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Abstract – The one-point distribution of the height for the continuum Kardar-Parisi-Zhang
(KPZ) equation is determined numerically using the mapping to the directed polymer in a ran-
dom potential at high temperature. Using an importance sampling approach, the distribution is
obtained over a large range of values, down to a probability density as small as 10−1000 in the
tails. Both short and long times are investigated and compared with recent analytical predictions
for the large-deviation forms of the probability of rare fluctuations. At short times the agreement
with the analytical expression is spectacular. We observe that the far left and right tails, with
exponents 5/2 and 3/2, respectively, are preserved also in the region of long times. We present
some evidence for the predicted non-trivial crossover in the left tail from the 5/2 tail exponent
to the cubic tail of the Tracy-Widom distribution, although the details of the full scaling form
remain beyond reach.

Copyright c© EPLA, 2018

Introduction. – The (1+1)-dimensional Kardar-
Parisi-Zhang (KPZ) equation describes the non-linear
stochastic growth of an interface [1]. It is also relevant
in a wide variety of physical models ranging from di-
rected polymers in random media [1–7] to asymmetric
exclusion process models for the transport of interacting
particles [8–11] and has a number of experimental realisa-
tions [12–14]. The interface is described by a field h(x, t)
that denotes its height at the position x and at time t.
The KPZ equation of motion is

∂th = ν ∂2
xh +

λ0

2
(∂xh)2 +

√
D ξ(x, t), (1)

where ν > 0 gives the strength of the diffusive relax-
ation, λ0 > 0 is the coefficient of the non-linearity and
ξ(x, t) is a Gaussian white noise with zero mean and
〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′). From dimensional
analysis it is natural to introduce the following charac-
teristic scales of space x∗ = (2ν)3/(Dλ2

0), time t∗ =
2(2ν)5/(D2λ4

0) and height h∗ = 2ν
λ0

. For simplicity in
the following we will work in rescaled units: x/x∗ → x,

t/t∗ → t, h/h∗ → h. At large times t ≫ 1 it is known
that, due to the non-linearity, the interface moves with
a finite deterministic velocity v∞ which depends on the
initial condition.

In the last decades tremendous progress has been
achieved in obtaining exact results on the statistics of the
height fluctuations [2,15–17], e.g., of the centred height at
one space point defined as H(t) = h(x = 0, t)−v∞t+ 1

2 ln t.
This centring takes into account the solution in the case
of absence of noise, see eq. (9) in ref. [18]. In particular
the best studied case corresponds to a narrow wedge ini-
tial condition h(x, t = 0) = −|x|/δ with δ ≪ 1 which gives
rise at late times to the experimentally relevant curved
or droplet profile. In this case the fluctuations of H can
be expressed, for any time t, in terms of a Fredholm de-
terminant [6,7,19,20]. Despite this exact result, since the
Fredholm determinant is a complicated mathematical ob-
ject, it remains very challenging to obtain useful explicit
information about the statistics of H at a given time t. It
is known that at short time, t ≪ 1, the non-linear term in
eq. (1) is less important compared to the linear Laplacian
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term. In this limit the typical fluctuations of H are well
described by the Edwards-Wilkinson equation (i.e., eq. (1)
with λ0 = 0). Hence in the short-time limit the typical
fluctuations of H are of order ∼t1/4 and Gaussian. On
the other hand, at large time, t ≫ 1, the typical fluctu-
ations of order ∼t1/3 are described by the Tracy-Widom
(TW) distribution associated to the typical fluctuations of
the largest eigenvalue of random matrices belonging to the
Gaussian Unitary Ensemble (GUE) [21]. The TW distri-
bution has been observed experimentally in nematic liquid
crystals which exhibit KPZ growth laws [12,13]. More re-
cently there has been an increasing interest in computing
the probability of rare fluctuations of H away from its
typical values. The general problem of large deviations in
non-equilibrium situations is connected to the question of
defining the proper free energy and entropy functionals for
these systems, see refs. [22–24]. This large-deviation prob-
lem can be addressed both for short and large times. The
question of whether and how the tails evolve with time
is important for many models in the KPZ class. Here we
explore this issue numerically for the KPZ equation it-
self, and compare with recent analytical predictions. In
particular, thanks to a short-time expansion of the exact
Fredholm determinant formula, an explicit form for the
short-time distribution P (H, t), with t ≪ 1, has been ob-
tained [18]. It takes a large-deviation form:

P (H, t) ∼ c(t)e
− 1√

t
φshort(H)

, (2)

where c(t) is a time-dependent normalisation constant.
The exact form of φshort(H) is given in [18], its asymp-
totic behaviour, which can also be obtained using weak
noise theory [25], reads [18,25]

φshort(H) ≃

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4

15π
|H |5/2, H → −∞,

H2

√
2π

, |H | ≪ 1,

4

3
H3/2, H → +∞.

(3)

As expected, the typical fluctuations around H = 0 are
Gaussian, but the tails are asymmetric. In particular the
right tail, H → +∞, coincides exactly with the TW tail,
while the left tail is characterised by a different 4

15π |H |5/2

behaviour, different from the 1
12 |H |3 of the TW distri-

bution. The tail behaviours ∝ |H |5/2 (left) and ∝ H3/2

(right) seem to be quite robust with respect to different
initial conditions: indeed this has been obtained in the
regime of short times also for flat as well as for stationary
initial conditions albeit with different prefactors [25–28].
In addition the central part of the distribution depends on
the initial condition.

Exact results for the large deviations have also been
obtained in the regime of long times, t ≫ 1, for the
droplet initial condition. In particular P (H, t) displays
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Fig. 1: Distribution of P (H, t) for a short time t = 1/16 for
three different lengths L = 64, L = 128 and L = 256. The
solid line indicates the analytical result in eq. (2) obtained
in ref. [18]. The agreement between numerical and analytical
results is extremely good (on the left tail, down to values of
the order 10−800).

three different regimes [29]:

P (H, t) ∼

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

e−t2 Φ−(H/t), H ∼ O(t) < 0,

1

t1/3
f2

[

H

t1/3

]

, H ∼ O(t1/3),

e−t Φ+(H/t), H ∼ O(t) > 0,

(4)

where f2(z) is the GUE TW distribution. The tails
have also been computed explicitly. The right tail rate
function [29]

Φ+(z) =
4

3
z3/2 (5)

coincides exactly with the TW tail as already observed
in the short-time regime. The left tail rate function was
predicted in [30] to be

Φ−(z) =
4

15π6
(1 − π2z)5/2 − 4

15π6
+

2

3π4
z − 1

2π2
z2. (6)

Note that eq. (6) exhibits a crossover between two distinct
tail behaviours of P (H, t) for large negative H : when z =
H
t → 0 one has Φ−(z) ≃ |z|3/12 such that from the
first line of eq. (4) one recovers the left tail of the TW

distribution, i.e., P (H, t) ∼ e−|H|3/(12t). On the other
hand, when z = H

t → − ∞ one has Φ−(z) ≃ 4
15π |z|5/2,

which coincides with the left tail of the short-time large
deviation given in the first line of eq. (3), i.e., P (H, t) ∼
e− 4

15π |H|5/2/
√

t. The results for the left tail were rigorously
confirmed by a different approach [31], which is based on
a correspondence of the KPZ equation to the Airy point
process.

67004-p2



High-precision simulation of the height distribution for the KPZ equation

L
~

L
~

0

0

1

1
d

x

y

Fig. 2: (Colour online) Setup of the lattice with examples of
possible bonds of the polymer (small arrows) and one example
of a polymer (thick line). All polymers start at (0, 0) and end
in (L̃, L̃) and, therefore, consist of L = 2L̃ bonds.

For intermediate time, t ∼ 1, only the cumbersome
Fredholm determinant formula is available and no ex-
plicit information is known for large fluctuations of H .
Indeed numerical results focused only on the typical fluc-
tuations [6,18] as the study of the tails requires a huge
number of samples.

In this paper we use importance sampling techniques
and study numerically the full large deviations of H both
for short and intermediate time. This allows us to explore
the tail statistics with an unprecedented precision of the
order of 10−1000. In the short-time regime our results per-
fectly agree with the theoretical prediction in eq. (3) (see
fig. 1) and the asymptotic behaviour of the tails is clearly
seen in fig. 3, both for the left tail (top panel) and the right
tail (bottom panel). For the intermediate times our results
are consistent with the following scenario (see fig. 4); i) the
right tail P (H, t) ∼ exp(− 4

3H3/2/
√

t) remains valid at
all times; ii) the left tail is well described by Φ−(z) for
large negative z = H/t, i.e., the 5/2 exponent remains
valid at all times; iii) the small z behaviour of Φ−(z) and
the typical fluctuations of H have not reached yet the TW
limiting behaviour. Larger times than the ones accessible
in our simulations are needed to observe the large time TW
behaviour and to fully confirm the form (6) for Φ−(z).

Model and algorithm. – There is a standard map-
ping between the height in the KPZ and the free energy
of a directed polymer at high temperature embedded in a
1+1 random potential [6,32]. For a polymer of size L = 2L̃
bonds, the realisation of the disordered potential is given
by a two-dimensional lattice of (L̃ + 1) × (L̃ + 1) ran-
dom numbers V [x][y] (x, y = 0, 1, . . . , L̃) drawn from a
Gaussian distribution N(0, 1), i.e., with mean 0 and vari-
ance 1. We consider all polymers which start at (0,0)
and end at (L̃, L̃), such that the polymer continues onto

neighbouring sites of the lattice given that the “diagonal”
direction d = x+ y increases by one. The geometric setup
is shown in fig. 2.

A polymer visiting a set P of sites has an energy

EV (P ) =
∑

(x,y)∈P

V [x][y]. (7)

We are interested in the canonical ensemble, where each
polymer in the disorder landscape V ≡ {V [x][y]} is con-
nected to a heat bath with temperature T and exhibits
a Boltzmann weight

wV (P ) = e−EV (P )/T . (8)

Therefore, for a given disorder realisation V the partition
function Z(V ) is given by

Z(V ) =
∑

P

wV (P ), (9)

where the sum runs over all possible polymers with re-
quirements as explained above. Due to the requirement
that the polymer extends only in increasing diagonal
value d, the partition function can be calculated recur-
sively using

Z[x][y] = (Z[x − 1][y] + Z[x][y − 1])e−V [x][y]/T , (10)

where Z[x][y] is the partition function of the polymer
starting at (0, 0) and ending at (x, y). Thus, the partition
function defined in eq. (9) is given by Z(V ) = Z[L̃][L̃]
and requires O(L̃2) steps to be computed. The mapping
between the free energy of the directed polymer at tem-
perature T and the KPZ height at time t reads

H = log(Z(V )/Z), (11)

t =
2L

T 4
, (12)

where Z is the disorder average partition function. We are
interested in the distribution P (H, t) over the disorder.

The importance sampling algorithm. In principle one
could obtain an estimate of P (H, t) numerically from di-
rect sampling: One generates many disorder realisations
(say ∼106). For each realisation Z(V ) is computed. Then
Z is estimated by averaging over all samples, and the dis-
tribution is the histogram of the values of H according to
eq. (11). Nevertheless, this limits the smallest probabili-
ties which can be resolved, e.g., 10−6.

Therefore, we follow here a different approach. To es-
timate P (H, t) for a much larger range, where probabili-
ties (or corresponding densities) smaller than, e.g., 10−1000

may appear, we will use a more powerful approach, called
importance sampling as discussed in refs. [33,34]. This
approach has been successfully applied in many cases to
obtain the tails of distributions arising in equilibrium and
non-equilibrium situations, e.g., the number of compo-
nents of Erdős-Rényi (ER) random graphs [35], the parti-
tion function of Potts models [36], ground-state energies of
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directed polymers in random media [37], the distribution
of free energies of RNA secondary structures [38], some
large-deviation properties of random matrices [39,40], the
distribution of endpoints of fractional Brownian motion
with absorbing boundaries [41], the distribution of work
performed by an Ising system [42], or the distributions of
area and perimeter of random convex hulls [43,44].

To keep the paper self-contained we now briefly outline
the method. Note that the approach has already been
applied, in a slight variant, to directed polymers in dis-
ordered media, at zero temperature [37]. The basic idea
is to sample the different disorder realisations V with an
additional exponential bias exp(−H(V )/θ) with θ as ad-
justable parameter. Note that if θ > 0 the configurations
with a negative H become more likely, conversely for θ < 0
the configurations with a positive H are favoured. A stan-
dard Markov-chain Monte Carlo simulation is then used
to sample the biased configurations [45,46]. At each time
step a new disorder realisation V ∗ is proposed by replac-
ing on the current realisation V a certain fraction r of
the random numbers V [x][y] by new Gaussian numbers.
The new disorder realisation is then accepted with the
Metropolis-Hastings probability

pMet = min{1, e−[H(V ∗)−H(V )]/θ}, (13)

otherwise the old configuration is kept [47]. Note that the
average partition function Z appearing in the definition of
H (11) drops out of the Metropolis probability, i.e., it is
not needed here. By construction, the algorithm fulfils de-
tailed balance. Clearly the algorithm is also ergodic, since
within a sufficient number of steps, each possible realisa-
tion may be constructed. Thus, in the limit of infinitely
long Markov chains, the distribution of biased disorder
realisations will follow the probability

qθ(V ) =
1

Q(θ)
Pdis(V )e−H(V )/θ, (14)

where Pdis(V ) is the original disorder distribution (here
a simple product of independent Gaussians) and Q(θ) =
∑

V Pdis(V )e−H(V )/θ is the normalisation factor. Note
that Q(θ) also depends on L and T , which we omit here
in the notation for brevity. Q(θ) is generally unknown
but can be determined, see below. Thus, the output of
this Markov chain allows to construct a biased histogram
Pθ(H, t). In order to get the correct histogram P (H, t)
one should re-weight the obtained result:

P (H, t) = eH/θQ(θ)Pθ(H). (15)

Hence, the target distribution P (H, t) can be estimated,
up to a normalisation constant Q(θ). For each value of the
parameter θ, a specific range of the distribution P (H, t)
will be sampled: using a positive (respectively, negative)
parameter allows to sample the region of a distribution at
the left (respectively, at the right) of its peak.

Technical details. To sample a wide range of val-
ues of H , one chooses a suitable set of parameters
{θ−Nn , θ−Nn+1, . . . , θNp−1, θNp}, Nn and Np being the
number of negative and positive parameters, to access the
large deviation regimes (left and right). The normalisa-
tion constants Q(θ) are obtained by first computing the
histogram using direct sampling, which is well normalised
and corresponds to θ = ∞. Then, for θ+1, one matches
the right part of the biased histogram with the left tail of
the unbiased one and for θ−1, one matches the left part
of the biased histogram with the right tail of the unbiased
one. Similarly one iterates for the other values of θ and
the corresponding relative normalisation constants can be
obtained.

The main drawback of our method is that as for any
Markov-chain Monte Carlo simulation, it has to be equi-
librated and this may take a large number of steps. To
speed the simulation up, parallel tempering was used [48].
Here, a parallel implementation using the Message Passing
Interface (MPI) was applied, such that each computing
core was responsible in parallel for an independent reali-
sation Vi(s) at a given θi. After 1000 Monte Carlo steps,
one parallel-tempering sweep was performed and the pa-
rameters θi and θi+1 were exchanged between two comput-
ing cores. The parameter r is fixed with the criterion that
the empirical acceptance rate of the parallel-tempering ex-
change step is about 0.5 for all pairs of neighbouring θi.
A pedagogical explanation and examples of this sampling
procedure can be found in ref. [49].

Results. – We have performed extensive numerical
simulations [50] for polymer lengths L = 64, 128 and
256 and considered three different times corresponding to
short times t ≪ 1 (t = 1/16, 1/4) and (quite) large times
(t = 32). In the numerical simulations the temperatures
T were chosen according to eq. (12).

For each set of values L and T , the numbers Nn and Np

and the values of parameters {θ−Nn, . . . , θNp} were deter-
mined from numerical experiments. For small sizes L = 64
the number Nn +Np of parameters was typically about 30
with values, e.g., θ ∈ [−0.5, −0.015] ∪ [0.06, 0.5]. For the
largest size L = 256 up to Nn +Np = 117 different param-
eter values in the range [−0.013, −0.2]∪ [0.3, 1] were used.
Depending on the value of θ, the Markov-chain variation
parameter r ranged between 3.6%(large |θ|, i.e., θ = −0.2
and θ = 1) and 0.018%(smallest |θ|, i.e., θ = −0.013 here).

We first study the distribution P (H, t) computed with
the importance sampling algorithm explained above for
the short time t = 1/16. The results are shown in fig. 1
for different lengths L = 64, 128 and 256 and we compare
the numerical results with the analytical result given in
eq. (2). The agreement for negative H is very accurate for
all lengths, over 800 decades in probability. For positive H
slight deviations are visible, but they become smaller with
increasing the length L of the polymer, indicating a con-
vergence to the analytical results as well. The behaviour
of the extreme left and right tails is also shown in fig. 3.
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Fig. 3: Top: blowup of the left tail of the data shown in fig. 1
compared to the analytical prediction given in the first line of
eq. (3). Bottom: blowup of the right tail data shown in fig. 1
compared to the analytical prediction given in the third line
of eq. (3).

In fig. 4 the distributions P (H, t) are shown for increas-
ing times t = 1/16, t = 1/4 and t = 32 together with
the Tracy-Widom and the short-time distributions. Here
we want to compare only the distribution shapes and,
therefore, we have normalised all the curves to have mean
zero and unit variance. Regarding the relatively large time
t = 32 in the typical region (fig. 4, inset) the numerical
data clearly differ from the short-time predictions and are
closer to the Tracy-Widom distribution. The right tail is
very well described by the behaviour predicted in eq. (4)
and eq. (5) but the far left tail clearly differs from the
Tracy-Widom tail.

To investigate further the long-time behaviour in the
negative H tail, we compare the result for t = 32 directly
with the analytic result in eq. (6). For better visibility,
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Fig. 4: Distribution of P (H, t) for short (t = 1/16), medium
(t = 1/4) and longer time (t = 32) for the longest length
L = 256. All data are normalised to mean zero and variance
one. The solid line shows the Tracy-Widom distribution, the
dashed line the short-time result given in eq. (2) with t = 32.
The inset magnifies the region of high probability for the t = 32
case and the two analytical results.
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Fig. 5: Logarithm of the left tail of P (H, t) for a longer time
(t = 32) and for the longest length L = 256, shown in double-
logarithmic scale. The solid line shows the analytical predic-
tion of eq. (6). The broken line shows the resulting limiting
power law: |H |3/(12t) for very large H , and 4

15π
|H |5/2/

√
t for

moderately large H .

− ln(P (H, t)) is shown in fig. 5 together with the analytic
prediction of eq. (6). For the largest values of −H acces-
sible here, a convergence towards the power law (−H)5/2

can be observed. Note that the limiting (−H)3 behaviour
for small values of z = H/t is not visible here. This is
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presumably because this regime is too close to the peak
of the distribution. Nevertheless, a small bending is visi-
ble in the log-log plot, indicating an increase of the power
towards 3 for small values of −H .

To summarise, a large-deviation sampling approach
has been used to measure the distribution P (H, t) of
heights for the KPZ equation with a droplet initial
condition. This was achieved using a lattice directed
polymer model, whose free energy converges in the high-
temperature limit to the height of the continuum KPZ
equation. This allowed us to determine numerically the
probability distribution of the height over a large range
of values, allowing for a precise comparison with the ana-
lytical predictions. We find that the agreement with the
short-time large-deviation function φshort(H) predicted by
the theory [18] is spectacular, even very far in the tails.
Although we cannot strictly reach the large time limit,
our intermediate time results are consistent with both the
|H |5/2 (negative) and H3/2 tails predicted by the the-
ory [30]. Our conclusion is that these far tails are mostly
stable in time.
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