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We provide an exact formula for the mean first-passage time (MFPT) to a target at the origin for
a single particle diffusing on a d-dimensional hypercubic lattice starting from a fixed initial position
~R0 and resetting to ~R0 with a rate r. Previously known results in the continuous space are recovered
in the scaling limit r → 0, R0 = |~R0| → ∞ with the product

√
r R0 fixed. However, our formula is

valid for any r and any ~R0 that enables us to explore a much wider region of the parameter space
that are inaccessible in the continuum limit. For example, we have shown that the MFPT, as a
function of r for fixed ~R0, diverges in the two opposite limits r → 0 and r → ∞ with a unique
minimum in between, provided the starting point is not a nearest neighbour of the target. In this
case, the MFPT diverges as a power law ∼ rφ as r → ∞, but very interestingly with an exponent
φ = (|m1|+ |m2|+ . . .+ |md|)−1 that depends on the starting point ~R0 = a (m1,m2, . . . ,md) where
a is the lattice spacing and mi’s are integers. If, on the other hand, the starting point happens to
be a nearest neighbour of the target, then the MFPT decreases monotonically with increasing r,
approaching a universal limiting value 1 as r →∞, indicating that the optimal resetting rate in this
case is infinity. We provide a simple physical reason and a simple Markov-chain explanation behind
this somewhat unexpected universal result. These interesting results on a lattice are not captured by
the continuum theory. Our analytical predictions are verified in numerical simulations on lattices
up to 50 dimensions. Finally, in the absence of a target, we also compute exactly the position
distribution of the walker in the nonequlibrium stationary state that also displays interesting lattice
effects not captured by the continuum theory.

I. INTRODUCTION

Stochastic resetting has emerged as an active area
of research in statistical physics over the past decade,
finding numerous applications across diverse fields
from stochastic processes to random search algorithms.
Stochastic resetting simply means interrupting the natu-
ral dynamics of a process (classical or quantum) at ran-
dom times and restarting the process. Perhaps the sim-
plest model of stochastic resetting corresponds to a sin-
gle particle diffusing in continuous space starting from
a fixed initial position and resetting to this initial posi-
tion at a constant rate r [1]. The exact solution of this
model had two interesting predictions [1, 2]: (i) the mean
first-passage time (MFPT) to find a fixed target located
at the origin is finite and as a function of r, displays a
unique minimum at r = r∗ that depends on the initial
distance from the target and (ii) in the absence of a tar-
get, the resetting at a constant rate r drives the system
into a nonequilibrium stationary state at long times with
a non-Gauusian position distribution. Following (i), one
can then set the resetting rate at the minimum value
r∗ to minimize the MFPT and thus expedite the search
of the target. The existence of a finite optimal reset-
ting rate r∗ has rendered the stochastc resetting as an
efficient mechanism to speed up a search process. This
model subsequently triggered a flurry of activities where
both aspects of resetting (i) and (ii) were investigated, in
theoretical models as well as in experiments (for reviews
see, [3–6]). For example, in one dimension, the MFPT of
a diffusing particle starting at the initial position x0 to

a target located at the origin was found to have a very
simple expression [1]

〈T 〉r(x0) =
1

r

[
e
√

r
D x0 − 1

]
. (1)

The MFPT diverges in the two limits r → 0 and r →∞
and has a minimum at some intermediate r∗. The diver-
gence as r → 0 issues from the fact that in the absence
of resetting the ‘bad’ trajectores that take the walker
away from the origin occur with high probability and
contribute to the mean capture time making it infinite.
In the opposite limit, when there are many resettings,
the trajectory essentially gets localised at its starting po-
sition and the walker fails to reach the target making the
MFPT divergent. This result was generalised to higher
dimensions [7], where the target needs to have a finite size
in d > 2 to be captured with a nonzero probability by
the random walker modelled as a point particle. These
results for the MFPT in d = 1 and d = 2 were verified in
experiments on colloidal particles in optical traps [8–10].

While the MFPT 〈T 〉r(~R0) of this single diffusing par-

ticle, starting at the initial position ~R0 in d dimensions
and with a constant resetting rate r, is well understood
when the difusion takes place in continuous space, a nat-
ural question is to wonder what happens to the MFPT
for diffusion on a lattice in d dimensions. For example,

does the MFPT on a lattice, as a function of r and ~R0,
exhibit more or less similar behavior as in the continu-
ous space, or does it have new interesting regimes? The
lattice computation is considerably more difficult than in
the continuum, so there is no point in just repeating the
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computations if they yield qualitatively similar results.

But if there are new regimes as a function of r and ~R0

in the lattice problem that is not captured by the con-
tinuous space result, it would indeed be interesting and
worth pursuing the lattice calculations. In fact, the pur-
pose of this paper is to show, via exact calculation of
this MFPT on a d-dimensional hypercubic lattice, veri-
fied by accompanying numerical simulations and a simple
Markov-chain representation, that there are very inter-
esting behaviors displayed by lattice MFPT that are not
captured by its continuous space counterpart.

Some stochastic processes in the presence of resetting
have been studied on lattices [11–17] and networks [18].
In Ref. [19], a resetting random walk model on a d-
dimensional lattice in discrete time was studied, but the
main objective there was to compute the mean number of
distinct sites visited by such a resetting random walker of
N steps. However, we have not come across any explicit
result for the MFPT for a standard random walker on a
d-dimensional lattice, evolving in continuous time with a
nonzero resetting rate r. Our goal here is to present an
exact formula for the MFPT of a lattice random walker
with resetting, valid in arbitrary dimension. We will see
that the results from the lattice model are more general
and includes interesting new regimes with strikingly un-
expected behavior of the MFPT, in particular for large
resetting rate. These results are completely missed by
the continuous space model.

Let us briefly summarize our main results and also lay
out the organization of the paper. In Section II, we first
define our model precisely on a lattice and derive a gen-
eral relation between the MFPT in the presence of re-
setting and the free propagator of the underlying pro-
cess without resetting. This relation, based on renewal
arguments, turns out to be very general and holds for
arbitrary Markov processes, both on the lattice as well
as in the continuum. This exact relation is given in Eq.
(19). In the next section III, we evaluate this exact for-
mula for a d-dimensional hypercubic lattice leading to
our main explicit formula in Eq. (33). We show how
to recover the continuous space results from this lattice
MFPT formula, in the limit when r → 0, R0 → ∞ but
keeping

√
r R0 fixed.

In Section IV we describe the event-driven algorithm
we have used to verify our analytical results numerically
and to obtain results on other properties of the walk, in
particular the number of steps taken by the walker to
find the target.

In Section V, we consider several special cases of our
main formula for lattice MFPT in Eq. (33) and derive
explicit results. We start with d = 1 and d = 2 and
then present some exact results in general dimensions in
the two limits r → 0 and r → ∞ for a fixed starting

position ~R0. We denote the starting position ~R0 = a ~m
with ~m ≡ (m1,m2, . . . ,md) where mi’s are integers and
a is the lattice constant. We show that as long as the
starting position is not a nearest neighbour of the target
at the origin, the MFPT first decreases as a function of

increasing r, achieves a global minimum at some r = r∗

and then grows again and finally diverges as a power law
as r →∞

〈T 〉r(~R0) ≈

d∏
i=1

Γ(|mi|+ 1)

Γ

(
d∑
i=1

|mi|+ 1

) rφ (2)

with φ = (|m1|+ |m2|+ . . .+ |md|)− 1. Thus the expon-
nent φ depends on the starting distance. This interesting
new regime is inaccessible in the continuum theory where
one has already taken the r → 0 limit. Another interest-
ing explicit and general result is the following: we show
that if the walker instead starts from a lattice site which
is an immediate neighbour of the target, then the MFPT
decreases monotonically with increasing r, achieving its
minimum value 1 (universal in all dimensions) as r →∞.
Thus in this case, the optimal resetting rate r∗ is actu-
ally infinite, while it is finite if the starting site is not
an immediate neighbour of the target! Hence, rather re-
markably, for a starting site just next to the target, one
needs to implement an infinite reetting rate to minimize
the MFPT! This is another strikingly surprising result
that is compleely missed by the continuum limit. We
also compare our analytical predictions with numerical
simulations up to 50 dimensions, finding excellent agree-
ment. For some of our results we also provide a simple ex-
planation based on the properties of a few-state Markov
process.

In the absence of a target, we show in Section VI that
the system is driven at long times into a nonequilibrium
stationary state (NESS). We compute the exact position
distribution in the NESS for a resetting walker on a d-
dimensional hypercubic lattice. Finally we conclude in
Section VII and relegate some details of calculations in
Appendix A.

II. MEAN FIRST-PASSAGE TIME TO A
TARGET FOR A RESETTING RANDOM
WALKER ON A LATTICE: A GENERAL

FORMULA

We consider a resetting random walker on an infinite
d-fimensional hypercubic lattice with lattice constant a.
The position of the walker evolves in continuous time,

starting at the initial position ~R0 at time t = 0. Let ~R
be the current location of the walker at time t. Then in a
small time dt, the walker performs the following stochas-
tic movements:

• it hops to any one of the 2 d neighbouring sites ~R+

a~e of ~R with probability dt, i.e. with rate λhop = 1

• it hops to the starting position ~R0 with probability
r dt, where r denotes the resetting rate
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• with the remaining probability 1 − (r + 2d) dt, it

stays at the current location ~R.

Let Pr(~R, ~R0, t) denote the probability that the walker

is located at site ~R at time t, starting from ~R0 at t = 0.

The subscript r in Pr denotes the presence of reset-
ting move with rate r. This probability evolves via the
Fokker-Planck equation

∂Pr(~R, ~R0, t)

∂t
=

[∑
~e

Pr(~R+ a~e, ~R0, t)− 2dPr(~R, ~R0, t)

]
− r Pr(~R, ~R0, t) + r δ~R,~R0

, (3)

starting from the initial condition Pr(~R, ~R0, 0) = δ~R,~R0

(Kronecker delta). The first term inside the parenthesis
[· · · ] on the right hand side (rhs) of Eq. (3) is just a lattice
Laplacian that describes the diffusion, the second term

describes the loss of probability from ~R due to resetting

to ~R0 with rate r, while the third term describes the gain

in probability at ~R0 via resetting from other sites. We
will later present an exact solution of the Fokker-Planck
equation (3) in Section VI.

We note that Eq. (3) is just the lattice version of the
Fokker-Planck equation in continuous space introduced
and studied in Refs. [1, 2]. To see how the lattice Fokker-
Planck equation (3) reduces to its continuous counter-
part, we take the continuum limit a→ 0, where a is the
lattice length. Expanding the right hand side (rhs) of
Eq. (3) up to quadratic order in a, one gets

∂Pr(~R, ~R0, t)

∂t
≈

a2∇2
~R
P (~R, ~R0, t)− r Pr(~R, ~R0, t) + r δ~R,~R0

, (4)

Next we need to rescale time t = t̃/a2 and consequently
the resetting rate r = r̃ a2. Furthermore, the probability
density P̃ in continuous space is related to the proba-
bility P on a lattice via the relation P = P̃ a. Under
this rescaling, Eq. (4) reduces to the standard continu-
ous Fokker-Planck equation studied in Refs. [1, 2] (upon
setting the diffusion constant D = 1)

∂P̃r̃(~R, ~R0, t)

∂t̃
=

∇2
~R
P̃ (~R, ~R0, t)− r̃ P̃r̃(~R, ~R0, t) + r̃ δ

(
~R− ~R0

)
, (5)

where we replaced δ~R,~R0
/a by the Dirac delta function

in the limit a→ 0. Thus to recover the continuum limit,
we need to implement the following rescaling for the time
and the resetting rate

t =
t̃

a2
and r = r̃ a2 , (6)

and take the limit a → 0. Hence one not only needs
to take the large distance (in units of a) and late time

limits, but needs additionally to take the vanishing reset
rate r → 0 limit in an appropriate way.

We now assume that there is a target at the origin ~0

and we are interested in computing the MFPT 〈T 〉r(~R0)

to the target, starting at ~R0 = a ~m, where ~m is a lattice

site (m1,m2, . . . ,md) with mi’s integers. Let Fr(~R0, t)
denote the first-passage probability density to the target,
i.e,, the probability density to reach the target for the

first time at time t, starting at ~R0. Let Qr(~R0, t) denote
the survival probability of the walker up to time t, i.e.,
the probability that it does not reach the target up to
time t. Then clearly it is related to the first-passage
probability density via the simple relation [20, 21]

Qr(~R0, t) =

∫ ∞
t

F (~R0, t
′) dt′

implying

Fr(~R0, t) = −∂Qr(
~R0, t)

∂t
. (7)

Consequently the MFPT can be expressed in terms of
the survival probability

〈T 〉r(~R0) =

∫ ∞
0

t Fr(~R0, t) dt =

∫ ∞
0

Qr(~R0, t) dt , (8)

where we used the relaton in Eq. (7) and performed an

integration by parts (assuming Qr(~R0, t) decays faster
than 1/t as t→∞). Let us also define, for future usage,
the Laplace transform of the survival probability

Q̃r(~R0, s) =

∫ ∞
0

Qr(~R0, t) e
−s t dt . (9)

Thus, the result (8) then reduces to

〈T 〉r(~R0) = Q̃r(~R0, s = 0) . (10)

Now, the survival probability Qr(~R0, t) in the pres-
ence of resetting can be related to the survival probability

Q0(~R0, t) in the absence of resetting, by using a renewal
approach [1, 3, 22, 23]. The renewal approach leads to
the exact equation

Qr(~R0, t) = e−r tQ0(~R0, t) + (11)

r

∫ t

0

dτ e−rτ Q0(~R0, τ)Qr(~R0, t− τ)
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It is easy to understand the two terms on the rhs of Eq.
(12). The first term corresponds to the event when there
is no resetting in [0, t] which happens with probability
e−r t. In this case, the survival probability is simply

Q0(~R0, t) which, multiplied by the factor e−r t, gives the
first term. The second term corresponds to the cases
when there is one or more resetting events in [0, t]. In
this case, let τ denote the time at which the first resetting
occurs. The probability for the first resetting to occur in
[τ, τ + dτ ] is simply r e−rτ dτ . Prior to this resetting the

target survives with probability Q0(~R0, τ) and after the
first resetting, the process renews and one needs to mul-

tiply by Qr(~R0, t− τ) to ensure survival during the rest
of the interval of duration t − τ . Finally the first reset-
ting epoch τ can occur anywhere in [0, t] and one needs
to integrate over τ ∈ [0, t] to obtain the second term in
(12). The convolution structure of the second term in
(12) immediately suggests to take a Laplace transform of
this equation with respect to t. Performing this Laplace
transform, one gets a very simple general relation

Q̃r(~R0, s) =
Q̃0(~R0, s+ r)

1− r Q̃0(~R0, s+ r)
. (12)

Let us note that there is a shift in the Laplace variable
from s to s+ r on the rhs of (12). Consequently setting
s = 0 and using (10), the MFPT in the presence of reset-
ting can be expressed explicitly in terms of the Laplace
transform of the survival probability in the absence of
resetting

〈T 〉r(~R0) =
Q̃0(~R0, r)

1− r Q̃0(~R0, r)
. (13)

It is convenient to express the rhs of Eq. (13) in terms
of the Laplace transform of the first-passage probability
density (without resetting). This can be done by recallng
that that the first-passage probability density is related
to the survival probabilty via the relation

F0(~R0, t) = −∂tQ0(~R0, t) . (14)

Taking Laplace transform with respect to t yields

F̃0(~R0, s) = 1− s Q̃0(~R0, s) . (15)

Using this relation in Eq. (13), the MFPT can then be
expressed as

〈T 〉r(~R0) =
1

r

[
1

F̃0(~R0, r)
− 1

]
. (16)

Thus, thanks to this explicit relation, computing the
MFPT in the presence of resetting just requires the
knowledge of the Laplace transform of the first-passage
probability density in the absence of resetting.

We now show how to express this Laplace transform

F̃0(~R0, s) for a pure (without resetting) random walker

on a d-dimensional lattice in terms of the lattice Green’s
function. To find this relation, consider a random walk

trajectory that starts at ~R0 and arrives at the origin
at time t. The probability for this event is simply

P0(~0, ~R0, t). Now, this path that arrives at the origin
at time t must have hit the origin for the first time at
some epoch before t, say at τ and then has returned to
the origin at time t (possibly t = τ if it is the first visit).
Hence one can again use a renewal equation to connect
the first-passage probability density and the return prob-
ability

P0(~0, ~R0, t) =

∫ t

0

dτF0(~R0, τ)P0(~0,~0, t− τ) . (17)

Taking Laplace transform with respect to time gives

F̃0(~R0, s) =
P̃0(~0, ~R0, s)

P̃0(~0,~0, s)
for ~R0 6= ~0 . (18)

The Laplace transform P̃0(~R, ~R0, s) ( or its analogue gen-
erating function when the walk takes place in discrete
time steps) is usually referred to as the lattice Green’s
function (for a nice review on lattice Green’s function, see
Ref. [24]). The ratio of these lattice Green’s function also
appears in the computation of the mean number of dis-
tinct sites visited by a random walker on a lattice [25, 26],
see also the recent Ref. [19] in the context of a resetting
random walker.

Substituting the result (18) in Eq. (16) then expresses
the MFPT with resetting in terms of the lattice Green’s
function without resetting

〈T 〉r(~R0) =
1

r

[
P̃0(~0,~0, r)

P̃0(~0, ~R0, r)
− 1

]
. (19)

We note that this result (19) is actually very general, and
holds even for random walks in the presence of a force
or potential. It is valid in all dimensions. It is also valid
for a Brownian motion in d-dimensions in the presence or

absence of a drift, where P̃0(~R, ~R0, s) is just the Laplace
transform of the propagator of the process. For example,
for a Brownian motion in one dimension, the propagator
in real time is simply

P0(R,R0, t) =
1√

4πD t
e−(R−R0)2/4Dt . (20)

Its Laplace transform is simply

P̃0(~R, ~R0, s) =

∫ ∞
0

dt e−s t
1√

4πD t
e−(R−R0)2/4Dt

=
1√

4 s,D
e−
√
s/D |R−R0| . (21)

Substituting (21) in (19), one recovers the continuous
space result in Eq. (1).

The expression in Eq. (19) is our main result which
says that to compute the MFPT in the presence of re-
setting, we just need to know the Laplace transform of
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the propagator of the underlying process without reset-
ting. We show in the next subsection how to evaluate it
explicitly for a random walk on a d-dimensional hyper-
cubic lattice.

III. AN EXPLICIT FORMULA FOR THE MFPT
FOR A RESETTING d-DIMENSIONAL RANDOM

WALK ON A HYPERCUBIC LATTICE

Consider a reset free (r = 0) random walk, whose posi-
tion distribution evolves via the lattice diffusion equation

∂P0(~R, ~R0, t)

∂t
=[∑

~e

P0(~R+ a~e, ~R0, t)− 2dP0(~R, ~R0, t)

]
, (22)

obtained by setting r = 0 in Eq. (3). It starts from the

initial condition P0(~R, ~R0, t = 0) = δ~R,~R0
. This linear

equation can be solved exactly using the Laplace-Fourrier
transform [26]. Let us first take the Laplace transform of
(22) with respect to t, by defining

P̃0(~R, ~R0, s) =

∫ ∞
0

P0(~R, ~R0, t) e
−s t dt . (23)

Using the initial condition, we get

(s+ 2d) P̃0(~R, ~R0, s)− δ~R,~R0
=
∑
~e

P̃0(~R+ a~e, ~R0, s) .

(24)
Next we define the Fourier transform

P̂0(~k, s) =
∑
~R

P̃0(~R, ~R0, s) e
i~k· (

~R−~R0)
a . (25)

Taking Fourier transform of (24) gives

P̂0(~k, s) =
1[

(s+ 2d)− 2

d∑
i=1

cos(ki)

] . (26)

Finally, inverting the Fourier transform and using sym-
metries, one gets the well known expression for the lattice
Green’s function [24, 26]

P̃0(~R, ~R0, s) =∫ π

−π

dk1

2π
. . .

∫ π

−π

dkd
2π

e−i
~k· (

~R−~R0)
a[

(s+ 2d)− 2

d∑
i=1

cos(ki)

] . (27)

We next set ~R = ~0 and ~R0 = a ~m where ~m ≡
(m1,m2, . . . ,md) with mi’s being integers. Using the

symmetry in the k space, we can then express Eq. (27)
as a d-dimensional real integral

P̃0(~0, ~R0 = a ~m, s) =

∫ π

−π

dk1

2π
. . .

∫ π

−π

dkd
2π

d∏
i=1

cos(kimi)[
(s+ 2d)− 2

d∑
i=1

cos(ki)

] . (28)

To make further progress, we use the integral repre-
sentation

1

z
=

∫ ∞
0

dt e−t z , (29)

to rewrite Eq. (28) as

P̃0(~0, ~R0 = a ~m, s) =
1

(s+ 2d)
×∫ ∞

0

dt e−t
d∏
i=1

∫ π

−π

dki
2π

e−
2 t

(s+2d)
cos(ki) cos(kimi) . (30)

Next we use the identity [27]∫ π

−π

dk

2π
exp [z cos(k)] cos(km) = I|m|(z) , (31)

where Im(z) is the modified Bessel function of the first
kind with index m and argument z. This identity (31)
is valid only when m is an integer, as in our case. Using
(31) in (30) we get a compact formula

P̃0(~0, ~R0 = a ~m, s) =

1

(s+ 2d)

∫ ∞
0

dt e−t
d∏
i=1

I|mi|

(
2 t

(s+ 2d)

)
. (32)

Substituting this result in Eq. (19), we get an explicit
expression for the MFPT of the lattice walker with reset-

ting rate r and starting from ~R0 = a (m1,m2, . . . ,md)

〈T 〉r
(
~R0 = a ~m

)
=

1

r


∫∞

0
dt e−t

[
I0

(
2 t

(r+2d)

)]d
∫∞

0
dt e−t

d∏
i=1

I|mi|

(
2 t

(r+2d)

) − 1

 .
(33)

This is our main new general result valid in arbi-

trary dimension and arbitrary starting point ~R0 =
a (m1,m2, . . . ,md). Unfortunately, the integrals on the
rhs of (33) can not be computed in closed form for general

dimension d and general ~R0. However, the representation
in (33) is still nice because it can be easily evaluated nu-
merically in Mathematica, for any d and any choice of
~R0. We analyse later (33) in several special cases where
the integrals can be done exactly to make the formula for
the MFPT even more explicit.
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A. Recovering the continuous space limit results

To recover the continuous space results from our exact
lattice MFPT in Eq. (33), we need to take a → 0 limit
and also rescale the resetting rate r = a2 r̃ and define the
rescaled MFPT T̃ = a2 T (see Eq. (6)). In Appendix A
we show in detail how to take this limit in Eq. (33) to
obtain, in arbitrary dimenion d,

〈T̃ 〉r̃(~R0) = lim
a→0
〈T 〉r=a2 r̃(~R0) =

1

r̃

Γ(|ν|) |ν|−1 (r̃)−|ν|/2 aν−|ν|

Rν0 Kν

(
R0

√
r̃
) − 1

 (34)

with ν = 1 − d
2 and where Kν(z) is the modified Bessel

function of the second kind with index ν and argument
z. For d = 2, i.e., ν = 0, one obtains a slightly differ-
ent behavior with a logaritmic correction. For d < 2,
the limit a → 0 exists and is finite, while for d > 2, one
needs to keep a small but nonzero lattice constant a. In
Ref. [7], the MFPT was computed directly in the contin-
uum limit by assuming that the target is spherical with
a finite radius ε and it was found that

〈T̃ 〉r̃(~R0) ==
1

r̃

 εν Kν

(
ε
√
r̃
)

Rν0 Kν

(
R0

√
r̃
) − 1

 . (35)

One can now take the limit ε → 0 using the following
asymptotic small z behavior of the Besssel function

Kν(z) ≈


Γ(|ν|) 2|ν|−1 z−|ν| as z → 0 , |ν| > 0

− ln(z/2)− γE as z → 0 , |ν| = 0 ,

(36)

where γE is the Euler gamma constant. Using this in Eq.
(35), one indeed recovers Eq. (34) upon identifying ε with
the lattice constant a. Finally, let us remark again that
the continuum result (34) is less richer than our lattice
result in (33). The lattice MFPT result (33) has some
interesting new regimes, in particular for large resetting

rate r with fixed starting point ~R0, that the continuum
limit misses since one needs to already take the limit
r → 0 in arriving at the continuum limit.

IV. NUMERICAL APPROACH

We implemented a simple continuous-time event-
driven algorithm to simulate the behavior of the resetting
random walker and to compare the numerical results to
our analytical predictions. This algorithm also enables
us to measure other quantities of interest, e.g., the total
number of hops till the target is found and the number
of hops needed to capture the target after the final reset.

The main idea of the event-based approach is to gen-
erate the times of the relevant events, hops and resets,

and to perform changes to the walker’s position only at
event times. Events that take place with some rate λ fol-
low an exponential distribution with parameter λ, given
by the probability density p(t) = λe−λt (t > 0), i.e., the

probability distribution P (t) =
∫ t

0
p(t′) dt′ = 1 − e−λt.

Actually we use ∆t to denote the duration to the next
event instead of t, which denotes the total time here.
Since the distribution function can be inverted, the du-
ration until the next event can be simply generated [28]
by using the Inversion Approach. This means, one draws
a random number u which is uniformly distributed in the
interval [0, 1]. Then one applies the inverse distribution,
i.e., assigns ∆t = P−1(u) = log(1 − u)/λ. One writes
∆t ∼Exp(λ) to indicate this generation.

Within the simulations, we assume lattice constant a =

1. We denote by ~R the current position of the walker, by t
the time of the last event, by tr the time of the next reset
event and by thop the time of the next hopping event.
Each walker is considered until the target is found.

A hopping event will happen with rate 2d since each
of the possible 2d hop occurs with rate λhop = 1. Since
all hops to the neighbors have this same rate, for each
occurring hop, one of the 2d directions will be chosen
randomly with probability 1/(2d). We also measure the
total number nhop of hops and the number nfinal of hops
since the last reset. The algorithm reads as follows:

algorithm walk(~R0, r, d)
begin

~R = ~R0; \\ initialise
t = 0;
nhops = 0; nfinal = 0
∆t ∼Exp(r); tr = t+ ∆t; \\ first reset
∆t ∼Exp(2d); thop = t+ ∆t; \\ first hop

while ~R 6= ~0 do \\ while qfound
begin

if tr < thop then
begin \\ perform reset

~R = ~R0;
nfinal = 0;
t = tr;
∆t ∼Exp(r); tr = t+ ∆t; \\ next reset

end
else
begin \\ perform hop

random direction ~d = ±~ei;
~R = ~R+ ~d;
nhop = nhop + 1;
nfinal = nfinal + 1;
t = thop;
∆t ∼Exp(2d); thop = t+ ∆t; \\ next hop

end
end
return(t, nhops, nfinal)

end

Note that all event rates are independent of the lattcie
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sites, so after a hop or reset, no other events need to be
rescheduled.

V. SOME EXPLICIT RESULTS

Our starting point is the exact lattice MFPT formula
in Eq. (33). We will now analyse this formula explicitly
in several special cases. For convenience, in the rest of
the paper, we will use the following notation

〈T 〉r(~R0 = a ~m) ≡ 〈T 〉r(m1,m2, . . . ,md) . (37)

A. Explicit results in d = 1

In d = 1, the result for the MFPT becomes fully ex-
plicit via the identity [27]

∫ ∞
0

dt e−t I|m|(z t) =
z−|m|

[
1−
√

1− z2
]|m|

√
1− z2

. (38)

Using this identity in Eq. (33) for d = 1 and simplifying,
we get the explicit result

〈T 〉r(m1) =
1

r

[(
2

r + 2−
√
r2 + 4 r

)|m1|

− 1

]
, (39)

valid for any integer m1. As a function of r for fixed |m1|,
it has the asymptotic behaviors

〈T 〉r(m1) ≈


|m1|√
r

as r → 0

r|m1|−1 as r →∞ .

(40)

Thus, as r → 0, it diverges for any |m1|. In contrast,
as r → ∞, it diverges as a power law for any |m1| > 1,
but it aproaches a constant 1 for |m1| = 1. In Fig. 1,
we plot the MFPT 〈T 〉r(m1) in Eq. (39) as a function
of r for three different values of m1 = 1, 2, 3 (shown by
solid lines) and compare them to direct numerical sim-
ulation results (symbols), finding perfect matching. For
any |m1| > 1, it then displays a unique minimum at some
r = r∗(|m|). However, for |m1| = 1, it decreases mono-
tonically to its asymptotic value 1 as r → ∞. We will
see later that this is a generic feature in any dimension.
If the walker starts from a site that is nearest neighbour
to the origin (target), then the MFPT decreases mono-
tonically as r increases, approaching the universal value
1 in all dimensions as r → ∞. However, for any start-
ing site that is not a nearest neighbour of the origin, the
MFPT displays a unique minimum at some r∗ that de-
pends on the starting site and the dimension d. We will
provide later a simple physical argument for this univer-
sal asymptotic value 1 of the MFPT as r →∞ when the
starting site is a nearest neighbour of the origin.

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2

d=1, 10
5
 runs

<
T

>
r(

m
1
)

r

m1=3
m1=2
m1=1

analytics

FIG. 1. 〈T 〉r(m1) vs. r in one dimension (d = 1) for m1 = 1,
m1 = 2 and m1 = 3. While for any m1 > 1, the curve
exhibits a unique minimum at some r = r∗(|m|), for m1 = 1
it decays monotonically with increasing r, approaching the
limiting value 1 as r →∞. The solid lines correspond to the
analytical formula in Eq. (39).

Finally, let us note that by setting m1 = R0/a, T =

T̃ a2, r = r̃a2 in Eq. (39) and taking the a→ 0 limit, we
get

〈T̃r̃(~R0) =
1

r̃

[
e
√
r̃ R0 − 1

]
, (41)

thus recovering the continuous space result in Eq. (1)
with diffusion constant D = 1 set to unity. Thus the
continuum limit corresponds to taking the limits r → 0,
|m1| → ∞ keeping the product

√
r |m1| fixed in Eq. (39).

Consequently, in the (r,m1) plane, the continuum limit
captures the behaviour of the MFPT only in one corner.
However, the lattice result (39) holds in the full (r,m1)
plane and hence is richer. In particular, the power law
growth of the MFPT r|m1|−1 for large r in Eq. (40 is
completely missed by the continuum limit.

B. Explicit results in d = 2

In d = 2, the MFPT in Eq. (33) reads for the starting

point ~R0 = a (m1,m2)

〈T 〉r(m1, m2) =

1

r


∫∞

0
dt e−t

[
I0

(
2 t

(r+4)

)]2
∫∞

0
dt e−t I|m1|

(
2 t

(r+4)

)
I|m2|

(
2 t

(r+4)

) − 1

 . (42)
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The integral in the numerater on the rhs of Eq. (42) can
be computed explicitly for |z| < 1 [24]∫ ∞

0

dt e−t
[
I0

(
z t

2

)]2

=
2

π
K(z2) = 2F1

(
1

2
,

1

2
, 1, z2

)
,

(43)
where K(u) is the EllipticK function with argument u
and 2F1 is the standard hypergeometric function [27].
The EllipticK function is defined as

K(u) =

∫ π/2

0

dθ√
1− u sin2(θ)

. (44)

Note that there was a typographical error in Ref. [24]
where the argument of the hypergeometric function was
reported to be z, instead of z2. In contrast, the integral
in the denominator on the rhs of Eq. (42) does not seem
to be doable for general (m1,m2). However, it can be
done explicitly for the two cases (1, 0) and (1, 1).

The case (m1 = 1,m2 = 0). In this case, Eq. (42)
reduces to

〈T 〉r(1, 0) =
1

r

 2

π

K
(

16
(4+r)2

)
∫∞

0
dt e−t I0

(
2 t

(r+4)

)
I1

(
2 t

(r+4)

) − 1

 .
(45)

To compute the integral in the denominator in (45) we
first use the identity I1(z) = I ′0(z) [27] to re-write this
integral as∫ ∞

0

dt e−t I0(zt/2) I1(zt/2) =
1

z

∫ ∞
0

dt e−t
d

dt
[I2

0 (zt/2)] .

(46)
Performing the last integral by parts and using the result
from (43) we get∫ ∞

0

dt e−t I0(zt/2) I1(zt/2) =
1

z

[
2

π
K(z2)− 1

]
, (47)

valid again for |z| < 1. Substituting in (45) and simpli-
fying leads to the exact result

〈T 〉r(1, 0) =
1

r(r + 4)

 4

2
π K

(
16

(4+r)2

)
− 1
− r

 . (48)

The asymptotic behaviors are given by

〈T 〉r(1, 0) ≈


− π
r ln(r) as r → 0

1 + 3
r as r →∞ .

(49)

In Fig. 2 we plot 〈T 〉r(1, 0) vs. r and compare with our
direct numerical simulation, finding excellent agreement.
We see once more that as r →∞, the MFPT approaches
1 monotonically given that this starting point (1, 0) is a
nearest neighbour of the target at (0, 0). Of course, by

 0
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FIG. 2. 〈T 〉r(1, 0) and 〈T 〉r(1, 1) vs. r in two dimensions.
The solid line shows the analytical results in Eqs. (48) and
(53), while the symbols represent the numerical results. The
agreement is excellent.

symmetry, this result in Eq. (48) also holds for three
other starting points (m1 = 0,m2 = 1), (m1 = −1,m2 =
0) and (m1 = 0,m2 = −1).

The case (m1 = 1,m2 = 1). In this case, Eq. (42)
reduces to

〈T 〉r(1, 1) =
1

r

 2

π

K
(

16
(4+r)2

)
∫∞

0
dt e−t

[
I1

(
2 t

(r+4)

)]2 − 1

 .
(50)

It turns out the integral in the denominator can again be
performed using the identity, valid for |z| < 1,∫ ∞

0

dt e−t [I1 (z t/2)]
2

=
2

π z2

[
(2− z2)K(z2)− 2E(z2)

]
,

(51)
where E(u) is the EllipticE function with argument u
defined as

E(u) =

∫ π/2

0

√
1− u sin2(θ) dθ . (52)

Using the identity (51) in (50) leads to the explicit result

〈T 〉r(1, 1) =
1

r

[
z2K(z2)

(2− z2)K(z2)− 2E(z2)
− 1

]
, (53)

where z ≡ z(r) = 4/(4 + r). The asymptotic behaviors
are given by

〈T 〉r(1, 1) ≈


− 4
r ln(r) as r → 0

r
2 + 4 + 3

r +O(r−2) as r →∞ .

(54)
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In Fig. 2 we plot 〈T 〉r(1, 1) vs. r and compare with our
direct numerical simulation, finding excellent agreement.
We see that as r → ∞, the MFPT displays a unique
minimum at some r∗ when this starting point (1, 1) is
not a nearest neighbour of the target at (0, 0). Again, we
note that, by symmetry of the square lattice, the result
in Eq. (53) also holds for three other points: (−1, 1),
(−1,−1) and (1,−1).

C. Some explicit results in general dimension d

We now consider general dimension d and a general

starting point ~R0 = a (m1,m2, . . . ,md). In this case,

while the result in Eq. (33) for the MFPT 〈T 〉r(~R0) is
exact and easily evaluable via numerical integration, it
is not easy to reduce it to an explicit formula. However,
one can obtain explicitly the asymptotics behaviors of
the MFPT in the two limits r → ∞ and r → 0, as we
show below.

The limit r → ∞. We start with the r → ∞ which
is easier. In this limit, the argument 2t/(r + 2d) of the
Bessel functions tend to zero. We can then use the lead-
ing asymptotic behavior of I|m|(z) as z → 0, namely [27],

I|m|(z) ≈
1

Γ(|m|+ 1)

(z
2

)|m|
. (55)

Substituting this behavior in Eq. (33) for fixed
(m1,m2, . . . ,md), we get the leading order behaviors for
large r ∫ ∞

0

dt e−t
[
I0

(
2 t

(r + 2d)

)]d
≈ 1 (56)

∫ ∞
0

dt e−t
d∏
i=1

I|mi|

(
2 t

(r + 2d)

)
≈

Γ

(
d∑
i=1

|mi|+ 1

)
d∏
i=1

Γ(|mi|+ 1)

r−(|m1|+|m2|+...+|md| . (57)

This leads to a rather interesting power law growth of

〈T 〉r(~R0) for large r with a distance dependent exponent

〈T 〉r(m1,m2, . . . ,md) ≈
d∏
i=1

Γ(|mi|+ 1)

Γ

(
d∑
i=1

|mi|+ 1

) r|m1|+|m2|+...+|md|−1 . (58)

It is easy to check that in d = 1 and in the special cases for
d = 2, we get back previous results, respectively in Eqs.
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FIG. 3. 〈T 〉r(1, 1) vs. r and 〈T 〉r(2, 1) vs. r in two dimen-
sions. The solid lines represent the asymptotic large r be-
havior predicted analytically in Eq. (58), while the symbols
represent the numerical results. The agreement is excellent
for large r.

(40), (49) and (54). Note that this result is completely
inaccessible in the continuum limit.

The r →∞ result in (58) is valid for any starting point
~R0 = a (m1,m2, . . . ,md). Interestingly, this formula pre-
dicts that for any starting point which is not a nearest
neighbour of the origin, the MFPT diverges as a power
law 〈T 〉r(m1,m2, . . . ,md) ∼ rφ as r → ∞, with a dis-
tance dependent exponent φ = |m1|+|m2|+. . .+|md|−1.
We have checked this result numerically in d = 2 for
(m1 = 1,m2 = 1) and (m1 = 2,m2 = 1). In the former
case, our result predicts a linear growth with r, namely
〈T 〉r(1, 1) ≈ r/2, while in the latter case, it predicts a
quadratic growth 〈T 〉r(2, 1) ≈ r2/3. Numerical results
match perfectly our analytical predictions (including the
prefactors 1/2 and 1/3), as can be seen in Fig. 3.

In contrast, if the starting point happens to be one
of the 2d nearest neighbours of the origin, e.g., for the
case (m1 = 1, 0, 0, 0, . . . , 0) (or any of its 2d symmetric
cousins), it follows from Eq. (58) that the MFPT ap-
proaches a universal constant 1 as r →∞,

〈T 〉r(1, 0, . . . , 0) = 1 +
2d− 1

r
+O

(
1

r2

)
as r →∞ .

(59)
We now provide a simple physical argument for this gen-
eral universal result 1 as r → ∞. Consider the walker
starting its journey from a nearest neighbour of the ori-
gin. In the limit r → ∞, even if the walker hops from a

nearest neighbour site ~R0 to any other site (apart from

the origin), it immediately gets reset to ~R0. Of course, if
it jumps to the origin, then the process is over since the
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target is found. Thus, in this high resetting limit, the
dynamics of the walker gets essentially localised only to

two neighboring sites, namely the starting site ~R0 (near-
est neighbour to the origin) and the origin itself. The ef-
fective dynamics in continuous time then reduces to the
following: in a small time interval dt, the walker hops

from ~R0 to ~0 with probability dt and with the comple-
mentary probability (1 − dt), it stays at the departure

site ~R0. Thus it becomes a Poisson process with rate 1.
The probability that the walker stays at the starting site
~R0 up to time t is simply Q(~R0, t) = e−t. Consequently,
the first-passage probability density to the origin, start-

ing from ~R0, is simply F (~R0, t) = −∂tQ(~R0, t) = e−t.
Hence the MFPT is given by its first moment

lim
r→∞
〈T 〉r(~R0) =

∫ ∞
0

t e−t dt = 1 . (60)

This argument is very general and leads to this universal
limiting value 1 in any dimension, as long as the starting

point ~R0 is a nearest neighbour of the target. The fact
that the global minimum of the MFPT occurs at r =
r∗ =∞ whem the starting point is a neaest neighbour of
the target is another striking result that is not captured
in the continuum limit, also simply because there exists
no nearest neighbour in the continuum limit.

The limit r → 0. This limit, for general ~R0 =
a (m1,m2, . . . ,md), turns out to be more tricky and the
behaviors depend on the dimension d.

• d = 1. In this case, from the explicit result in Eq.

(40), we have the leading order result as r → 0

〈T 〉r(m1) ≈ |m1|√
r
, (61)

valid for arbitrary m1.

• d = 2. In this case, we had exact results only
in two cases: for the starting points (m1 =
1,m2 = 0) (and its 3 symmetric counterparts) and
(m1 = 1,m2 = 1) (along with its three symmet-
ric cousins). In both cases, the MFPT diverges as
〈T 〉r ≈ −A/(r ln r) as r → 0 where the prefactor
A = π in the first case (see Eq. (49)), while A = 4
in the second case (see Eq. (54)). We now show
that for general (m1,m2), the MFPT diverges as
r → 0 exactly in the same way, but with a prefactor
A(m1,m2) that depends explicitly on the starting
point. More precisely, as r → 0, we get

〈T 〉r(m1,m2) ≈ −A(m1,m2)

r ln r
, (62)

where

A(m1,m2) =∫ ∞
0

dt e−t
[
I2
0 (t/2)− I|m1|(t/2) I|m2|(t/2)

]
. (63)

To prove this result, we start from our exact result
in Eq. (42) valid for arbitrary (m1,m2) that reads

〈T 〉r(m1, m2) =
1

r


∫∞

0
dt e−t

[
I2
0

(
2 t

(r+4)

)2

− I|m1|

(
2 t

(r+4)

)
I|m2|

(
2 t

(r+4)

)]
∫∞

0
dt e−t I|m1|

(
2 t

(r+4)

)
I|m2|

(
2 t

(r+4)

)
 . (64)

Let us first consider the integral in the denominator

Fr(m1,m2) =

∫ ∞
0

dt e−t I|m1|

(
2

r + 4
t

)
I|m2|

(
2

r + 4
t

)
.

(65)
We want to extract its behavior as r → 0. By
making a change of variable 2t/(r + 4) = y, we get

Fr(m1,m2) =

(r + 4)

2

∫ ∞
0

dy e−ry/2 e−2y I|m1|(y) I|m2|(y) . (66)

We note that since I|m|(y) ≈ ey/
√

2πy as y → ∞
for any |m|, it is clear that the integrand in (66)
behaves as e−ry/2/(2πy) for large y and hence the
integral diverges as r → 0. To extract this leading

divergence, we divide the integral over y into two
parts: y ∈ [0,Λ] and [Λ,∞] where the cutoff Λ �
1 but is independent of r as r → 0. Then the
leading divergence as r → 0 comes from the second
interval y ∈ [Λ,∞] where we can use the asymptotic
behavior of the Bessel function I|m|(y) ≈ ey/

√
2πy.

This gives

Fr(m1,m2) ≈ 2

∫ ∞
Λ

dy
e−ry/2

2πy
(67)

=
1

π

∫ ∞
Λ r/2

dz
e−z

z
≈ − 1

π
ln r (68)

as r → 0. We can now use this behavior for the
denominator in Eq. (64) and set r = 0 in the
numerator (since the integral in the numerator is
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convergent as r → 0). This then gives the leading
order r → 0 behavior in Eq. (63).

• d > 2. We start from our general result (33)
which is valid for any r and any starting point
~R0 = a~m = a (m1,m2, . . . ,md). In this case, by
using the asymptotic behavior I|m|(y) ≈ ey/

√
2πy,

it is easy to check that both the integrals in the
numerator and the denominator are convergent as
r → 0. Hence the leading r → 0 behavior of the
MFPT is clearly then given by

〈T 〉r(~m) ≈ B(~m)

r
, (69)

as r → 0 and where the prefactor is

B(~m) ≡ B(~R0)

=

∫∞
0
dt e−t Id0

(
t
d

)
∫∞

0
dt e−t

d∏
i=1

I|mi|
(
t
d

) − 1 . (70)

Actually this prefactor B(~R0) in Eq. (70) has a nice
physical interpretation. To extract this physical
meansing, let us go back to the general expression
in Eq. (16). We see in Eq. (16) that in the limit
r → 0 and for d > 2, one has

〈T 〉r(~R0) ≈ 1

r

[
1

F̃0(~R0, 0)
− 1

]

=
1

r

[
1∫∞

0
F0(~R0, t) dt

− 1

]
. (71)

Comparing with Eq. (69), we then identify the am-

plitude B(~R0) as

B(~R0) =

[
1−

∫∞
0
F0(~R0, t) dt∫∞

0
F0(~R0, t) dt

]
. (72)

Now the denominator
∫∞

0
F0(~R0, t) dt < 1 is just

the hitting probability of the target in d > 2. We
recall that for an ordinary random walker with-
out resetting in d > 2, the target gets captured

by the walker with probability
∫∞

0
F0(~R0, t) dt <

1, while with the complementary probability 1 −∫∞
0
F0(~R0, t) dt the walker escapes to infinity.

Hence, from Eq. (72), we see that the prefactor
B is just the ratio of the escape and the hitting

probability for a walker in d > 2 starting at ~R0

B(~R0) =
escape probability

hitting probability
. (73)

Here, we thus provide an explicit expression for this
ratio in Eq. (70) in terms of integrals over Bessel
functions.

Optimal resetting rate in the large dimension
limit d→∞. From the discussion above, it is clear that
as long as the starting point is not a nearest neighbour of

the target at the origin, the MFPT 〈T 〉r(~R0), as a func-

tion of r for fixed ~R0, diverges at the two limits r → 0
and r →∞, displaying a single minimum at the optimal

value r∗ which depends on both the starting position ~R0

and dimension d. For a fixed starting position ~R0, it is
interesting to ask how r∗(d) behaves as a function of di-
mension d? To determine r∗ explicitly from the exact
expression (33) seems difficult. However, one can make
progress in the large dimension limit. In this limit, the
factor 2/(r+ 2d) in the argument of the Bessel functions
in (33) becomes small and one can make a systematic
large d expansion of (33) by using the asymptotic behav-
ior of Bessel function for small arguments given in Eq.
(55). This systematic large expansion of Eq. (33) yields,

for fixed r and ~R0 = a(m1,m2, . . . ,md), the following
expression for the MFPT up to leading orders in d

〈T 〉r(m1,m2, . . . ,md) ≈

β (2d)α

[
1

r
+
α r + 1

r

1

2d
+

(
α− 2 +

α(α− 1)

2
r

)
1

(2d)2
+O

(
1

d3

)]
, (74)

where

α =

d∑
i=1

|mi| and β =

d∏
i=1

Γ(|mi|+ 1)

Γ(|m1|+ |m2|+ . . .+ |md|+ 1)
.

(75)
One can now minimize (74) with respect to r and one
gets

r∗(d, (m1,m2, . . . ,md)) ≈

√
8

α(α− 1)
d , as d→∞ .

(76)
Let us recall that since the starting point is not a nearest
neighbour of the origin, we must have α > 1. In partic-
ular, if the starting point happens to be (2, 0, 0, . . . , 0),
then α = 2 and we have from Eq. (76)

r∗(d, (2, 0, 0, . . . , 0)) ≈ 2 d , (77)

This result agrees well with our numerical simula-
tions, as shown in Fig. 4. Here we have determined
〈T 〉r(2, 0, 0, . . . , 0) for various dimensions d ∈ [1, 50] and
selected values of r. We have determined the optimum
resetting rates r∗ and minimum first-passage times T0 by
fitting parabolas T̃ (r) = a(r−r∗)2+T0 near the minimum
of 〈T 〉r(2, 0, 0, . . . , 0), respectively. The inset of the plot
shows r∗ as function of dimension d, the linear growth
for large d is well visible.

In our simulations, we have also investigated the paths
to the target after the last reset. With increasing di-
mension, at each position, the number of possible steps
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FIG. 4. The simulation results 〈T 〉r(2, 0, 0, . . . , 0) vs. r in
dimensions d = 1 to d = 6. The minima represent the optimal
resetting rate r∗. The inset shows r∗ as a function of d for
some values d ≤ 50 which seems to fit at larger value of d well
with the linear growth r∗(d) = 2d predicted in Eq. (77).

leading away from the target increases. Thus, the walker
needs to be reset more and more to find the target as
the dimension increases. This also indicates that the ac-
tual paths leading to the target after the last reset will
more and more be shortest paths. We have verified this
for the starting position ~m = (2, 0, . . . , 0) by measuring
the number of steps nfinal the walker takes to reach the
target after the last reset has happened. In Fig. 5 we
show the value nfinal(r

∗) for the optimum resetting rate
r∗ as function of dimension d. Indeed one observes an
convergence of nfinal to the value 2. Note that also for
increasing r this convergence to the value nfinal = 2 is
visible, see inset of Fig. 5. This also makes sense, be-
cause with increasing resetting rate, the walker has less
time to explore the space, i.e., only the shortest paths to
the target will occur.

Note that we have also measured the total number
nhops of hops since t = 0, see Section IV, but this corre-
lates almost perfectly with 〈T 〉r(2, 0, . . . , 0), so we do not
show these results here.

The observation that with increasing lattice dimension
d, or increasing reset rate r, only direct paths to the
target dominate, motivates a simple finite-state Markov
chain model, which allows one to derive the optimum
resetting rate for close targets very quickly. Since this is
pedagogically interesting, we also present this approach
here.

We quickly recall from the theory of Markov chains [32]
how to calculate the mean-first passage time. For simplic-
ity, we consider a discrete time Markov chain with N + 1
states, where the state N+1 is the single absorbing state.
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FIG. 5. The number nfinal(r
∗) of steps the walker takes

since the final, i.e. successful, reset until reaching the tar-
get, measured at the optimium reset rate r∗, shown as func-
tion of the lattice dimension d. Here the target is located
at m = (2, 0, . . . , 0). The inset shows nfinal as function of
resetting rate r for dimension d = 2.

Let the column vector ~π(s) = (π1(s), . . . , pN+1(s))T de-
note the probabilities that the chain is in state j at step s.
The dynamics of the Markov chain is described by tran-
sition matrix P according to ~π(s+1) = P~π(s), where pij
is the probability that the chain moves to state i if it is
in state j. Since state N + 1 is absorbing, we can write
P as

P =

(
Q ~0
~uT 1

)
, (78)

where the N×N matrix Q describes the transition prob-
abilities excluding the absorbing state, i.e., among the
transient states. The vector ~u denotes the transition
probabilities to the absorbing state. Now, the matrix Pn

describes the dynamics of n steps, i.e. its element p
(n)
ij

the probability that the chain is after n steps in state i if
it starts in state j. Correspondingly, for the matrix Qn,
does the same for the set of transient states. This leads
to the definition of the fundamental matrix

N = I + Q + Q2 + · · · , (79)

where I is the identity matrix. The entry nij describes
the expected number of times the chain has visited tran-
sient state i, given that the chains has started in state j.
Therefore, the mean-first passage steps, starting at state
j is given the expected number of times it has visited any
transient state, i.e., by

T̃ =

N∑
i=1

nij . (80)
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FIG. 6. Markov chains for representing lattices in d dimen-
sions where (left) the target site (state 3) is located next to
the starting and resetting site (state 1), or (right) where they
are separated in one lattice direction by an intermediate site
(state 3). State 2 represents all other sites. It is assumed,
which holds for d → ∞ or r → ∞, that all relevant paths to
the target site do not go through state 2.

N can be conveniently calculated via the matrix inverse
N = (I−Q)−1, reminiscent of the well-known geometric-
series identity

∑∞
k=0 q

k = 1
1−q for |q| < 1.

We start with the case where the target is next to the

starting position ~R0, which is also the resetting position.
Here we approximate the dynamics by three states: state
1 is the starting and resetting site, state 3 the target site,
and state 2 represents all other sites. Since we assume
that only direct paths from the starting site to the target
sites are relevant, we do not consider transitions between
states 2 and 3. To work in probability space, we assume a
small time step dt, thus, resetting occurs with probability
rdt, and a move to each of the 2d neighbouring sites with
rate 1, i.e., probability dt. Most sites of state 2 are not

neighbors of the site ~R0, so we also ignore transitions to
state 1 except resetting. The states and all transitions are
displayed in Fig. 6. The corresponding transition matrix
reads as follows:

P =

 1− 2d dt rdt 0
(2d− 1)dt 1− rdt 0

dt 0 1

 , (81)

where Q is the upper left 2×2 matrix. The calculation of
N can be performed simply by using an symbolic linear
algebra package. The calculation of the first-passage time
via Eq. (80) and converting to continuous time by T =

T̃ dt yields

〈T 〉r(1, 0, . . .) = 1 +
2d− 1

r
(d→∞, r →∞) (82)

Thus, the optimum resetting rate is r →∞, which means
the walker stays on the starting site until it moves in one
step to the target site. This convergence to 1 matches the
r →∞ behavior from Eq. (59), which is d = 2 functional
form displayed in Eq. (49).

When having the starting site ~m = (2, 0, . . . , 0), repre-
sented again by state 1, two sites away from the target
site, here state 4, we have to include ~m′ = (1, 0, . . . , 0)

as intermediate site explicitly, here state 3. The walker
will move with rate 1 from the starting site to ~m′ with
rate 1. It can move back either by a hop with rate 1 or
reset with rate r, yielding 1 + r as total rate. It may
move to the target site with rate 1. Thus, it may move
to other neighbouring sites, represented by state 2, with
rate 2d−2. Again, not considering transitions between all
other sites and the target or intermediate sites, and trans-
forming the rates to probabilities by multiplying with dt,
the transition matrix reads as follows:

P =

 1− 2d dt rdt (1 + r)dt 0
(2d− 1)dt 1− rdt (2d− 2)dt 0

dt 0 1− (r + 2d)dt 0
0 0dt 1

 , (83)

Obtainging Q, inverting I−Q and obatining T̃ dt via
Eq. (80) results in

〈T 〉r(2, 0, . . .) = r + 4d+
4d2 − 2

r
(d→∞, r →∞)

(84)
For d = 2 this yields r+ 8 + 6/r which is twice the result
of Eq. (54) for ~m = (1, 1), which makes sense, because for
that case there are two shortest path to the target, i.e.,
half the time is needed on average. This function exhibits
a minimum, which is obtained by setting dT

dr (r∗) = 0, i.e.,

r∗ =
√

4d2 − 2→ 2d for large values of the dimension d,
compatible with the previous result of Eq. (77).

In summary, we find that in general dimension d, if the
starting point m is not a nearest neighbour of the target
at the origin, then the MFPT in Eq. (33), as a function of
r, diverges at both ends r → 0 and r →∞, and displays

a minimum at an optimal value r∗(~R0) that depends ex-

pliicitly on the starting point ~R0 and the dimension d. In
Fig. 4 we show the MFPT as a function of r, for the start-

ing point ~R0 = (m1 = 2,m2 = 0,m3 = 0, . . . ,md = 0),
for dimensions d = 1, 2, 3, 4, 5. We see that r∗ increases
with increasing d. In principle, one can numerically de-
termine this optimal value by setting to zero the deriva-
tive of Eq. (33) with respect to r and r = r∗ and
then determining this root r∗ numerically. For exam-
ple, for d = 1 and with m1 = 2, this gives r∗ ≈ 0.828489
which matches very well with the simulation value. We
have shown that in the large d limit, one can prove an-
alytically that r∗(d) ≈ 2d when the starting position is
~R0 = (m1 = 2,m2 = 0,m3 = 0, . . . ,md = 0). In con-
trast, if the starting point happens to be a nearest neigh-
bour of the target, then the MFPT decreases monotoni-
cally with increasing r and achieves its lowest value 1 as
r → ∞, see Eq. (59). Hence, in this case, the optimal
value r∗ is infinite, a result somewhat unexpected.
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VI. NONEQUILIBRIUM STATIONARY STATE
IN THE ABSENCE OF A TARGET

So far, we have focused on the MFPT to a target
placed at the origin for a resetting random walker on
a d-dimensional lattice. In the absence of a target, as
in the continuous space case, the resetting to the initial

positio ~R0 with a constant rate r drives the system into
a nonequilibrium stationary state (NESS) at long times.
In this section, we present the position distribution in
the NESS for such a walker on the lattice. Since there is
no target, the system is translationally invariant on the
lattice, and without any loss of generality, we can set the

starting (and the resetting) position ~R0 = ~0. Then we

just need to compute Pr(~R,~0, t) in the long time limit.
This probability evolves via the Fokker-Planck equation
(3) discussed in Section II. One can easily solve this lin-
ear equation. However, the solution can also be obtained
by employing a renewal equation approach. One can ex-
press the probability in the preence of resetting in terms
of the probability without resetting via

Pr(~R,~0, t) = e−r t P0(~R,~0, t)+r

∫ ∞
0

dτl e
−r τl P0(~R,~0, τl) .

(85)
The first term describes the ‘no resetting’ event in the
interval [0, t] with the walker freely propagating from ~0 to
~R in time t without resetting. The second term describes
events with one or more resettings. In this case, let t −
τl denotes the epoch at which the last resetting event
took place before t. Then τl is simply the time interval
between t and the last resetting event before t. Since
after the last resetting, the walker propagates freely from

time t − τl to t, we have the factor P0(~R,~0, τl) inside
the integral on the rhs of (85). The probability that
there is no resetting event in the interval [t − τl] and t,
preceeded by a resetting event just at t − τl] is simply
r e−r τl dτl. Multiplying the two and integrating over all
possible values of τl ∈ [0, t] gives the second term in (85).
One can check that the solution (85) indeed satisfies the
Fokker-Planck equation (3) at all times with the correct
initial and boundary conditions. Finally, in the limit t→
∞ the first term drops out and we obtain the stationary
position distribution in the NESS

PNESS
r (~R) = Pr(~R,~0,∞) =

r

∫ ∞
0

dτl e
−r τl P0(~R,~0, τl) = r P̃0(~R,~0, r) , (86)

where P̃0(~R,~0, r) is just the Laplace transform of the po-
sition distribution without resetting and has already been
computed explicitly in (32). Using this result in (86)
gives us the exact position distribution in the NESS

PNESS
r (~R = a (m1,m2, . . . ,md)) =

r

r + 2d

∫ ∞
0

dt e−t
d∏
i=1

I|mi|

(
2 t

(r + 2d)

)
. (87)
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FIG. 7. Non-equilibrium steady-state density for dimension
d = 1 from Eq. (88), shown as lines, compared to the numeri-
cally obtained density, shown as symbols, for two cases r = 1
and r = 0.1.

For example, in d = 1, using the identity (38), we get

PNESS
r (R = am1) =

r√
r2 + 4 r

[
r + 2−

√
r2 + 4 r

2

]|m1|

.

(88)
One can check, by summing over m1, that PNESS

r (R) is
normalized to unity. Eq. (88) is compared in Fig. 7 to
the numerical density for resetting rates r = 0.1 and 1,
respectively. The numerical results were obtained from
106 independent runs up to time t = 103, respectively.

The expression in Eq. (87) is the main result of this
section. Following exactly the same method as in Section
III and the Appendix A, one can show that in the limit
of lattice spacing a → 0, one recovers the continuum
results found in Ref. [7] in general dimension d. We do
not repeat the calculation here. For example, in d = 1,
one obtains by taking a→ 0 limit in Eq. (88)

PNESS
r (x = am1)→ a

2
r̃ e−

√
r̃ |x| , (89)

where r̃ = a2 r is the rescaled resetting rate. Using the
fact that the lattice position distribution is just a times
the position density in the continuum, one then recovers
the well known result in the continuum in d = 1 (upon
setting the diffusion constant D = 1) [1]. Note however
that, as in the case of the MFPT in earlier sections, the
continuus space result requires taking the scaling limit
r → 0, R → ∞, while keeping the product

√
r R fixed.

This is true in all dimensions. However, the lattice result

in (87) is valid for arbitrary r and arbitrary ~R and hence
has richer informations that are not accessible within the
continuum approach.
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As an example, we consider again the limit r → ∞,
i.e., large resetting rate. Taking this limit in Eq. (87) by
following the same procedure as in Section V C, one gets

PNESS
r (~R = a (m1,m2, . . . ,md)) ≈

Γ

(
d∑
i=1

|mi|+ 1

)
d∏
i=1

Γ(|mi|+ 1)

r−(|m1|+|m2|+...+|md|) . (90)

This means that as one goes further away from the ori-
gin, the position distribution decays exponentially as
∼ exp [− ln r (|m1|+ |m2|+ . . .+ |md|)] and the decay
length scales for large r as ∼ 1/(ln r). This large r result
can not be captured in the continuum limit.

VII. CONCLUSION

In this paper we have studied a single particle diffus-
ing on a d-dimensional lattice starting from a fixed ini-

tial position ~R0 and stochastically resetting to ~R0 with
rate r. Our main focus was on the mean first-passage
time (MFPT) to a target at the origin, as a function of

the resetting rate r and the initial position ~R0. We first
derived a general formula relating the MFPT to the lat-
tice Green’s function and then using it, found an exact
formula for the MFPT on a d-dimensional hypercubic
lattice. The previous known results were for diffusion in
continuous space which we recover from our more general
formula in the scaling limit: r → 0, R0 →∞, but keeping√
r R0 fixed. However, our exact formula lets us explore

a much wider parameter space, i.e., for different values of

r as well as ~R0, going beyond the continuum theory. One
such interesting result is that the MFPT, as a function

of r for fixed ~R0, diverges as r → 0 and r → ∞ with a
minimum in between, provided the starting point is not a
nearest neighbour of the target. In this case, the MFPT

diverges as a power law as r → ∞, i.e., 〈T 〉r(~R0) ∼ rφ,
but with an exponent φ = (|m1|+|m2|+. . .+|md|)−1 that

varies with the starting position ~R0 = a (m1,m2, . . . ,md)
(here a is the lattice spacing). In contrast, if the walker
starts from a nearest neighbour of the target, then the
MFPT drecreases monotonically with increasing r, ap-
proaching a universal limiting value 1 as r →∞, indicat-
ing that the optinal resetting rate in this case is infinity.
These interesting results on a lattice are not captured by
the continuum theory. We have also performed high pre-
cision numerical simulations on hypercubic lattices up
to 50 dimensions and find excellent matching with our
analytical predictions. For targets close to the starting
points, in the limit of high dimensions or large resetting

rates, 〈T 〉r(~R0) can also be obtained by a simple peda-
gogical Markov chain formulation.

Finally, in the absence of a target, we have also com-
puted exactly the position distribution in the nonequi-

librium stationary state that also displays interesting
regimes for large r which are not captured by the contin-
uum limit.

Our results thus demonstrate, within the context of a
single particle diffusion, that there are very interesting
lattice effects in the presence of a nonzero resetting rate
r. Since the continuum theory requries scaling the reset-
ting rate r → ra2 to zero as the lattice spacing a→ 0, it
misses many effects, in particular for large resetting rate
r, that are captured by the lattice computations. Since
many models of stochastic resetting have been studied in
continuous space in the literature, it would be natural to
study them on lattices to see if there are interesting ef-
fects due to the lattice structure of the underlying space.

There are other directions in which this work can be
extended. Here we focused on a single free particle on a
d-dimensional lattice. Recent studies have shown that if
N independent particles diffuse in continuous space start-

ing from a common initial position ~R0 and get simultane-

ously reset to ~R0, the system is driven at long times into a
nonequilibrium stationary state with dynamically emer-
gent correlations between particles [29–31]. Using tech-
niques developed in this paper, it would be interesting
to compute the stationary state for this simultaneously
resetting independent N -particle system that diffuse on
a lattice. One may expect new interesting lattice effects
on the mutual all-to-all correlations between the particles
in the stationary state, in particular in the limit r →∞
which is not captured by the continuum theory.
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Appendix A: The continuum limit of the lattice
MFPT in Eq. (33)

To take the continuum limit of Eq. (33), it is conve-
nient to start from the most general expression for MFPT
in (19) that reads

〈T 〉r(~R0) =
1

r

[
P̃0(~0,~0, r)

P̃0(~0, ~R0, r)
− 1

]
. (A1)
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For P̃0(~0, ~R0, r), it is now convenient to use the integral
representation (30) which reads

P̃0(~0, ~R0, r) =
1

(r + 2d)

∫ ∞
0

dt e−t
d∏
i=1

∫ π

−π

dki
2π

exp

[
2 t

(r + 2d)
cos(ki)

]
e−i

~k·~R0/a . (A2)

Next we make the change of variable ki = a qi. This gives

P̃0(~0, ~R0, r) =
ad

(r + 2d)

∫ ∞
0

dt e−t
d∏
i=1

∫ π/a

−π/a

dqi
2π

exp

[
2 t

(r + 2d)
cos(a qi)

]
e−i ~q·

~R0 . (A3)

As a→ 0, we expand cos(aqi) ≈ 1− a2q2
i /2 to rewrite this as

P̃0(~0, ~R0, r) ≈
ad

(r + 2d)

∫ ∞
0

dt e−rt/(r+2d)
d∏
i=1

∫ π/a

−π/a

dqi
2π

e−
a2t

(r+2d)
q2i e−i ~q·

~R0 . (A4)

Since a→ 0, the limits of the integrals can be pushed to ∓∞ to leading order and one can make use of the identity

d∏
i=1

∫ ∞
−∞

dqi
2π

e−σ
2 q2i /2−i~q·~R0 =

1

(σ
√

2π)d
e−R

2
0/2σ

2

. (A5)

This gives

P̃0(~0, ~R0, r) ≈
(r + 2d)d/2−1

(4π)d/2

∫ ∞
0

dt

td/2
exp

[
− r

r + 2d
t− (r + 2d)R2

0

4 a2 t

]
. (A6)

We next perform the integral using the following iden-
tity [27]∫ ∞

0

xν−1e−β/x−γ x = 2

(
β

γ

)ν/2
Kν

(√
4βγ

)
. (A7)

Using this identity in (A6) and setting r = a2 r̃ gives
finally

P̃0(~0, ~R0, r) ≈
Rν0

(2π)d/2 a2ν r̃ν/2
Kν

(
R0

√
r̃
)

(A8)

where ν = 1 − d
2 . This gives us the denominator in Eq.

(A1). To obtain the numerator we just take the limit
R0 → 0 in (A8) by using the small argument asymptotics
of the Bessel function in Eq. (36). Putting these results

together in Eq. (A1) and rescaling T = T̃ /a2, we obtain
our desired result in Eq. (34).
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