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We study increasing subsequences (IS) for an ensemble of sequences given by permutation of numbers
{1, 2, . . . , n}. We consider a Boltzmann ensemble at temperature T . Thus each IS appears with the corre-
sponding Boltzmann probability where the energy is the negative length −l of the IS. For T → 0, only ground
states, i.e. longest IS (LIS) contribute, also called Ulam’s problem. We introduce an algorithm which allows
us to directly sample IS in perfect equilibrium in polynomial time, for any given sequence and any tempera-
ture. Thus, we can study very large sizes. We obtain averages for the first and second moments of number
of IS as function of n and confirm analytical predictions. Furthermore, we analyze for low temperature T the
sampled ISs by computing the distribution of overlaps and performing hierarchical cluster analyses. In the
thermodynamic limit n → ∞ the distribution of overlaps stays broad and the configuration landscape remains
complex. Thus, Ulam’s problem exhibits replica symmetry breaking. This means it constitutes a model with
complex behavior which can be studied numerically exactly in a highly efficient way. This is in contrast to
other models, where RSB becomes exponentially irrelevant in the thermodynamic limit, like random XORSAT,
or models where RSB remains relevant, like spin glasses or NP-hard optimization problems, but where no fast
exact algorithms are known.

(Introduction) The mathematician Stanisłav Ulam was also
a well-known pioneer in Computer simulations. One of the
problems he studied numerically, back in the 1950s, was [1]
the scaling of the length L of the longest increasing sub-
sequence (LIS) [2] of random permutations of n numbers.
Based on the knowledge [3] that the average length increases
at least like the square root of n, he proposed that the average
length scales as 〈L〉 = c

√
n with c ≈ 1.7. In the meantime,

〈L〉 = 2
√
n for n → ∞ has been proven [4]. Also the dis-

tribution P (l) of maximum lengths has been studied analyti-
cally [5–7] and it was found [8] that the central part is given
by the Tracy-Widom distribution. This was confirmed numer-
ically by large-deviations simulations [9], and also considered
for other sequence ensembles [10]. Furthermore, the expec-
tation values of the number of IS of a certain length [11] and
of all increasing subsequences (IS) [12] have been obtained
analytically. The actual distribution of the number of LIS was
obtained numerically over a large range of the support again
by applying large-deviation algorithms [13].

As a tool, the calculation of LIS finds also applications out-
side mathematics, like in data analysis [14], financial fraud
detection [15], or sequence alignment in bioinformatics [16].

In spite of these connections to many fields, to our knowl-
edge, the behavior of IS and LIS was studied so far surpris-
ingly only with respect to the length and to the exponentially
growing number of increasing subsequences. Thus, we are
not aware of any study, where the actual structure of the expo-
nentially large IS configuration space has been studied.

Such questions about the phase-space organization lie at
the heart of the statistical mechanics of complex systems like
glasses, spin glasses, machine learning or optimization prob-
lems [17–25]. One is interested whether the configuration
space is rather simple, like for a ferromagnet, often coined
as replica symmetric, or whether it is complex with a hierar-
chical organization of phase space coined as replica symmetry
breaking (RSB), as it appears for mean-field spin glasses [26].

In most cases, analytical solutions cannot be obtained, so
one has to use computer simulations [27]. Unfortunately, all
standard models which exhibit a complex RSB-like behavior,
like spin glasses, are numerically very hard to treat. Hence,
only rather limited system sizes could be considered when
performing equilibrium sampling, even when using special
parallel computers like JANUS [28]. Note that for combi-
natorial optimization problems like the Satisfiability problem,
in some cases efficient algorithms exist [29]. But they allow
only to find some solution, i.e., this sampling is not controlled.
Thus, these algorithms do not allow to sample the configu-
ration space in equilibrium which is necessary to study the
configuration-space structure. For this purpose one has to use
Monte Carlo Markov-chain sampling, which requires equili-
bration and is slow therefore. Note, the XORSAT problem can
be sampled polynomially [30–32], but only when the energy
is strictly zero. The model exhibits one-step RSB, but due to
exponentially many clusters, it leads to a trivial distribution of
overlaps in the thermodynamic limit. For directed polymers
in random media, a fast polynomial sampling is possible ev-
erywhere [33–35]. Here, a complex RSB behavior was found
[36], but only for ensembles with correlations in the disorder.

Here we introduce an algorithm which allows one to count
the number of IS for any given length l as well as sampling
IS exactly for any given distribution which depends only on
the IS length l, in particular for any given length the sampling
is uniform. Both calculation of the numbers and the sampling
can be performed in polynomial time, which allows us to treat
large systems exactly. We study the sequence ensemble of ran-
dom permutations, which does not exhibit correlations and is
the classical and most-studied ensemble for IS and LIS. Our
results indicate that the structure of the configuration space
exhibits properties of replica-symmetry breaking, i.e., a broad
distribution of overlaps and a hierarchical clustering of con-
figurations, even in the thermodynamic limit n→∞.

Next, we present all necessary definitions and introduce the
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algorithms. Then we show our results and finish by a sum-
mary and discussion.

(Definitions and Algorithms) Let σ = (σ1, σ2, . . . , σn)
be a sequence of n distinct numbers. A subsequence λ =
(σi1 , σi2 , . . . , σil) of length l = l(λ) fulfills 1 ≤ i1 < i2 <
. . . < il ≤ n and is called increasing if σij < σij+1

for all
j = 1, . . . , l − 1. To calculate the longest among all possible
IS, the patience sort algorithm [4] is a popular choice which
runs in polynomial time. Recently, an extension was proposed
[13], which allows one to calculate the number of LIS. Here,
we introduce a further extension and variant of the algorithm,
which enables one to count all IS and sample them efficiently
and exactly for any desired probability distribution which de-
pends on the IS length l.

LetH be a precedence matrix, which encodes possible joint
occurrences of entries σi and σj in an IS λ, i.e.,

Hij =

{
1 if i < j andσi < σj
0 else.

(1)

Note that the matrix H can be efficiently stored as a graph
with neighbor lists. To set up H , we run an extended variant
of patience sort, which gives also the length L of the LIS and
allows us to restrict the number of candidates i, j which have
to be checked whether one has to assign Hij = 1. Still, this
requires O(n2) steps.

To count IS and LIS, we denote by Ψl
j the number of IS of

length l which end at position j. Clearly, each single entry of
σ represents an IS of length l = 1, i.e., we have Ψ1

i = 1 for
i = 1, . . . , n. Now, IS of length l > 1 can be constructed by
selecting a final entry σj precedent by an IS of length l − 1
where all entries are smaller than σj and appear before posi-
tion j. For the number of IS this turns into

Ψl
j =

∑
i<j

HijΨ
l−1
i for l = 2, . . . , L (2)

which can be computed in a convenient way recursively, i.e.,
by dynamic programming in O(n2L). The total number of IS
of length l is given by Ψl =

∑
j Ψl

j , where we also include
the empty subsequence Ψ0 = 1. The total number of IS is
given by Ψ =

∑L
l=0 Ψl.

To sample an IS for given length l, one starts by sampling
the final entry j which appears with probability Ψl

j/Ψ
l. Next,

the preceding entry i is sampled among all possible predeces-
sors i < j, i.e., where Hij = 1. Each possible entry i is
selected with probability Ψl−1

i /Ψl
j . This is continued itera-

tively for length l−2, l−3, etc, always given the just sampled
entry, until length 0 is reached. This algorithm takes O(n l)
steps.

The sampling can be easily extended to include any prob-
ability which depends on the length. Here we take a physi-
cal viewpoint by considering E = −l as energy within the
canonical ensemble at temperature T , i.e., by using probabil-
ities ∼ exp(l/T ). Thus, for an IS λ we have the probability
given by

p(λ) = exp(l(λ)/T )/Z, Z =
∑
l

Ψl exp(l/T ) . (3)
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FIG. 1. The number Ψ of IS as function of sequence length n, for the
analytical expectation value E(Ψ) and the numerical average 〈Ψ〉.
The inset shows the ratio 〈Ψ〉/E(Ψ), the horizontal line is at value
1.

This includes in particular all LISs for T → 0. Sampling an
IS now consist of first drawing a length l according the proba-
bilities Ψl exp(l/T )/Z, and then uniformly sampling an IS of
length l as explained before. Note that this approach is exact
and direct, i.e., for each run of the algorithm an independently
sampled configuration is returned. Our approach runs in poly-
nomial time, such that we can treat rather large systems in
perfect equilibrium.

(Results) We performed simulations [27] for ensembles of
permutations of n numbers in the range n = 128 to n = 8192.
We studied for all sizes 10000 realizations of the disorder, i.e.,
independent permutations. For comparison, we also consid-
ered in some cases the ordered sequence σo = (1, 2, . . . , n).

We start by considering the number Ψ of IS. The asymptotic
behavior of the expectation value is analytically given by [12]

E(Ψ) =
1

2
√
πe
n−1/4 exp(2

√
n). (4)

In Fig. 1 we compare the numerical average 〈Ψ〉 with the an-
alytical result and find very good agreement, even for rather
small system sizes. Note that the average is “annealed” in
the sense that is represents an exponentially growing quantity,
such that sequences with exceptionally large values of Ψ will
dominate. This means, we need a rather large number of sam-
ples to observe agreement, as we do. This also indicates the
correctness of our approach. We have also evaluated the sec-
ond moment 〈Ψ2〉 (not shown). Here the agreement with the
analytical result [12] is fair, i.e., a bit lower, due to the even
stronger dominance of exponentially large but exponentially
rare sequences. To find a good agreement here, one would
have to obtain the distribution P (Ψ) down to the tails. This
should be possible by using a large-deviation approach, as it
has been used to obtain the distribution of the number of LIS
[13], but lies outside the scope of the present study.

Next, we analyze IS sampled in equilibrium according to
Eq. (3) at a low temperature T = 0.2 for several sequence
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FIG. 2. (color online) Distribution of overlaps at T = 0.2, for three
system sizes n. The inset shows a magnification of the region near
q = 0. The lines are guides to the eyes only.
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FIG. 3. Width σq(n) of P (q) at T = 0.2. The line shows a fit of
the data to a power law with offset σq(n) = σ∞q + an−b. The inset
shows the extrapolated value σ∞q = limn→∞ σq(n) as a function of
the temperature.

lengths n. For independently sampled pairs λ(1), λ(2) of IS,
we calculate the similarity of the two IS via the overlap q.
Here, considering the IS as sets of the contained numbers, we
use the Jaccard-Index [37] as given by

q =
|λ(1) ∩ λ(2)|
|λ(1) ∪ λ(2)| . (5)

The distributions P (q) of overlaps, where for each of the
10000 realizations 3000 independent pairs of configurations
were sampled, are shown for T = 0.2 in Fig. 2 for three se-
quence sizes n. Apparently the distribution is broad, even for
large systems, indicating a complex configuration landscape.

To investigate whether this is true also in the thermody-
namic limit, we have evaluated the width σq of the distribution
as function of system size n. The result for T = 0.2 is shown
in Fig. 3. We fitted a power law σq(n) = σ∞q + an−b and
obtained the limiting value σ∞q = 0.073(10), which is signif-
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FIG. 4. The specific heat C as function of temperature T , for the
ordered sequence σ0, where the line is the analytic result, and av-
eraged for the permutations. Shown are some system sizes n. The
inset shows the scaling of the value near the peak for the permuta-
tions as function of system size, following a power law n−y , shown
as a straight line, with a fit value y = 0.451(5).

icantly different from zero and shows that the distribution re-
mains broad in the thermodynamic limit. We also analyzed the
integrated weight Wq1,q2 =

∫ q2
q1
P (d) dq in intervals [q1, q2].

While near q = 0 the weight seems to decrease, see inset of
Fig. 2, in the intervals [0.4, 0.5], [0.5, 0.6] and [0.6, 0.7] we
observe an increase of the weights with increasing sequence
length n. This also speaks in favor of a broad distribution
P (q) for n → ∞. For the random XORSAT problem, which
exhibits one-step RSB, the limiting P (q) has zero width, i.e.,
appears trivial, due to the exponentially growing number of
clusters [30–32].

When evaluating the limiting σ∞q as function of T , see in-
set of Fig. 3, a small peak near T = 0.2 and a rather smooth
decrease beyond are visible. Thus, there is no sign of a tran-
sition, where one would expect a power-law decrease ∼ L−η ,
i.e., σ∞q = 0 at and beyond the transition. Since we mea-
sured up to T = 1, i.e., five times the temperature of the peak,
we expect that the crossover-like behavior continues even for
larger temperatures. This behavior we observe also for the
average overlap (not shown here).

We also obtained the specific heat via the variance of the
length by calculating C = (〈l2〉−〉l〉2)/(nT 2). Interestingly,
the disorder-averaged C(T ) exhibits peaks near T = 0.4 for
all system sizes, but the peak height decreases with growing
system size n. Thus, this behavior provides also no sign for
a phase transition. Note that a non-growing peak is obtained
also when one considers just the single ordered sequence σo,
where each number can independently be part of an IS with
probability p(T ) = e1/T /(e1/T + 1). Thus, σo represents
n independent paramagnets in a field, where the variance
of the length is just the sum of the single-number variances
p(T )(1− p(T )) and therefore C(T ) = p(T )/(1− p(T ))/T 2

is readily available [38]. This C(T ) exhibits also a peak at the
same temperature T ≈ 0.4. Thus, from the energetic point of
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FIG. 5. Clustered overlap matrix and dendrogram obtained by clus-
tering 200 equilibrium IS sampled at T = 0.2 for one random per-
mutation with length n = 8192.

view no phase transition is visible. This is maybe similar to
spin glasses, where the transition to the RSB phase is also not
visible when studying the specific heat [19].

The configuration space structure was further analyzed by
applying the agglomerative clustering approach of Ward [39].
The hierarchical structure obtained by the clustering can be
visualized by a tree, usually called dendrogram, where each
branching corresponds to a subspace of configurations, see
Fig. 5. The sequence of configurations as located in the leafs
defines a partial order. This order can be used to display the
matrix of the pair-wise overlaps or distances where the order
of the rows and columns is exactly given by the leaf order. The
resulting matrix for 200 samples IS (T = 0.2) of one random
permutation of length n = 8192 is displayed in Fig. 5. One
observes a hierarchical structure given by two major clusters,
visible by dark squares, i.e., similar configurations, which are
subdivided into sub clusters, with relatively smaller similar-
ities on the off diagonals, respectively. This could indicate
a multi-level of RSB, also since the matrices look similar to
ones obtained for mean-field spin glasses [40]. On the con-
trary, for random XORSAT, which is known to exhibit one-
step RSB, the matrices look trivial, i.e. plain gray, for n→∞
due to the exponentially diverging number of clusters [30–32].

The extend of the hierarchical structure can be made quan-
titative by calculating the cophenetic correlation κ ≡ [d ·
dc]P − [d][dc]P , where d = 1− q is the distance correspond-
ing to overlap value q. The cophenetic distance dc between
two states is measured on the dendrogram as the distance of
the two largest clusters that contain only one of the states,
respectively. [. . .]P denotes the combined average over the
sampled IS and the disorder ensemble. Thus, this κ measures
the correlation between the original distance d of two states
and the distance dc imposed by the clustering, i.e., the degree
of hierarchical structure. In Fig. 6 κ is shown as function of
n. By fitting a power law κ(n) = κ∞ + an−b we obtained
κ∞ = 0.23(4). Thus, the IS landscape of permutations ex-
hibits also for n→∞ a nested hierarchical structure, like for
problems exhibiting RSB as mean-field spin glasses or some
hard combinatorial optimization problems [41].
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FIG. 6. Average distance-dendrogram correlation κ as function of
sequence length n, for random permutations at T = 0.2. The line
shows a result when fitting to a power law plus constant, see text.

(Summary and Discussion) The original problem of Ulam is
to find the longest increasing subsequence for random permu-
tations. With so-far known algorithms it was possible to gen-
erate one LIS, but in a statistically uncontrolled way. Here we
have introduced an algorithm which allows for exact and di-
rect sampling of increasing subsequences in polynomial time.
For the uncorrelated and most natural ensemble of permuta-
tions, we find for the annealed mean and second moment of
the number of IS a good agreement with the analytical calcula-
tions. We find a broad distribution of overlaps and a hierarchi-
cal structure of configuration space. We show that this persists
in the thermodynamic limit, thus the model exhibits thermo-
dynamically relevant replica symmetry breaking. This model
is, to our knowledge, the first one which at the same time RSB
is thermodynamically relevant and for which a polynomial ex-
act sampling algorithm is available. This is in contrast to com-
putationally hard problems like mean-field spin glasses and
NP-hard optimization problems. Thus, Ulam’s problem pro-
vides an ideal test bed to study other phenomena or variants
of interest. In particular one can address the non-equilibrium
behavior, the scaling of excitations, the coupling of replicas,
or an extended random model obtained by assigning individ-
ual local lengths for the numbers. It could also be of inter-
est to consider ensembles with correlation or structure, in the
spirit of a recent work on directed polymers in random media
[36]. Furthermore, this study might motivate or help to iden-
tify other models with complex RSB behavior which can also
be treated by polynomial algorithms.
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