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Exact ground states of the Kaya-Berker model
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Here we study the two-dimensional Kaya-Berker model, with a site occupancy p of one sublattice, by using a
polynomial-time exact ground-state algorithm. Thus, we were able to obtain T = 0 results in exact equilibrium for
rather large system sizes up to 7772 lattice sites. We obtained the sublattice magnetization and the corresponding
Binder parameter. We found a critical point pc = 0.64(1) beyond which the sublattice magnetization vanishes.
This is clearly smaller than previous results which were obtained by using nonexact approaches for much smaller
systems. For each realization we also created minimum-energy domain walls from two ground-state calculations,
for periodic and antiperiodic boundary conditions. The analysis of the mean and the variance of the domain-wall
energy shows that there is no thermodynamic stable spin-glass phase at nonzero temperature, in contrast to
previous claims about this model. For large values of p, the standard deviation of the domain-wall decreases
with the system size like a power law with exponent roughly θ � −0.1, which is different from the standard
two-dimensional Ising spin glass where θ � −0.29.
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I. INTRODUCTION

Compared to regular or pure systems, magnetic systems
with quenched disorder, like spin glasses and random-field
systems [1], exhibit many peculiar properties. Their complex
low-temperature behavior is still not fully understood, even for
two-dimensional systems. Because analytical solutions are not
available, computer simulation studies [2] are often performed.
With respect to Markov-chain Monte Carlo simulations [3],
one of the difficulties is their slow glassy dynamics, resulting
in very long equilibration times. Other approaches to study
spin-glasses involve finding and characterizing ground states
[4,5]. In three or more dimensions, only algorithms with
exponential running time are known, but in two dimensions
polynomial-time algorithms are available.

One of the interesting differences between two-dimensional
(2D) and three-dimensional (3D) spin glasses is that so far
all 2D models with finite-range interactions show a transition
only at T = 0 [6–13]. At all finite temperatures the spin-glass
phase vanishes for 2D models. In contrast 3D models have a
nonzero transition temperature above. This spawned the search
for 2D models with a finite critical temperature. One such
candidate is the Kaya-Berker model [14], which was claimed
to exhibit a spin-glass-like phase for nonzero temperatures, i.e.,
a phase transition at a finite temperature. This claim was based
on numerical studies of rather small systems with nonexact
algorithms. Here, we will present results for this model which
we obtained by using exact and fast ground-state algorithms.
This allowed us to study rather large systems with more than
105 spins in exact equilibrium. Our result strongly suggest that
in contrast to previous claims, the model does not exhibit a
low-temperature spin-glass phase.
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This paper is organized as follows: We first introduce the
model along with suitable measurable quantities and review
previous results. Next, we outline the algorithm we use to
obtain exact ground states and, by changing the boundary
conditions, to obtain domain-wall (DW) energies. In the main
part, we present our results, followed by our conclusions.

II. MODEL

The Kaya-Berker model [14] is a variation of the Ising
model on a two-dimensional triangular lattice with N = Lx ×
Ly spins. The spins si take the values ±1 and all bonds are
antiferromagnetic. Its Hamiltonian is given by

H = −J
∑
〈i,j〉

εisiεj sj , (1)

with J < 0 and 〈i,j 〉 indicating a sum over all nearest-neighbor
pairs. The model allows for dilution, which is described by the
quenched disorder variables εi ∈ {0,1}. Every spin is located
on one of three sublattices, such that every spin has only
neighbors in the two other sublattices. Figure 1 shows the
triangular lattice and subdivision into three sublattices. Here,
one of the sublattices is diluted and only a fraction p of spin
sites is occupied (εi = 1), while a fraction 1 − p of sites is not
occupied by a spin (εi = 0). The other two sublattices are not
diluted.

In the fully occupied p = 1 case, every triangle of spins
is frustrated. This special configuration was solved exactly
[15,16], with the result that the system is disordered at all tem-
peratures. Ground states are characterized by exactly one-third
of unsatisfied bonds. While there are some configurations that
are ordered, e.g., alternating rows of all up-spins with row of
all down-spins, no energy advantage is obtained for long-range
order. Because of entropic dominance, i.e., the exponential
dominance of these non-ordered ground-state configurations,
no long-range order occurs.
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FIG. 1. 6 × 4 triangular lattice showing the subdivision into the
three sublattices, as indicated by the three colors of the nodes (white,
gray, black). Every triangle is frustrated, since not all bonds can be
satisfied.

For the diluted p = 0 case, one obtains a honeycomb lattice,
where the frustration is fully relieved. The ground state (GS)
is ordered and spins are aligned antiparallel with all of their
neighbors. Within the two remaining sublattices spins in the
same sublattices are aligned in the same direction.

By choosing an intermediate value of p, the number of
frustrated plaquettes can be varied. The behavior of the system
is complicated and allows for interesting behavior. These
intermediate values of p result in a ground state with zero
magnetization on the diluted lattice and roughly equal but
opposite magnetization on the two undiluted lattices. The order
parameter is therefore defined as the per-lattice magnetization

mα = 1

Nα

∑
i∈α

εisi , (2)

with α = a,b,c denoting one of the three sublattices and Nα =∑
i∈α εi being the number of spins of sublattice α. The diluted

lattice will be lattice a.
A model similar to the Kaya-Berker model with uniform

dilution in all sublattices [17–20] was studied earlier. While the
first study observed spin-glass behavior, all later publications
argue against a spin-glass phase. However, they found a large
but finite correlation between spins, which could be mistaken
for long-range order in small systems. In 2000, Kaya and
Berker devised the aforementioned model, which notably
differs from the older model by restricting the dilution to
one sublattice [14]. The authors studied it by using hard-spin
mean-field (HSMF) theory. For HSMF, each spin si not only
interacts with its neighbors sj through its mean spin values mj

as in standard mean-field theory. Instead, the self-consistent
equation for the site-dependent mean values mj involves a
sum over all possible 2n configurations of the n neighbors such
that each spin orientation sj = ±1 occurs with a probability
which is compatible with its mean value mj . As a further
approximation, in Ref. [14] the disorder average is performed
and the site dependent mean values are replaced by their
sublattice mean values, resulting in three coupled equations.
For the sublattice spin-glass order parameter (which involves
again the site-dependent mean values),

qα =
[

1

Nα

∑
i∈α

(mi − mα)2

]1/2

, (3)

they found nonzero values at finite temperatures for occupancy
p < 0.958. However, their study involves only small system

with sizes up to 30 × 30 and features no finite-size scaling anal-
ysis. Other studies analyzed the Kaya-Berker model by using
Monte Carlo (MC) simulations [21,22], effective-field theory
(EFT) [23], and a modified pair-approximation (PA) method
[24]. The EFT approach is based on a cluster approximation
with clusters comprised of only a single spin and interactions
with their nearest neighbors [25], which is quite similar to
HSMF. The PA method is based on the cumulant expansion
of the entropy. So far, none of the studies found conclusive
evidence in favor for or against the spin-glass phase at finite
temperatures. Note that, when using MC simulations, the
system certainly appears to behave like a glassy system in the
range of accessible system sizes and timescales. Simulations at
a large range of system sizes, and proof of proper equilibration,
would be needed, which is difficult and requires a huge
numerical effort for glassy systems.

This work aims to settle this open question by using an
exact ground-state algorithm which allows us to investigate
large systems in equilibrium. Studying exact ground states
allows one to calculate domain-wall energies, which are often
used [6,7,11,26–28] to verify the stability of a phase at
finite temperatures. In the following section we explain our
numerical approaches.

III. ALGORITHM

The GS algorithm is taken from Ref. [29] where it is used
to calculate ground states of the 2D random bond Ising model
on a planar triangular lattice. Here we present only a short
summary of the algorithm, which is visualized in Fig. 2.

We start with a given realization of our system, for which we
want to calculate a GS. Lattice sites and bonds are interpreted
as the nodes and edges of a weighted undirected graph G.
The weights are given by the strength of the bonds. For this
model, if J = 1, all weights are set to −1, but the algorithm
is suitable for arbitrary weights. Here we consider periodic
boundary conditions in the horizontal (x) direction and open
boundary conditions in the vertical direction. This means that
we study the model on a lattice with a planar structure, which
is a prerequisite for the algorithm [30]. The periodic boundary
conditions in one direction are needed to introduce domain
walls to the system; see below. On the other hand, if we had
periodic boundary conditions in both directions, the lattice
would still be two dimensional but would not be planar any
more, so the algorithm would not be applicable. Now, from
the given interaction graph, we construct an auxiliary graph
G′, by starting with the dual graph of the undiluted triangular
lattice, i.e., G′ is a hexagonal (honeycomb) graph. Next we
add two additional rows of each 2Lx vertices at the top and
bottom, respectively. The resulting graph contains a total of
(2Lx) × (Ly + 1). Since the 2Lx × (Ly − 1) faces in G are
separated by single edges, there is a corresponding dual edge
in G′ for every edge in G. Each dual edge basically “crosses”
the corresponding edge from G. These edges carry the same
weight as the corresponding edges in G. We use the edges
in G′ to model the site dilution by setting the weight to zero
for edges which are adjacent to unoccupied sites. Also, the
additional edges in G′, i.e., all the edges at the top and bottom,
which do not correspond to an edge in G, are assigned zero
weight.
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(a) (b) (c) (d)

FIG. 2. Illustration of steps involved in ground-state calculation. The sample shows a 3 × 4 system with periodic boundary conditions in
the horizontal direction. (a) Initial system with p = 0.5 occupation on the white sublattice. (b) Construction of the dual graph of the original
undiluted system with additional vertices and edges at the top and bottom. Edges that do not correspond to edges in the diluted system carry
zero weight and are marked by using stroked lines. (c) Set of minimal weighted loops on the dual graph. These paths separate clusters of aligned
spins. (d) Ground state constructed by setting the top left spin to up and assigning all remaining spins using the clusters determined earlier.

In the next step, a set of closed nonintersecting loops with
minimum edge weight are calculated. Calculating this set is
part of the negative-weight percolation [31] problem, which
yields a globally optimal solution. This works by transforming
the problem into a minimum-weight perfect matching problem
which is a standard problem in graph theory and can be solved
exactly in a time growing only polynomially with system size.
Note that, while the total edge weight of the whole set of loops
is optimized, each individual loop has a total negative or zero
weight. These loops separate clusters of aligned spins that form
a GS of the system. Suppose two spins share a bond that favors
antiparallel alignment, then the corresponding edge in G′ that
separates these spins carries a negative weight. Because we
look for minimal weighted loops, this edge is likely to be
included in one of the loops and thus the spins are in different
clusters, fulfilling the antiparallel alignment of the bond. In
general, the weight of a loop is the negative of the energy
of the DW surrounding the spins inside the loop. Therefore,
by flipping the spins inside a loop, the total energy will be
decreased by twice this amount.

Given this, the last step of the algorithm is to construct a
ground state from the minimal weighed loops. This is achieved
by setting the top left spin to some value, e.g., up. The
orientation of neighboring spins can then be determined by
looking at the loops. If spins are separated by a loop they need
be aligned in opposite direction. This process is repeated until
all spin have been assigned an orientation. Since there is no
external field, the configuration obtained by flipping all spins
is also a GS of the system.

From the calculated GS, we can easily obtain the
magnetization values of the sublattices. Nevertheless, due to
the discrete structure of the model, the GS is highly degenerate.
Since the ground states have all the same Boltzmann weight,
one would like to sample uniformly from the ground states.
Nevertheless, the algorithm is not random and returns always
the same ground-state configuration when rerun for the
same realization of the disorder. Therefore, we used a small
randomization of the bonds to lift the degeneracy. Instead of

the original bond values Ji,j = 0,−1, we used

Ĵi,j = SJi,j + Xi,j , (4)

with a constant scaling factor S and uniform distributed dis-
crete random variables Xi,j ∈ {−V,−V + 1, . . . ,V − 1,V } ⊂
Z. The values S = 106 and V = 100 are used throughout the
remaining analysis. The large scaling factor is used to keep the
bond strength an integer, while allowing for slight variations
such that the ground state of the modified system is also a GS of
the original system, for each realization. Although this random-
ization does not guarantee a uniform sampling of the ground
states, it was shown [32] that, for the two-dimensional random-
bond Ising model, the influence of the bias is very weak such
that the results are reliable within the statistical error bars.

Furthermore, we also studied the scaling of domain-wall
(DW) energies. Here, DWs separate regions of spins which
exhibit relative to each other GS orientation, while across the
DWs, their relative orientation is opposite to the GS. The DWs
are induced [6–9,11] for a given realization by first calculating
the GS for the original system, leading to a ground state
energy Ep. Another GS is obtained for a modified system,
which typically results in creating domain walls, as depicted
Fig. 3. Here, the second GS with energy Eap is calculated
for a system, where the boundary conditions are switched
from periodic to antiperiodic in the horizontal direction. The
switch of the boundary conditions is realized by inverting the
sign of the bonds in one (top-bottom) column of bonds. Note
that for the original ground-state configuration, the change of
the boundary conditions leads to an increase of the energy of
order O(L). Therefore it is typically energetically favorable
for the second GS that the relative orientations of the spins
across this column of bonds switches, creating a top-down
domain wall. This happens if there exists anywhere a second
top-down domain wall with an energy cost smaller than the
hypothetical energy cost of leaving the relative orientation of
the spins across the column of bonds unchanged. Since the
second domain wall has the freedom to run everywhere, such a
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FIG. 3. Illustration of a domain wall generated by switching the
boundary conditions. This is equivalent to changing the signs of all
bonds in one (top-down) column (vertical gray-black interface). This
leads typically to the flip of a domain of spins (black) with respect to
the original ground state (gray). The (left) linear domain wall, located
at the column of flipped bonds, is trivial, does not lead to an energy
change, and is not shown below.

“low-cost” domain wall will typically exist. Hence, due to the
periodic boundary conditions in the x direction, for the second
GS a domain of spins between the column of flipped bonds
and the second domain wall will be flipped with respect to the
first GS. The energy of the (second) domain wall is given by

�E = Ep − Eap. (5)

If the disorder-averaged value 〈�E〉 increases with system
size, domain walls become more and more expensive, thus
an ordered state with nonzero order parameter mα is stable.
On the other hand, if 〈�E〉 decreases with system size, for
large systems arbitrary small thermal fluctuations will be
sufficient to destroy an ordered state, which means Tc = 0.
Nevertheless, a nonmagnetized state might exhibit spin-glass
order. This is signified by a growth of the width σ (�E)
of the (disorder) distribution of domain-wall energies when
increasing the system size L, while the average 〈�E〉 decreases
[7,33]. Equivalently to the width, one could monitor the size
dependence of the average 〈|�E|〉 of the absolute value of the
domain-wall energy. Below, we will use this approach to show
that for p < pc � 0.64 the Kaya-Berker model exhibits indeed
a global antiferromagnetic order, which is equivalent to a ferro-
magnetic order for the fully occupied sublattices. We will also
show that our data is compatible with the absence of nontrivial
spin-glass order at nonzero temperature for all values of p.

IV. RESULTS

To obtain the following results, between 5000 and 10 000
random realizations of the disorder for the Kaya-Berker model
were studied for various system sizes, for many values of the
disorder parameter p. We studied square systems L = Lx =
Ly with L ∈ [30,345]. For each realization we calculated exact
ground states of the system with periodic and antiperiodic
boundary conditions, respectively. Each realization and both
GSs were saved to disk and analyzed later. All systems have
open boundary conditions in the y direction, since the GS

algorithm cannot handle periodicity in both directions. This
does not impact the ordering of the system, because the
change of boundary conditions, to induce a domain wall, is
performed perpendicular to the open boundary condition. The
DW therefore spans the system between the open boundaries.

First the magnetization of the Kaya-Berker model in the
ground state is studied. The sublattice magnetizations defined
in Eq. (2) are calculated as per a function of the fraction of occu-
pied spins p. The sign of the sublattice magnetization is chosen
such that the magnetization for lattice b is always positive. One
problem with calculating GSs is that most observables depend
on the specific GS that is generated. The discrete nature of the
Kaya-Berker model results in an exponential GS degeneracy.
This means that there are many GSs, all sharing the same
energy, but varying in other properties. The way the algorithm
constructs the matching, and thus a GS, is not statistically
controlled. Thus, it could be that certain “types” of GS are
favored by the construction. Here, we found (not shown) that
the GS calculated by the algorithm has a systematic tendency
towards small sublattice magnetization within the set of all
degenerate GSs. This could lead to slightly biased results for
all quantities related to the magnetization. The GS degeneracy
can be broken by slightly randomizing the bonds, such that
the GS is unique but the obtained configuration is still a GS
of the original system. In this way one GS will be sampled
randomly from all degenerate GSs. In a past study [32] it was
shown that this procedure successfully removes (at least within
statistical error bars) any bias. For this reason, we used for
all results concerning the magnetization the randomized, i.e.,
randomly sampled, GSs. The size of the randomization was
chosen as large as possible under the constraint that, for the
largest system, all sampled states are still ground states of the
original Hamiltonian. Generally, different ground states differ
by clusters of flipped spins. Hence, the states of the bonds,
which determine the energy of a configuration, change only
at the domain walls. For smaller systems, where the possible
domain walls are shorter, the randomization is even less likely
to lead to non-ground-state configurations. Therefore the same
strength of the randomization can be used for smaller systems.
Please note that the degenerate ground states have by definition
all the same energy. Thus for the results concerning the domain-
wall energies (see below), no uniform sampling is needed in
principle and the original ground-state energies must be used.
This means, for any spin configuration, the energy is evaluated
by using the unperturbed Hamiltonian.

The results for the magnetization of sublattice b are shown
in Fig. 4. For small values of p the magnetization is high, while
near p = 0.64 it decreases strongly towards zero. This shape
is typical for systems exhibiting ordered-disordered phase
transitions. The curves for different system sizes decrease
strongly near p = 0.62 (interestingly, they cross near p =
0.642) and become very small for larger values of p, which
indicates a phase transition. Note that for the case of the
unsampled ground states (without randomization), which have
strong bias towards smaller magnetization, the curves (not
shown here) cross near p = 0.639. This moderate difference
indicates that the influence of the possibly not completely
uniform GS sampling on the transition is rather small and
even without any sampling of the GSs the determination of the
transition point would be rather precise, in particular relative
to the previous results obtained in the literature [14].
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FIG. 4. Magnetization of sublattice b at different fractions p of
occupied sites and system sizes L. The magnetization was obtained
for each disorder realization from a randomly sampled state among
the degenerate GSs.

Next, as usually done for second-order phase transitions,
the critical point is determined more precisely by performing
a finite-size scaling analysis of the Binder parameter [34]

bα = 1

2

(
3 −

〈
m4

α

〉
〈
m2

α

〉2
)

. (6)

When plotting b as a function of the disorder parameter p,
the curves for different system sizes L will intersect (for
large enough system sizes) at the critical point pc where
the sublattice ferromagnetic (global antiferromagnetic) order
disappears. This allows for a convenient determination of the
critical point. Furthermore, finite-size scaling [35] shows that,
when rescaling the p axis according to (p − pc)L1/ν , for the
correct value of pc and a suitably chosen value of ν, the data
will collapse onto a single curve. More precisely, the Binder
parameter follows

b(p,L) = b̃((p − pc)L1/ν), (7)

where b̃(. . .) is a non-size-dependent function of one scaled
variable. The quantity ν is a critical exponent which describes
the divergence of the correlation length when approaching a
second-order phase transition. The actual value of ν (together
with other critical exponents) allows us to classify second-
order phase transitions according to universality classes.

The results for the Binder parameter and the best data
collapse, as obtained from the autoscale script [36], are shown
in Figs. 5 and 6. The x range of the collapse was restricted
to [−0.75,0.25], which gave the best collapse quality of S =
1.17. S describes the mean-squared fluctuation of the data
along the collapse curve measured in autoscale in terms of
error bars. The system sizes L = 30 and L = 45 were excluded
from the data collapse, since they deviate from the other curves
and resulted in a worse collapse. This is because of their quite
small system size, which would require corrections to scaling
to match the other curves. From this analysis we find that the
Kaya-Berker model has a critical point of pc = 0.6423(3). This
error bar is purely statistical. Since we have seen that the bond
randomization may have some small influence and because we
obtained a crossing of the magnetization without GS sampling

FIG. 5. Binder parameter of sublattice b as a function of the
sublattice occupancy p, for different system sizes.

at roughly 0.639 we only quote as final result:

pc = 0.64(1). (8)

This result is much smaller than any of the previous results
of pc = 0.958 by Kaya and Berker [14], pc ≈ 0.95 by using a
Monte Carlo simulation [21], or pc = 0.875 obtained by using
effective-field theory (EFT) [23]. However, the discrepancy
can be explained by taking a closer look at the previously used
methods. First, the results by Kaya and Berker are obtained by
HSMF theory. This method includes several approximations,
like the mean-field nature of the approach and the partial use
of locally averaged magnetizations. Furthermore, this method
includes a form of stochastic iteration. These iterations often
get stuck in local minima. In fact, the authors found a multiplic-
ity of solutions and used only the most stable set to determine
the critical point. Other not-so-stable solutions are fragmented
and show a much lower magnetization than the stable one.
Indeed the solution with the lowest magnetization looks like it
could become zero somewhere around 0.6 < p < 0.7, which
would coincide with our pc = 0.64(1) result. The other result
obtained by Monte Carlo (MC) simulations also suffers from
the problem that the dynamics of the Kaya-Berker model

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5

b b
(p

)

(p-pc)L
1/ν

pc = 0.6423(3)
ν = 1.39(6)

FIG. 6. Rescaled Binder parameter with a rescaled p axis using
the appropriate scaling variables pc = 0.6423(3), ν = 1.39.

012108-5



SEBASTIAN VON OHR AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 98, 012108 (2018)

FIG. 7. Exemplary domain walls at different occupancy. The solid and dashed border marks periodic and open boundary conditions,
respectively. The occupancy was set to p = 0.2 (left), p = 0.6 (center), and p = 0.8 (right).

becomes very slow at low temperatures and often also gets
stuck in local energy minima. Finally, the other approaches,
which are very similar to the further approximation of HSMF,
impose also sublattice-wise uniformity of the magnetization.
This restriction may not capture the whole behavior of the
model, leading to wrong results. Therefore, the exact-GS
approach which we used here is much more reliable than any
of the previous results since it neither includes approximations
nor does it suffer from convergence problems. Finally, we can
treat much larger sizes compared with the previous approaches.

We also determined an estimate ν = 1.39(6) for the value
of the critical exponent of the correlation length. No corre-
sponding result for the Kaya-Berker model for this critical
exponent at the T = 0 antiferromagnet-paramagnet transition
is known to us from the literature. Thus a direct comparison is
not possible. Nevertheless, for the random-bond Ising model,
which exhibits a ferromagnet-paramagnet transition (with
spin-glass behavior at exactly T = 0), a value ν = 1.55(1) was
found [32]. This is not fully compatible, but only two error bars
away from the value obtained here. Therefore, the transitions
might be in the same universality class.

Next, the domain-wall length l is studied. This is another
property which strongly depends on the specific GS of a
given realization. As explained above, DWs are obtained by
calculating the GS of a realization, flipping the boundary
condition, calculating a new GS, and comparing the two
obtained GSs. Note that the bond randomization is again
used, which should result in typical domain wall lengths
among many possible degenerate DWs. The influence of the

FIG. 8. Domain-wall length l at different system sizes L. The
straight lines are power-law fits to the data sets.

bond-randomization is less clear here. The reason is that the
original algorithm does not have a tendency to favor specific
domain-wall lengths, in contrast to the sublattice magnetiza-
tion where low magnetizations seem to be preferred. More
details and a more sophisticated method to determine shortest
and maximal length domain walls are presented in Ref. [37].
Nevertheless, the present approach is sufficient for our purpose,
because the results presented concerning the domain walls are
not fundamental for our conclusions. Anyway, the domain-wall
results, see below, are compatible with the determination of
the transition point obtained from the magnetization and from
the domain-wall energy. This analysis uses 104 samples for
each system size L ∈ [30,777] and occupancy value p. Some
exemplary domain walls at different occupancy p are shown
in Fig. 7. For small values of p, where the GS is ordered, the
DWs are very straight. With increasing value of p the domain
walls exhibit a higher fractal dimension.

The measured averaged lengths l of the DWs are shown in
Fig. 8 as a function of the system size L. All of the data sets
show a clean power-law behavior of the form

l(L) ∼ Ldf . (9)

where df is the fractal exponent which depends on p. A
power-law fit was performed for all data sets, excluding the
small system sizes L < 50. The fits match the data sets very
well. The resulting fractal dimension df (see Fig. 9) exhibits a
change between the p � 0.65 and p � 0.70 data sets visible
as a rather sharp jump in the plot. Apart from this sharp jump,

FIG. 9. Fractal dimensiondf of the domain-wall length at different
occupancy p. The vertical dashed line marks the critical point pc =
0.64(1).
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FIG. 10. Average domain-wall energy at different system sizes.
Data points are connected by using straight lines for better visibility.

the fractal dimension also grows slowly with the occupancy.
By interpolating between the two values closest to the critical
point at p = 0.64 and p = 0.645, the fractal dimension at the
critical point is df = 1.109(2). This value is different from the
value df = 1.222(1) obtained for the 2D random-bond Ising
model on a triangular lattice [29] and also on a square lattice
[38].

Finally, the results of the DW energy calculations are
presented. This enables us to discuss one of the central issues
of the paper, whether there exists a stable spin-glass phase
in the model at T > 0. The same 104 samples used for the
domain-wall length are analyzed here. The GS energy values
are calculated by using the spin configurations and the original
unperturbed bond values. Hence, the energy is the same for all
degenerate ground states. Therefore, the randomization has no
influence on the results. These results are visualized in Fig. 10
and used to investigate the main question whether there exists
a spin-glass phase at T > 0 in this model. The data are plotted
on a semilog scale, since some average values are negative.
For occupancy p < 0.645 the average DW energy increases
linearly. This includes values of p < 0.6 which were omitted
from the plot for a clearer image. This indicates a sublattice
ferromagnetic, i.e., globally antiferromagnetic, phase. This
becomes visible because the introduction of a DW breaks the
long-range order but costs energy. This behavior is expected for
occupancy smaller than the critical point pc, since the system
is antiferromagnetic at p = 0. For p � 0.645 � pc the DW
energy is roughly zero, which is typical for both possibilities
of a paramagnetic and a spin-glass phase. Note that fairly large
system sizes are required, because the p = 0.63 curve is also
approximately zero at first, but then increases around L = 100.
Similarly, the p = 0.64 curve only deviates from zero around
L = 600. This means that systems around these occupancy
values may appear not sublattice ferromagnetically ordered at
small system sizes. From the analysis of the magnetization
we know that, beyond pc, no (anti-)ferromagnetic order exists,
therefore it is clear that for values p > pc the DW energy will
not rise as a function of the system L.

To determine whether there exists a spin-glass phase, we
look at the standard deviation of the DW energy in Fig. 11. A
spin-glass phase corresponds to a mean domain-wall energy of
zero and to a growth of the standard deviation [33]. This can

FIG. 11. Standard deviation of domain-wall energy at different
system sizes. Data points are connected by using straight lines for
better visibility. The straight solid line shows a power law ∼L−0.1 for
comparison.

be understood because the domain-wall energy can be seen as
an effective coupling constant for a block spin of size L. Thus,
in a corresponding real-space renormalization transformation
of the distribution of couplings, a distribution which remains
centered at zero but grows in width corresponds to a growth
of the “glassiness.” On the other hand, a convergence of
the distribution of couplings to a zero mean and zero width
describes a vanishing of the couplings at large scales, i.e.,
a paramagnetic phase. This approach of studying mean and
standard deviation of domain-wall energy has been used
already for several disordered models to determine whether
a spin-glass phase exists, which is typically not the case in two
dimensions [7,9,11–13,32,33,39], but is the case for higher
dimensions [6,26,40–42].

For the present model, the curves split into two categories:
Increasing standard deviation with the system size at p <

0.645, where the mean increases and decreasing values at
p � 0.645, where the mean is close to zero. This parallel
behavior of standard deviation and mean makes it also unlikely
that, at much larger sizes, the standard deviation will grow
again for some values p > pc. Nevertheless, this cannot be
completely excluded, because it is the case for any numerical
study which is always limited in system size. Note that, for
p > pc, the standard deviation follows roughly a power-law
behavior, which is typical for this quantity. The exponent,
usually denoted θ , seems to be close to θ = −0.1, as indicated
by a straight line in the plot [we obtained an exponent of
−0.09(1) when fitting the data for p = 0.7 and an exponent
of −0.11(1) for p = 0.8]. This is clearly different from the
standard two-dimensional Ising spin glass where a value of
θ � −0.29 [11,39,42] has been obtained. Therefore, the Kaya-
Berker model might be in a different universality class.

To sum up, these results suggest that the ferromagnetic
phase is stable at finite temperatures for p < pc because the
mean domain-wall energy grows with system size in this
range. Nevertheless, the claimed spin-glass phase only exists
at T = 0, because there exists no range of p values where
the mean domain-wall energy is zero (or converges to zero)
and at the same time the standard deviation increases with
system size. Thus, for p > pc, where both mean and standard
deviation of the DW energy converge to zero, there exists only
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a paramagnetic phase at T > 0. Hence, it can be concluded
that previous reports of a stable Tc > 0 spin-glass phase are
not supported by our results.

V. CONCLUSIONS

We have numerically studied the Kaya-Berker model with
a site occupancy p of one sublattice by using an exact ground-
state algorithm. Thus, we were able to obtain T = 0 results
in exact equilibrium. Since the ground-state calculation is
equivalent to obtaining a minimum-weight perfect matching, it
is possible to obtain ground states with a running time growing
only polynomially in system size. Therefore, we were able to
study very large system sizes of up to a total number of ∼105

lattice sites, i.e., laterally up to L = 777. This is much larger
than in the previous work on this model.

From the obtained GSs, we calculated the magnetization
and the corresponding Binder parameter as a function of the
occupancy p. Here we used a slight randomization of the
bonds to obtain an almost unbiased sampling of the degenerate
ground states. From the Binder parameter, we obtained a
critical value pc = 0.64(1) where the sublattice magnetization
vanishes. This value is considerably smaller than previous
results. Nevertheless, the previous results were obtained by
using methods which involve approximations, nonequilibrium
sampling often without a guarantee of convergence and they
were restricted to small system sizes. Therefore, our results
are much more reliable than those obtained from the previous
studies. Although there might be a slight bias from the sampling
of the ground states, we know from the previous results for
the random bond (spin-glass) model that its influence is very
small. Also, we checked that when using the nonsampled
ground states, which have a clear tendency towards smaller
magnetizations, the obtained transition point changes only in
the third digit.

We also studied domain walls which are obtained by
comparing the GS of the original realizations with periodic
boundary conditions in the x direction and the GS of the

realization with antiperiodic boundary conditions. By analyz-
ing the length of the domain walls and its dependence on the
system size, we obtained the fractal dimension df . Looking at
the fractal dimension df as a function of p supports the results
for phase transition obtained by analyzing the magnetization.
In the phase where the sublattice magnetization is nonzero, we
obtained basically df = 1. Close to the critical point, a strong
increase of df can be observed.

The results for the scaling of the average DW energy, where
the sampling procedure of the degenerate GSs has no influence
at all, are also compatible with a transition at the location pc

where the magnetization vanishes. The standard deviation of
the DW energy distribution changes from growing to shrinking
with system size L at (or close to) the same point pc. Thus, it
is rather likely that the Kaya-Berker model does not exhibit a
spin-glass phase at a low but finite temperature, because this
would have to go together with a decrease of the mean value
and an increase of the standard deviation with the system size
for some values of p. For the power-law exponent describing
the behavior of the standard deviation of the DW energy, we
obtained a value of θ � −0.1 for p > pc, which is clearly
different from the value of −0.29 established for the standard
two-dimensional Ising spin glass.

To conclude, opposite some claims to the contrary, up to
now no two-dimensional random frustrated Ising system has
been found with a finite-temperature spin-glass phase. It still
remains an open question whether such a system exists, but it
appears to us to be unlikely.

ACKNOWLEDGMENTS

We thank A. Peter Young and Hendrik Schawe for critically
reading the manuscript. The simulations were performed on
the HPC clusters HERO and CARL of the University of
Oldenburg jointly funded by the DFG through its Major
Research Instrumentation Program (INST 184/108-1 FUGG
and INST 184/157-1 FUGG) and the Ministry of Science and
Culture (MWK) of the Lower Saxony State.

[1] Spin Glasses and Random Fields, edited by A. P. Young (World
Scientific, Singapore, 1997).

[2] A. K. Hartmann, Big Practical Guide to Computer Simulations
(World Scientific, Singapore, 2015).

[3] M. E. J. Newman and G. T. Barkema, Monte Carlo Meth-
ods in Statistical Physics (Oxford University Press, Oxford,
1999).

[4] A. K. Hartmann and H. Rieger, Optimization Algorithms in
Physics (Wiley-VCH, Weinheim, 2001).

[5] New Optimization Algorithms in Physics, edited by A. K.
Hartmann and H. Rieger (Wiley-VCH, Weinheim, 2004).

[6] W. L. McMillan, Phys. Rev. B 30, 476 (1984).
[7] A. J. Bray and M. A. Moore, J. Phys. C: Solid State Phys. 17,

L463 (1984).
[8] L. Saul and M. Kardar, Phys. Rev. E 48, R3221 (1993).
[9] H. Rieger, L. Santen, U. Blasum, M. Diehl, M. Jünger, and G.

Rinaldi, J. Phys. A: Math. Gen. 29, 3939 (1996).
[10] J. Houdayer, Eur. Phys. J. B 22, 479 (2001).

[11] A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404
(2001).

[12] A. C. Carter, A. J. Bray, and M. A. Moore, Phys. Rev. Lett. 88,
077201 (2002).

[13] A. K. Hartmann, Phys. Rev. B 67, 214404 (2003).
[14] H. Kaya and A. N. Berker, Phys. Rev. E 62, R1469 (2000).
[15] G. H. Wannier, Phys. Rev. 79, 357 (1950).
[16] R. M. F. Houtappel, Physica 16, 425 (1950).
[17] G. S. Grest and E. F. Gabl, Phys. Rev. Lett. 43, 1182

(1979).
[18] J. A. Blackman, G. Kemeny, and J. P. Straley, J. Phys. C: Solid

State Phys. 14, 385 (1981).
[19] C. Z. Andérico, J. F. Fernández, and T. S. J. Streit, Phys. Rev. B

26, 3824 (1982).
[20] H.-L. Tang, Y. Zhu, G.-H. Yang, and Y. Jiang, Phys. Rev. E 81,

051107 (2010).
[21] M. D. Robinson, Master’s thesis, The University of Maine, 2003,

https://digitalcommons.library.umaine.edu/etd/317/.

012108-8

https://doi.org/10.1103/PhysRevB.30.476
https://doi.org/10.1103/PhysRevB.30.476
https://doi.org/10.1103/PhysRevB.30.476
https://doi.org/10.1103/PhysRevB.30.476
https://doi.org/10.1088/0022-3719/17/18/004
https://doi.org/10.1088/0022-3719/17/18/004
https://doi.org/10.1088/0022-3719/17/18/004
https://doi.org/10.1088/0022-3719/17/18/004
https://doi.org/10.1103/PhysRevE.48.R3221
https://doi.org/10.1103/PhysRevE.48.R3221
https://doi.org/10.1103/PhysRevE.48.R3221
https://doi.org/10.1103/PhysRevE.48.R3221
https://doi.org/10.1088/0305-4470/29/14/018
https://doi.org/10.1088/0305-4470/29/14/018
https://doi.org/10.1088/0305-4470/29/14/018
https://doi.org/10.1088/0305-4470/29/14/018
https://doi.org/10.1007/PL00011151
https://doi.org/10.1007/PL00011151
https://doi.org/10.1007/PL00011151
https://doi.org/10.1007/PL00011151
https://doi.org/10.1103/PhysRevB.64.180404
https://doi.org/10.1103/PhysRevB.64.180404
https://doi.org/10.1103/PhysRevB.64.180404
https://doi.org/10.1103/PhysRevB.64.180404
https://doi.org/10.1103/PhysRevLett.88.077201
https://doi.org/10.1103/PhysRevLett.88.077201
https://doi.org/10.1103/PhysRevLett.88.077201
https://doi.org/10.1103/PhysRevLett.88.077201
https://doi.org/10.1103/PhysRevB.67.214404
https://doi.org/10.1103/PhysRevB.67.214404
https://doi.org/10.1103/PhysRevB.67.214404
https://doi.org/10.1103/PhysRevB.67.214404
https://doi.org/10.1103/PhysRevE.62.R1469
https://doi.org/10.1103/PhysRevE.62.R1469
https://doi.org/10.1103/PhysRevE.62.R1469
https://doi.org/10.1103/PhysRevE.62.R1469
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1016/0031-8914(50)90130-3
https://doi.org/10.1016/0031-8914(50)90130-3
https://doi.org/10.1016/0031-8914(50)90130-3
https://doi.org/10.1016/0031-8914(50)90130-3
https://doi.org/10.1103/PhysRevLett.43.1182
https://doi.org/10.1103/PhysRevLett.43.1182
https://doi.org/10.1103/PhysRevLett.43.1182
https://doi.org/10.1103/PhysRevLett.43.1182
https://doi.org/10.1088/0022-3719/14/4/014
https://doi.org/10.1088/0022-3719/14/4/014
https://doi.org/10.1088/0022-3719/14/4/014
https://doi.org/10.1088/0022-3719/14/4/014
https://doi.org/10.1103/PhysRevB.26.3824
https://doi.org/10.1103/PhysRevB.26.3824
https://doi.org/10.1103/PhysRevB.26.3824
https://doi.org/10.1103/PhysRevB.26.3824
https://doi.org/10.1103/PhysRevE.81.051107
https://doi.org/10.1103/PhysRevE.81.051107
https://doi.org/10.1103/PhysRevE.81.051107
https://doi.org/10.1103/PhysRevE.81.051107
https://digitalcommons.library.umaine.edu/etd/317/


EXACT GROUND STATES OF THE KAYA-BERKER MODEL PHYSICAL REVIEW E 98, 012108 (2018)

[22] M. D. Robinson, D. P. Feldman, and S. R. McKay, Chaos 21,
037114 (2011).

[23] M. Žukovič, M. Borovský, and A. Bobák, J. Magn. Magn. Mater.
324, 2687 (2012).

[24] T. Balcerzak, K. Szałowski, M. Jaščur, M. Žukovič, A. Bobák,
and M. Borovský, Phys. Rev. E 89, 062140 (2014).

[25] M. Žukovič, M. Borovský, and A. Bobák, Phys. Lett. A 374,
4260 (2010).

[26] A. K. Hartmann, Phys. Rev. E 59, 84 (1999).
[27] C. Amoruso, E. Marinari, O. C. Martin, and A. Pagnani, Phys.

Rev. Lett. 91, 087201 (2003).
[28] F. Romá, S. Risau-Gusman, A. J. Ramirez-Pastor, F. Nieto, and

E. E. Vogel, Phys. Rev. B 75, 020402 (2007).
[29] O. Melchert and A. K. Hartmann, Comput. Phys. Commun. 182,

1828 (2011).
[30] A. K. Hartmann, in Rugged Free Energy Landscapes, Lecture

Notes in Physics, edited by W. Janke (Springer, Heidelberg,
2007), pp. 67–106.

[31] O. Melchert and A. K. Hartmann, New J. Phys. 10, 043039
(2008).

[32] C. Amoruso and A. K. Hartmann, Phys. Rev. B 70, 134425
(2004).

[33] W. L. McMillan, Phys. Rev. B 29, 4026 (1984).
[34] K. Binder, Z. Phys. B: Condens. Matter Quanta 43, 119

(1981).
[35] J. Cardy, Finite-Size Scaling (Elsevier, Amsterdam, 1988).
[36] O. Melchert, arXiv:0910.5403.
[37] O. Melchert and A. K. Hartmann, Phys. Rev. B 76, 174411

(2007).
[38] O. Melchert and A. K. Hartmann, Phys. Rev. B 79, 184402

(2009).
[39] A. K. Hartmann, A. J. Bray, A. C. Carter, M. A. Moore, and

A. P. Young, Phys. Rev. B 66, 224401 (2002).
[40] A. K. Hartmann, Phys. Rev. E 60, 5135 (1999).
[41] S. Boettcher, Eur. Phys. J. B 38, 83 (2004).
[42] S. Boettcher, Phys. Rev. Lett. 95, 197205 (2005).

012108-9

https://doi.org/10.1063/1.3608120
https://doi.org/10.1063/1.3608120
https://doi.org/10.1063/1.3608120
https://doi.org/10.1063/1.3608120
https://doi.org/10.1016/j.jmmm.2012.03.062
https://doi.org/10.1016/j.jmmm.2012.03.062
https://doi.org/10.1016/j.jmmm.2012.03.062
https://doi.org/10.1016/j.jmmm.2012.03.062
https://doi.org/10.1103/PhysRevE.89.062140
https://doi.org/10.1103/PhysRevE.89.062140
https://doi.org/10.1103/PhysRevE.89.062140
https://doi.org/10.1103/PhysRevE.89.062140
https://doi.org/10.1016/j.physleta.2010.08.041
https://doi.org/10.1016/j.physleta.2010.08.041
https://doi.org/10.1016/j.physleta.2010.08.041
https://doi.org/10.1016/j.physleta.2010.08.041
https://doi.org/10.1103/PhysRevE.59.84
https://doi.org/10.1103/PhysRevE.59.84
https://doi.org/10.1103/PhysRevE.59.84
https://doi.org/10.1103/PhysRevE.59.84
https://doi.org/10.1103/PhysRevLett.91.087201
https://doi.org/10.1103/PhysRevLett.91.087201
https://doi.org/10.1103/PhysRevLett.91.087201
https://doi.org/10.1103/PhysRevLett.91.087201
https://doi.org/10.1103/PhysRevB.75.020402
https://doi.org/10.1103/PhysRevB.75.020402
https://doi.org/10.1103/PhysRevB.75.020402
https://doi.org/10.1103/PhysRevB.75.020402
https://doi.org/10.1016/j.cpc.2010.10.030
https://doi.org/10.1016/j.cpc.2010.10.030
https://doi.org/10.1016/j.cpc.2010.10.030
https://doi.org/10.1016/j.cpc.2010.10.030
https://doi.org/10.1088/1367-2630/10/4/043039
https://doi.org/10.1088/1367-2630/10/4/043039
https://doi.org/10.1088/1367-2630/10/4/043039
https://doi.org/10.1088/1367-2630/10/4/043039
https://doi.org/10.1103/PhysRevB.70.134425
https://doi.org/10.1103/PhysRevB.70.134425
https://doi.org/10.1103/PhysRevB.70.134425
https://doi.org/10.1103/PhysRevB.70.134425
https://doi.org/10.1103/PhysRevB.29.4026
https://doi.org/10.1103/PhysRevB.29.4026
https://doi.org/10.1103/PhysRevB.29.4026
https://doi.org/10.1103/PhysRevB.29.4026
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
http://arxiv.org/abs/arXiv:0910.5403
https://doi.org/10.1103/PhysRevB.76.174411
https://doi.org/10.1103/PhysRevB.76.174411
https://doi.org/10.1103/PhysRevB.76.174411
https://doi.org/10.1103/PhysRevB.76.174411
https://doi.org/10.1103/PhysRevB.79.184402
https://doi.org/10.1103/PhysRevB.79.184402
https://doi.org/10.1103/PhysRevB.79.184402
https://doi.org/10.1103/PhysRevB.79.184402
https://doi.org/10.1103/PhysRevB.66.224401
https://doi.org/10.1103/PhysRevB.66.224401
https://doi.org/10.1103/PhysRevB.66.224401
https://doi.org/10.1103/PhysRevB.66.224401
https://doi.org/10.1103/PhysRevE.60.5135
https://doi.org/10.1103/PhysRevE.60.5135
https://doi.org/10.1103/PhysRevE.60.5135
https://doi.org/10.1103/PhysRevE.60.5135
https://doi.org/10.1140/epjb/e2004-00102-5
https://doi.org/10.1140/epjb/e2004-00102-5
https://doi.org/10.1140/epjb/e2004-00102-5
https://doi.org/10.1140/epjb/e2004-00102-5
https://doi.org/10.1103/PhysRevLett.95.197205
https://doi.org/10.1103/PhysRevLett.95.197205
https://doi.org/10.1103/PhysRevLett.95.197205
https://doi.org/10.1103/PhysRevLett.95.197205



