simulation towards
realizations within a specific range of energies L. Since
we know the equilibrium distribution QΘ(S) at temper-
ature Θ of realizations, i.e., sequences S, to be

QΘ(S) =
1
ZΘ

e−L(S)/ΘQ(S), (3)

with the natural distribution Q(S), we can later cor-
rect for the bias introduced by the temperature and ar-
rive at the unbiased distribution P (L) with good statis-
tics also in the regions unreachable by simple sampling.
Therefore consider the sampled equilibrium distributions
PΘ(L). To connect them to the distribution of realiza-
tions QΘ(S), we can sum all realizations with the same
value of L, leading to

PΘ(L) =
∑

{S|L(S)=L}

QΘ(S) (4)

=
∑

{S|L(S)=L}

1
ZΘ

e−L(S)/ΘQ(S) (5)

=
1
ZΘ

e−L(S)/Θ P (L). (6)

Solving this equation for P (L) allows to correct for the
bias introduced by the temperature. An intermediate
snapshot of this process is shown in Fig. 2.

The constants ZΘ can be obtained by enforcing conti-
nuity of the distribution, i.e.,

PΘj
(L) eL/Θj ZΘj

= PΘi
(L) eL/Θi ZΘi

(7)

for pairs of i, j for which the gathered data PΘi
(L) over-

laps with PΘj
(L). While this can be used to approximate

the ratios of pairwise ZΘi
, the absolute value can then

be obtained by normalization of the whole distribution.
This procedure requires a clever choice of temperatures,
since gaps in the sampled range of L would make it im-
possible to find a ratio of ZΘi
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FIG. 2: Intermediate step after correction with Eq. 6 but be-
fore determination of the values ZΘi (i.e., all ZΘi = 1). The
data is gathered for random walk sequences of length n = 512.
Each shade of gray (color) is sampled at a different temper-
ature Θ, for three datasets the corresponding temperatures
are annotated. (For clarity some evaluated temperatures are
omitted.)

of the gap. We used in the order of 100 distinct tem-
peratures. In general, the larger the size n, the more
temperatures are needed.

III. RESULTS

We applied the temperature-based sampling scheme to
obtain the probability distributions of the length of the
LIS for the two cases of random permutations and of
random walks with uniform increments. In both cases,
we studied five different system sizes n up to n = 4096
each.

A. Random Permutations

First, we will look at the distribution of the length of
the LIS of random permutations. For this case there are
already a lot of properties known in the limit of n→∞.

It is known that the distribution should converge to
a suitably rescaled Tracy-Widom distribution χ of the
GUE ensemble [8] for large values of n as

Pn

((
L− 2

√
n
)
n−1/6

)
= χ

((
L− 2

√
n
)
n−1/6

)
. (8)

Rescaled to accompensate this leading behavior, our re-
sults are shown in Fig. 3. By using the large-deviation
approach, we are able to measure probabilities as small
as 10−1000 and below, allowing us to go beyond the first
numerical work [19] on the distribution of LIS. We can
observe a very good collapse up to probabilities of 10−200

of our data onto the Tracy-Widom distribution given in
the tables of Ref. [26].

Also note that the collapse works very well in the in-
termediate right tail but converges a bit slower in the left
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FIG. 3: Numerically obtained distributions for different sys-
tem sizes n rescaled according to Eq. (8). The Tracy-Widom
distribution is drawn as a black line [26] and is expected to
be the curve all distributions collapse onto. The inset shows
a zoom on the intermediate tails. On the left the tendency
of our data towards the Tracy-Widom distribution with in-
creasing system size n is visible. (For clarity some datapoints
are discarded to show the same density of symbols for every
system size.)

tail and far slower in the far-right tail. The inset zooms
into the intermediate tail of the probability density func-
tion P > 10−100, where the collapse fits very well to the
expected Tracy-Widom distribution. In the far tails we
observe considerable deviations, from the tabulated data,
which are at least in part caused by finite-size effects due
to the relatively small sizes n of our sequences. For a
more extensive study of these finite-size effects, one could
obtain the empirical distribution for more sizes, and ex-
trapolate the finite-size effects to n→∞, as done in [27].
Nevertheless, our numerically obtained tails fit very well
to another expected form which will be explained later,
such that we assume a stronger influence of finite-size ef-
fects in the far tails for this scaling instead of systematic
errors.

Also note that while we can sample a very large part of
the distribution of the length of longest subsequences of
random permutations even including events with a prob-
ability less than 10−1000 for the largest permutations, we
can not reach across the whole range of possible values
and would possibly need to modify our sampling algo-
rithm by either switching to a better change move or
consider a different sampling like Wang-Landau’s method
[28].

The left tail asymptotic, i.e., L/
√
n = x < 2, of the

probability density function is given by the analytically
known rate function [6, 7]

lim
n→∞

1
n

lnPn(L) = −2H0(x) (9)

with

H0(x) =− 1
2

+
x2

8
+ ln

x

2

−
(

1 +
x2

4

)
ln
(

2x2

4 + x2

)
; (10)

the right tail asymptotic, i.e., L/
√
n = x > 2, is given by

[5, 7]

lim
n→∞

1√
n

lnPn (L) = −U0(x) (11)

with

U0(x) = 2x cosh−1 (x/2)− 2
√
x2 − 4. (12)

Note that Eq. (11) behaves atypically for a rate function
as the distribution behaves like Pn ∝ e−

√
nU0 , which ac-

cording to the definition, e.g., given in [29], does therefore
not fulfill the large deviation principle. Nevertheless, it
describes the behavior of the distribution in leading or-
der.

We use our sampled data to test these rate functions.
If the data are suitably rescaled according to Eq. (9) and
(11), in the corresponding tails we can observe a very
nice convergence of the data to the rate functions. This
is plotted in Fig. 4. This excellent agreement of analyt-
ical and numerical results over hundreds of decades in
probability, gives us confidence that our approach works
well and can be extended to cases where no analytical
results are known. Also note that we can observe in our
data the leading order behavior of the left tail rate func-
tion H0, which goes with the exponent 3 characteristic
for the third order phase transition confirming its con-
nection with the Tracy-Widom distribution [16].

B. Random Walks

The second class of sequences S we scrutinized are ran-
dom walks. Here no analytical results are known to us,
thus the distribution beyond the high-probability peak
region seems to be unknown. Again, by applying the
large-deviation approach, we sample basically the whole
distribution, and can even compare the right tail of our
distribution with the corner case of L = n, which only
occurs if all increments δ are positive and therefore with
probability 2−n. This case is marked in Fig. 5 to empha-
size the quality of our data. For the left tail, we can not
sample so far, as the very steep decline of the distribution
is difficult to handle for our sampling scheme.

For random walks with increments from a symmet-
ric uniform distribution, indeed for increments from any
symmetric distribution with finite variance, the scaling
of the mean as 〈L〉 ∝ nθ and the variance as σ2 ∝ n2θ

was observed in Ref. [19] with θ = 0.5680(15). More
interestingly the same reference suggests that the whole
distribution follows the scaling form

Pn(L) = n−θg(n−θL), (13)
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FIG. 4: Empirical rate functions for different system sizes n.
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vergence of the data to these functions is well visible. The
leading order terms of the series expansion (cf. [5]) are also
shown as straight lines next to the rate function.
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with a not-explicitly known function g. Note the simi-
larity to the scaling for the random permutation case in
Eq. 8, though here we do not need to subtract the mean
value before rescaling with the standard deviation, since
both happen to have the same exponent θ in this case.
Using our data for the tails of the distribution, we can
test whether this scaling holds over the whole distribu-
tion or only in the main region. If we rescale the axis
of the plot suitably, the distributions for different sizes
n should collapse on the scaling function g, in the case
that Eq. (13) holds. Since we only have results for com-
paratively small systems sizes in comparison to Ref. [19],
we have to include the logarithmic corrections to scaling,
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FIG. 6: Collapse of different system sizes on a common curve
g from Eq. (13). Apparently the far tail shows severe finite-
size effects, though for increasing sizes n a convergence to a
common curve is visible. (For clarity not all datapoints are
drawn.)

which are estimated by Ref. [19] to be

〈L〉 ≈ 1
e
√
n lnn+

1
2
√
n. (14)

Note that this proposed scaling is proportional to
√
n,

i.e., θ = 0.5 instead of the slightly larger value measured
without accounting for logarithmic corrections. Also note
that this follows the analytically expected form [18]. In
fact, using expression Eq. (14) instead of nθ in Eq. (13),
leads to a better collapse of our data. This is shown in
Fig. 6, where the collapse does seem to work except for
the very far tails, which is an effect – at least partially –
caused by finite-size effects, since the length of the LIS
can for finite n never be longer than n. This pattern
occurs often when looking at the far tails of discrete sys-
tems, e.g., for the convex hull of random walks on lattices
in [30–33] or in a toy model for non interacting Fermions
in a landscape with n random energy levels [27].

Since for the rate functions characterizing the distri-
bution of the length of LIS of random walks there is no
known result, we use our numerical data to give a rough
estimate of the rate function. Therefore we look into
the empirical rate function Φn(L) = 1

n lnPn(L), which is
plotted in Fig. 7 for the data already shown in Fig. 5.

Using the empirical rate function we can obtain the
asymptotics of the rate function from our data. Note
that to estimate the right tail rate function we use the
intermediate tail and not the far tail, which is bending
up due to finite-size effects. Since we are only interested
in the leading order exponent of the rate function, i.e.,
assuming Φ(L) ∝ Lκ for very small and very large values
of L, we can rescale the axes arbitrarily due to the scale
invariance of power laws. For convenience we look at
x = L/Lmax to limit the range to the interval [0, 1]. For
the left tail we observe a leading order behavior of the
rate function of approximately Φ(L) ∼ L−1.6 and for
the right tail Φ(L) ∼ L2.9, though larger values of the
exponent are possible, if looking at a range farther right,
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which is probably caused by finite-size effects, as the very
long LIS are suppressed by the hard limit of L ≤ n.
Note that the exponent of the left tail is clearly distinct
from 3, such that it does not show signs of a third order
phase transition. Also it does not show a Tracy-Widom
distribution in the main region (also see [19]), which is
consistent with the expectation that these two properties
do occur together [16].

Comparing this leading order behavior to the behavior
of the random permutation case as visualized in Fig. 4,
shows that the tails decay differently. For a direct com-
parison of our results, consider Fig. 8. While the right-
tail exponent is larger in the random walk case, the prob-
ability density decays slower (cf. inset of Fig. 8). This
apparent contradiction, is understandable when consid-
ering that the rate function of the random permutation
case grows much faster near the minimum at 〈L〉, such
that the rate function in the RP case has larger absolute
values and the probability density decreases much faster.
It is interesting that the empirical rate functions behave
qualitatively so different for such closely related models,
e.g., the branches left and right of the minimum show op-
posite curvature in the two cases. Generally, it is visible
that the distribution P (L) is much broader in the RW
case, especially towards quite large values of L.

IV. CONCLUSIONS

We obtained numerical data for the distribution of the
length of the longest increasing subsequence for two cases
of sequences of random numbers, namely, for random
permutations and for one dimensional random walks. By
applying sophisticated large-deviation algorithms, we are
able to sample the distributions over literally hundreds
of decades in probability. The case of random permuta-
tions is already well studied in the analytical literature
and our results confirm, to our knowledge, for the first
time these results. Since our data is gathered for finite
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FIG. 8: Direct comparison of the distributions for both cases,
the random permutation and the random walk. The main
plot shows the empirical rate function Φn(L). The inset shows
the probability density Pn(L). Both show sequences of length
n = 4096.

system sizes, we can observe a rather fast convergence to
the analytical results valid in the n → ∞ limit. These
results show also the validity and convergence of our sim-
ulations. For the case of random walks we can observe
the leading order behavior of the rate function far into the
tails. This result could be used to guide analytical work
on this topic or at least to test future analytical results.
A direct comparison of the empirical rate functions in the
tails shows qualitatively very different behavior. While
the rate function of the random walk seems to be a con-
vex function, the random permutation case consists in
principle of two concave parts.

A possible future direction extending this work would
be an interpolation between the random permutation
and random walk case, where one could observe the
change of the exponents governing the rate function.
Since a set of distinct random numbers δj drawn uni-
formly, from [−1, 1] should show the same statistics for
the longest increasing subsequence of a random permu-
tation, we could introduce a parameter c governing the
correlation length. The sequence would be constructed
as Si =

∑i
j=max(0,i−c) δj . For c = 0 this would corre-

spond to a random permutation and for c = n to a ran-
dom walk. In addition to this simple type of correlation,
one could study power-law correlated random numbers
or increments, leading possibly to even more complicated
behavior.

Acknowledgments

We are indebted to Satya N. Majumdar who brought
this problem to our attention and gave valuable feedback
on a draft of this manuscript. Also we want to thank J.
Ricardo G. Mendonça for interesting discussions about
the problem and Christoph Norrenbrock for his advise
during the preparation of the manuscript. We acknowl-
edge the HPC facilities of the GWDG Göttingen and the



7

CARL cluster in Oldenburg funded by the DFG (INST
184/157-1 FUGG) and the Ministry of Science and Cul-

ture (MWK) of the Lower Saxony State. HS acknowl-
edges support by DFG grant HA 3169/8-1.

[1] D. Romik, The Surprising Mathematics of Longest
Increasing Subsequences (Cambridge University Press,
USA, 2015).

[2] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson,
O. White, and S. L. Salzberg, Nucleic acids research 27,
2369 (1999).

[3] S. M. Ulam, in Modern Mathematics for the Engineer:
Second Series, edited by E. Beckenbach and M. Hestenes
(Dover Publications, Incorporated, 2013), Dover Books
on Engineering Series, chap. 11, pp. 261–281, ISBN
9780486497471.

[4] D. Aldous and P. Diaconis, Bulletin of the American
Mathematical Society 36, 413 (1999).
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