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Atypically large fluctuations in macroscopic non-equilibrium systems continue to attract interest.
Their probability can often be determined by the optimal fluctuation method (OFM). The OFM
brings about a conditional variational problem, the solution of which describes the “optimal path”
of the system which dominates the contribution of different stochastic paths to the desired statistics.
The OFM proved efficient in evaluating the probabilities of rare events in a host of systems, but
a theoretically predicted optimal path was observed only once: in stochastic simulations of the
current fluctuations in a lattice gas on a ring. Here we focus on the one-point height distribution
of the Kardar-Parisi-Zhang interface, where the optimal paths, corresponding to the distribution
tails at short times, can be predicted analytically. Using the mapping to the directed polymer in a
random potential at high temperature, we obtain “snapshots” of the optimal paths in Monte-Carlo
simulations which probe the tails with an importance sampling algorithm. For each tail we observe
a very narrow “tube” of height profiles around a single optimal path which agrees with an analytical
prediction. The agreement holds even at long times, supporting earlier assertions of the validity of
the OFM in the tails well beyond the weak-noise limit.

Non-equilibrium behaviors of stochastic macroscopic
systems are ubiquitous in nature. One interesting group
of questions about such systems concern atypically large
fluctuations, which manifest themselves as tails of proba-
bility distributions of different fluctuating quantities. Al-
though a universal description of the tails is not likely to
emerge, a great progress has been achieved in the last two
decades in particular systems. Much of the progress has
been due to a method which emerged in different areas
of physics under different names: the optimal fluctuation
method (OFM), the instanton method, the weak noise
theory, the macroscopic fluctuation theory, etc. A key
ingredient of this method is a saddle-point evaluation
of the path integral of the stochastic process in ques-
tion, conditioned on the specified large deviation. This
evaluation, which employs a model-dependent small pa-
rameter (colloquially called “weak noise”), brings about
a conditional variational problem. Its solution – a de-
terministic field, evolving in time – describes the “op-
timal path”: the most probable history of the system
which dominates the contribution to the desired statis-
tics. The OFM has been proved efficient in a host
of non-equilibrium problems: turbulence and turbulent
transport [1–6], stochastic surface growth and related
systems [7–25], diffusive transport in the absence [26–
52, 52, 53, 53, 54, 54, 55, 55, 56, 56–59] and in the pres-
ence [60–68] of particle reactions, etc. However, we are
aware only of one model system – fluctuations of inte-
grated current in a lattice gas on a ring – where a theo-
retically predicted optimal path was actually observed in
stochastic simulations [36, 38]. The system in question is
in equilibrium, and a non-equilibrium behavior (includ-
ing a singularity in the large deviation function of current

[30, 31, 38] at a critical value of the current) results from
conditioning on a time-integrated current.

Here we report (to our knowledge, for the first time)
the observation of optimal paths in an intrinsically non-
equilibrium system: the paradigmatic Kardar-Parisi-
Zhang (KPZ) equation in 1+1 dimension [69]:

∂th = ν∂2
xh+ (λ/2) (∂xh)2 +

√
D ξ(x, t), (1)

where ν is the diffusivity, and we can set the non-linearity
coefficient λ > 0 without loss of generality. Equation (1)
describes the evolution of the height h(x, t) of an inter-
face driven by the Gaussian noise

√
Dξ(x, t) which has

zero mean and is delta-correlated: 〈ξ(x1, t1)ξ(x2, t2)〉 =
δ(x1 − x2)δ(t1 − t2). The KPZ equation has been ex-
tensively studied [69–73]. At long times, the interface
width was found to grow as t1/3, while the lateral corre-
lation length grows as t2/3. The exponents 1/3 and 2/3
are the hallmark of a whole universality class of the 1+1
dimensional non-equilibrium growth [70–76].

In the last decade the studies of the KPZ equation
and related systems have seen spectacular developments
[73–76]. They shifted from the interface roughness and
correlation function to more detailed characteristics such
as the full probability distribution of the interface height
at a point, P (H, t). Remarkably, exact representations
were derived for P (H, t) for the KPZ equation on the
line |x| <∞ for several basic initial conditions: “droplet”
[77–80], flat [81], stationary [82, 83], and some of their
combinations. At long times and for typical height fluc-
tuations, P (H, t) converges to the Tracy-Widom (TW)
distribution for the Gaussian unitary ensemble (GUE) of
random matrices [84] for the droplet, to the TW distri-
bution for the Gaussian orthogonal ensemble (GOE) [85]
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for the flat interface, and to the Baik-Rains (BR) distri-
bution [86] for the stationary interface. These theoretical
predictions were confirmed in ingenious experiments with
liquid-crystal turbulent fronts [87], see also Ref. [88].
Atypically large fluctuations – the tails of P (H, t) – be-
have differently and are unrelated to the TW and BR
distributions. These tails were determined, for the three
basic initial conditions and for several other initial condi-
tions, by the OFM [9–11, 14–16, 18, 20]. The OFM pre-
dictions were verified in all cases where the corresponding
tails were also extracted from exact representations.

The most thoroughly studied is the droplet case, for
which the OFM predicted the following tails [15]:

− lnP(H, t) '


8
√

2 ν
3Dλ1/2
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t1/2
, H → +∞, (2)
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√

2λ
15πD

|H|5/2

t1/2
, H → −∞. (3)

The higher tail (2) coincides with the corresponding tail
of the GUE TW distribution, while the lower tail (3)
is different from the GUE TW tail (the latter scales as
|H|3/t). Using the exact representations, it was shown
that the tails (2) and (3) are observed both at short times
[89] and at long times [90–93]. Furthermore, these tails
have been recently verified in rare-event stochastic sim-
ulations [94] which employed a standard mapping to (a
discrete version of) the directed polymer in a random po-
tential at high temperature [69, 70, 72, 73, 95, 96]. The
problem of the KPZ one-point height statistics in 1+1
dimension for the droplet initial condition can therefore
serve as a good test case for the studies of optimal paths
in spatially explicit non-equilibrium stochastic systems
conditioned on large deviations. Here we use the di-
rected polymer mapping and the importance sampling al-
gorithm [94] to obtain “snapshots” of the optimal paths.
As in the previous work [94], our simulations probe the
distribution tails with reaching the probability densities
as small as 10−1000. For each of the two tails we observe
a very narrow tube of height profiles around a single op-
timal path which agrees with an analytical prediction.
The agreement holds even at relatively large times, sup-
porting earlier assertions of the validity of the OFM in
the tails well beyond the weak-noise limit.

1. Optimal path: theoretical predictions for h(x, t/2).
Let us recall the OFM formulation of the problem of
one-point KPZ height statistics [9, 14, 15]. For typ-
ical fluctuations, the OFM relies on the smallness of
the dimensionless parameter ε = (t/tNL)1/2 � 1, where
tNL = ν5/(D2λ4) is the characteristic nonlinear time of
the KPZ equation. A saddle-point evaluation of the path
integral, corresponding to Eq. (1), leads to a variational
problem for the action. The resulting Euler-Lagrange
equations can be recast in the Hamiltonian form. In the
rescaled variables τ/t → τ , x

√
νt → x, and λh/ν → h,

the Hamilton’s equations are

∂τh = ∂2
xh+ (1/2) (∂xh)2 + ρ, (4)

∂τρ = −∂2
xρ+ ∂x (ρ∂xh) , (5)

where ρ(x, τ) is the “momentum” density field, canon-
ically conjugate to h(x, τ); it describes the optimal re-
alization of the noise ξ(x, t). In Ref. [15] a parabolic
initial condition h(x, 0) = −x2/L was considered. The
droplet case follows from these results in the limit of
L → 0. The condition h(x = 0, τ = t) = H translates
into ρ(x = 0, τ = t) = Λ δ(x); the Lagrange multiplier
Λ is ultimately expressed through H. Once the OFM
problem is solved, one can calculate the (rescaled) action
s = s(H) = (1/2)

∫ t
0
dτ
∫
dx ρ2(x, τ) and obtain, in the

original variables,

− lnP(H, t) ' ν5/2

Dλ2
√
t
s

(
λH

ν

)
. (6)

As of present, the exact optimal path – the exact solu-
tion of the OFM problem – is unavailable. Some asymp-
totic solutions were obtained in Ref. [15]. These include
approximate optimal paths for very large positive H and
for very large negative H, which determine the tails (2)
and (3), respectively. Let us consider “snapshots” of
these asymptotic solutions at τ = t/2. For very large
positive H one obtains [15]
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t
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'


H

2
−
√

2H
λt
|x|, |x| ≤

√
λHt/2, (7)

−x2/λt, |x| >
√
λHt/2, (8)

see Fig. 1 a. The optimal profile is independent of the
noise magnitude D. In the leading order in λH/ν � 1, it
also does not depend on the diffusivity ν. Equation (7)
describes a snapshot of two outgoing “ramps” of h(x, τ),
which correspond to a stationary “antishock” of the in-
terface slope v(x, τ) = ∂xh(x, τ) at x = 0, sustained by a
very narrow stationary pulse of ρ [8, 9, 14, 15]. The so-
lution (8) describes the noiseless (ξ = 0) evolution of the
KPZ equation (1) starting from the droplet initial condi-
tion. The solutions (7) and (8) are continuous with their
first derivatives at the moving boundaries between them
[15]. At τ = t/2 these boundaries are at |x| =

√
λHt/2.

If one accounts for the diffusion, the corner singularity of
h(x, t/2) at x = 0 is smoothed [14]:

h
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2
, (9)

For very large negative H the optimal path is quite
different. Using the results of Ref. [15], we obtain

h
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√
2λ|H|t
π ,(10)
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, |x| ≥

√
2λ|H|t
π ,(11)
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FIG. 1. (a) Analytical predictions: Eqs. (7) and (8) (a) and
(10) and (11) (b) for the optimal interface shape at time t/2,
conditioned on reaching a large positive (a) and negative (b)
height H (denoted by the fat point) at x = 0 at time t. x is

measured in units of
p
λHt/2 (a) and in units of

p
2λ|H|t/π

(b). h is measured in units of H. The dashed lines, −x2/2
(a) and −2x2/π2 (b), describe in the corresponding units the
zero-noise KPZ interface at time t/2.

where the function h(z) is defined parametrically, z(u) =
1 + u arctanu, h(u) = 1 + 2

π

[
u+ (u2 − 1) arctanu

]
, 0 ≤

u < ∞. Again, h (x, τ) does not depend on D and, for
the very large λ|H|/ν, on ν. Here h(x, t/2) exhibits an
extended flat region, see Fig. 1 b. As one can see, the
optimal paths for large positive and negative H are strik-
ingly different.
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FIG. 2. A realization of the directed polymer (0, 0)→ (L,L).
The arrows indicate samples for possible directions of the
polymer for some lattice sites.

2. Directed polymer mapping. Now let us recall the
discrete version of the mapping between the KPZ height
h(x, t) and the free energy of a directed polymer in a
two-dimensional random potential at high temperature
T [78]. Consider all directed polymers which start at
the point (0, 0) and end at the point (L,L) of a square
lattice indexed by integers (i, j) which run from 0 to L,
as shown in Fig. 2. The value of the potential V at each

lattice point is normally distributed with zero mean and
unit variance. Introduce the new variables τ̂ = i+ j and
x̂ = (i− j)/2. The free energy Z(i, j) of a given random
configuration of the potential, Z(i, j) = Ẑ[(i−j)/2, i+j],
obeys the exact recursive equation [78]

Ẑ (x̂, τ̂ + 1)=
[
Ẑ

(
x̂− 1

2
, τ̂

)
+ Ẑ

(
x̂+

1
2
, τ̂

)]
e−

V (x̂,τ̂+1)
T ,

(12)
where 〈V (x̂, τ̂)V (x̂′, τ̂ ′)〉 = δx̂x̂′δτ̂ τ̂ ′ , and δx̂x̂′ and δτ̂ τ̂ ′

are Kronecker deltas. Let Z∗ (x̂, τ̂) = 2−τ̂ Ẑ (x̂, τ̂). The
mapping to the continuous Eq. (1) is achieved via a trun-
cated Taylor expansion of all the discrete quantities and
exp(−V/T ) in Eq. (12). For example,

Z∗(x̂−1
2
, τ̂) = Z∗(x̂, τ̂)−1

2
∂x̂Z

∗(x̂, τ̂)+
1
8
∂2
x̂Z
∗(x̂, τ̂)+. . . .

(13)
To justify these expansions, we use strong inequalities
L � 1 and T � 1. This procedure approximates the
discrete Eq. (12) by the stochastic heat equation

∂τZ
∗ =

1
8
∂2
xZ
∗ − ξ

T
Z∗, (14)

where we dropped the hats of x̂ and τ̂ . The (now
continuous) noise term ξ is delta-correlated in x and
τ . The initial condition is Z∗(x, 0) = δ(x). The
desired mapping is given by the relations h(x, τ) =
ln[Z∗(x, τ)/〈Z∗(0, τ)〉], λ = 1/4, ν = 1/8, D = T−2 and
t = 2L [78]. The characteristic nonlinear time of the
KPZ equation, tNL = ν5/(D2λ4), becomes T 4/27.

3. Importance sampling algorithm. To obtain re-
alizations of the random field V which correspond to
extreme values of H = H(V ), we do not sample the
random field according to its natural Gaussian prod-
uct weight G(V ), but according to the modified weight
P (V ) ∼ G(V ) exp(−H/Θ). Θ is an auxiliary “temper-
ature” parameter, which allows us to shift the peak of
distributions to smaller than (Θ > 0 close to zero) or
larger than (Θ < 0 close to zero) typical values. The ran-
dom realizations cannot be generated directy according
to the weight P (V ). Instead we use a standard Markov-
chain approach with the Metropolis-Hastings algorithm
[97], where the configurations of the Markov chain are the
random realizations. By sampling for different values of
Θ and combining and normalizing the results, H can be
sampled over a larger range of the support [94], down to
probabilities like 10−1000. For details of the approach,
see Refs. [94, 98, 99]. Here we extend the approach by
storing regularily during the simulation (after equilibra-
tion) random configurations sampled at various values of
Θ. We also extend the simulations to smaller values of
H. For configurations exhibiting corresponding values of
H of interest we then can analyze h(x, t/2).

4. Simulation results and comparison with theory. In
our first series of simulations we chose L = 27 and
T 4 = 213. Although ε = (t/tNL)1/2 = 2 is not small,
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the simulations of Ref. [94] confirmed the validity of
the OFM for the whole distribution P(H, t). One can
expect, therefore, that the OFM predictions of the op-
timal paths will be accurate. This is indeed what our
simulations show. Figure 3 is a result of processing of
10 simulated configurations at τ = t/2, conditioned on
reaching a large positive H (close to 21.9) at τ = t. They
appear in the natural ensemble with a probability near
10−200 [94]. Instead of showing the 10 actual profiles, we
only presented the profile averaged over the realizations
and the error bars. As one can see, the error bars are
strikingly small, implying a very narrow tube of stochas-
tic trajectories around the optimal path. Furthermore,
this optimal path agrees very well with the leading-order
(zero-diffusion) analytical prediction (7) and (8), and re-
markably well with the finite-diffusion expression (9).
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-10
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10

20

x

h

FIG. 3. The optimal path at τ = t/2, conditioned on a large
positive height H (close to 21.9, the fat point) at τ = t for
T 4 = 213 and L = 27. The symbols with error bars show
the results of 10 realizations. The lower solid line is the
zero-diffusion solution (7). The higher solid line is the finite-
diffusion solution (9). Dashed line: the parabola (8).

Figure 4 a shows 10 sampled configurations at τ = t/2,
conditioned on a large negative H (close to -31.5) at
τ = t. They appear in the Gaussian random ensem-
ble with a probability near 10−1000. Here too we only
presented the average profile with error bars. Again, the
error bars are very small, so that the tube of stochastic
paths around the optimal path is very narrow, clearly in-
dicating the presence of a well-defined optimal path. The
profile exhibits an extended flat region, as predicted by
Eq. (10). The quantitative agreement with the leading-
order zero-diffusion prediction (10) and (11) is fairly good
[100]. It should further improve if one solves Eqs. (4)
and (5) for this H numerically, rather than rely on the
leading-order asymptotic at |H| � 1.

As we already mentioned, the OFM correctly predicts
the leading-order tails (2) and (3) at arbitrary long times
[90–93]. Do the optimal paths still dominate the contri-
bution to the height probability at long times? To an-
swer this question we simulated the directed polymer at
much lower temperature, T = 2, when ε = (t/tNL)1/2 =
105.5 � 1. At this temperature the continuous stochastic
heat equation (14) is not expected to accurately approxi-
mate the exact recursive equation (12). However, we can

(a)
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FIG. 4. The optimal path at τ = t/2, conditioned on a large
negative height H (the fat point) at τ = t and L = 27. The
symbols with error bars show the results of 10 realizations.
The solid line is the analytically predicted plateau (10) and
(11). The dashed line is Eq. (11). (a): T 4 = 213 and H '
−31.5. (b): T = 2 and H ' −60.

still expect an emergence of a well-defined optimal path
if we condition the discrete polymer on a large deviation
of is free energy. This is indeed what our simulations
clear show, see Fig. 4 b. These configurations appear in
the Gaussian random ensemble with a probability near
10−160. Again, the error bars are very small, implying a
well-defined optimal path. The quantitative agreement
with Eqs. (10) and (11) is still fair, although h decreases
with |x| at large |x| faster than predicted. This latter
effect reflects a systematic difference in the behaviors of
the deterministic solutions of the discrete equation (12)
and of its continuous approximation (14).

5. In conclusion, the problem of one-point height
statistics of the KPZ equation, that we considered here,
illustrates two general principles. First, the optimal path
of a time-dependent stochastic field, conditioned on a
large deviation, is a real phenomenon and not merely a
convenient mathematical tool. Second, the optimal path
can persist, and the OFM can be applicable, in the dis-
tribution tails, well beyond the weak-noise limit. From
a broader perspective, our findings extend previous ob-
servations of optimal paths in low-dimensional noisy dy-
namical system out of equilibrium [101–105] to the realm
of time-dependent stochastic fields.
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