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We apply generalisations of the Swendson-Wang and Wolff cluster algorithms, which are based
on the construction of Fortuin-Kasteleyn clusters, to the three-dimensional ±1 random-bond Ising
model. The behaviour of the model is determined by the temperature T and the concentration p of
negative (anti-ferromagnetic) bonds. The ground state is ferromagnetic for 0 ≤ p < pc, and a spin
glass for pc < p ≤ 0.5 where pc ≃ 0.222. We investigate the percolation transition of the Fortuin-
Kasteleyn clusters as function of temperature. Except for p = 0 the Fortuin-Kasteleyn percolation
transition occurs at a higher temperature than the magnetic ordering temperature. This was known
before for p = 1/2 but here we provide evidence for a difference in transition temperatures even
for p arbitrarily small. Furthermore, for all values of p > 0, our data suggest that the percolation
transition is universal, irrespective of whether the ground state exhibits ferromagnetic or spin-glass
order, and is in the universality class of standard percolation. This shows that correlations in the
bond occupancy of the Fortuin-Kasteleyn clusters are irrelevant, except for p = 0 where the clusters
are tied to Ising correlations so the percolation transition is in the Ising universality class.

I. INTRODUCTION

Magnetic systems with quenched disorder, such as spin
glasses (SGs)1–4 and random field systems, exhibit phase
transitions between low-temperature ordered and high-
temperature disordered (paramagnetic) phases in high
enough dimensions. This is similar to the case of pure
systems like ferromagnets5 but spin glasses in particu-
lar exhibit a much richer behaviour and many aspects of
the low-temperature phase are still not well understood.
Since most disordered models cannot be solved analyti-
cally, one has to resort to computer simulations.6 For the
special case of zero temperature, there are often efficient
algorithms7. However, for systems coupled to a heat bath
at finite temperature, Monte Carlo simulations8,9 are
generally used. For the pure Ising model, efficient clus-
ter Monte Carlo (MC) approaches exist,10,11 which are
based on the construction of Fortuin-Kasteleyn (FK)12

clusters of spins. This gives fast equilibration even close
to the phase transition point. The reason is that the FK
clusters percolate13 precisely at the phase transition.14

It is also possible to implement cluster MC algorithms
like the Wolff algorithm for spin glasses, but unfortu-
nately these are not efficient because, in the vicinity of
the spin glass phase transition, each update flips almost
all the spins.15 The reason is that percolation of the FT
clusters happens at much higher temperatures than the
magnetic-ordering phase transition temperature.16 Other
approaches for cluster algorithms for spin glasses have
been tried,17–21 but in the end none turned out to be
efficient for three-dimensional spin glasses and related
models. Thus, single-spin flip algorithms are still used
for studying spin glasses numerically. Some improve-
ment is obtained by using parallel tempering,22,23 and
by running parallel tempering on a special-purpose high-
performance computer “JANUS”24 it has been possible
to simulate an N = 483 spin glass model near the tran-
sition temperature.

To obtain a better understanding of the nature of FK

clusters and their percolation transitions, as well as al-
gorithmic efficiency, we study here the ±1 random-bond
Ising model,25 which is a generalisation of the standard
spin glass. It consist of N Ising spins σi = ±1 placed on
a d-dimensional hyper-cubic lattice of linear size L, i.e.
N = Ld. The Hamiltonian is given by

H = −
∑

〈i,j〉

Jijσiσj . (1)

Each spin i interacts with its nearest neighbours j via
an interaction which is a quenched random variable Jij .
Here we use a bimodal distribution so each bond is anti-
ferromagnetic (Jij = −1) with probability p and ferro-
magnetic (Jij = +1) with probability 1− p. As usual for
quenched disorder, the result of any measurement will
depend on the realisation of the disorder, so one has to
perform an average over many realizations of disorder in
addition to doing the thermal average.

We consider here the case of a simple cubic lattice
for which the low temperature phase is ferromagnetic
for a small concentration (p) of anti-ferromagnetic bonds
and a spin glass for a larger concentration. We denote
the paramagnet to ferromagnet transition temperature
by Tc(p) and the paramagnet to spin glass transition by
TSG(p). The phase diagram in the p–T plane has been
determined by Monte Carlo simulations,26,27 see Fig. 1.
For T = 0 the transition point between the ferromagnetic
and spin-glass phases was found28 to be approximately
pc = 0.222(5).

In the present study, we investigate the behaviour of
FK clusters and, related to this, the performance of the
Wolff algorithm, in the p-T plane. We know that for the
pure (p = 0) ferromagnet the FK percolation transition
coincides with the ferromagnet-paramagnet, and here we
investigate whether this is true for any other values of p.
Results of some test simulations performed previously27

suggest this is not the case at least for some values of
p. Also, close to the ferromagnetic-spin glass boundary,
where frustration is lower than for the standard spin glass
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FIG. 1: Phase diagram showing the line of percolation tran-
sitions of the FK clusters, and the lines of phase transitions
between ferromagnetic (FM), paramagnetic (PM) and spin
glass (SG) phases. Lines are guides for the eyes only. The
data for the ferromagnetic transition temperature Tc(p) is
from Ref. [27], the data for the spin glass transition tem-
perature TSG is from Ref. [26], and the value of p where the
spin glass and ferromagnetic phases meet at T = 0, pc, is from
Ref. [28]. The data for the percolation transition temperature
TFK(p) is from this work.

model which has p = 1/2, we investigate whether the
Wolff algorithm performs better than for the standard
spin glass model. If this were the case, one might be able
to study low-temperature spin-glass behaviour for larger
samples, by working in this range of p.

We present an extensive study of the FK percolation
transition in the full range of interest 0 ≤ p ≤ 1/2, which
indicates that this transition happens above the phase
transition line for all p > 0. Only for the pure ferromag-
net, p = 0, does it coincides with the FM-PM transition.
In addition, the critical exponents seem to be those of the
(uncorrelated) percolation problem everywhere along the
FK transition percolation transition line, including both
the ferromagnetic and spin-glass regions, see Fig. 1. The
only exception is for p precisely equal to 0, the pure fer-
romagnet, for which the critical exponents are those of
the Ising model. Finally, our result indicate that in the
spin glass region close to pc the Wolff algorithm does not
perform notably better than for the standard (p = 1/2)
spin-glass case.

Our paper is organised as follows. In Sec. II, we review
the algorithms we have used. Next, in Sec. III, we present
our results, and finally in Sec. IV we give a summary and
discussion.

II. METHODS

To study the FK percolation transition and to inves-
tigate the efficiency of the Wolff algorithm we construct
FK clusters at each step as follows:

• Bonds where Ji,jσiσj > 0 are said to be satisfied,
and we activate them with probability pact = 1 −

e−2β|Jij |. Unsatisfied bonds are never activated.

• We determine all clusters of spins connected by ac-
tivated bonds, as in bond percolation.

A cluster is said to be wrapping or percolating if it spans
the lattice across between the periodic boundaries and
so is connected back to itself. For each step, we record
whether a cluster is wrapping (this is typically the largest
one), and we also monitor the sizes of all clusters to in-
vestigate the distribution of cluster sizes. Finally, we
generate the next configuration according the Wolff al-
gorithm by selecting a spin at random and flipping the
the spins (i.e. with “acceptance probability” one) in the
cluster which contains it.

Averages are done both over the spin configurations
for a given realization and a disorder average over a large
number of different realizations. The quantities that we
measure are:

• The average wrapping probability, pwrap.

• The fraction of sites in the largest cluster, P .

• The number ns of clusters of size s.

• The average size S of the clusters excluding the
largest one (this would be the percolating cluster in
the percolating phase). The average is done with
respect to all sites, i.e. S =

∑
s s2ns/

∑
s sns.

• The average size of the flipped clusters, nWolff .

For high temperatures the activation probability pact is
small, leading to many small clusters which do not wrap.
On the other hand, for low temperatures, pact will be
large leading to few clusters and typically one big wrap-
ping cluster. Thus, in between, there exists a percolation
transition of the FK clusters at some temperature TFK,
such that, in the thermodynamic limit, N → ∞, one
finds pwrap → 0 for T > TFK and pwrap → 1 for T < TFK.

We analyse our data using finite-size scaling (FSS),
as is standard in percolation transitions.13 According to
FSS, at a second order percolation transition near the
critical point, the wrapping probability should exhibit a
scaling behaviour

pwrap(L, T ) = fwrap((T − TFK)L1/ν) , (2)

where ν is the critical exponent which describes the diver-
gence of the correlation length of the FK clusters. Thus,
the parameters TFK and ν can be determined by varying
them until the data for different system sizes collapse on
to the same universal curve fwrap(x̃).

Furthermore, in the percolating phase, the fraction of
sites in the largest (i.e. percolating) cluster in an infinite
system goes to zero like P ∼ (TFK−T )β as T approaches
TFK from below. For a finite system, this becomes, ac-
cording to FSS,

P (L, T ) = L−β/νfP ((T − TFK)L1/ν) , (3)
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allowing us to obtain the critical exponent β. The aver-
age cluster size behaves in a similar way, as described by
the finite-size scaling relation

S(L, T ) = Lγ/νfS((T − TFK)L1/ν) . (4)

Note that in computing S we neglect the largest clus-
ter, so S has a maximum near the percolation tran-
sition, because in the non-percolating phase there are
only many small clusters, while in the percolating phase
most sites belong to the percolating cluster which is ne-
glected. Thus, the scaling function fS exhibits a peak
at some value xpeak, corresponding to a temperature

Tpeak = TFK + xpeakL
−1/ν , which means that the height

of S⋆ at the peak scales with a power-law

S⋆
∼ Lγ/ν , (5)

allowing us to obtain the critical exponent γ. Finally, at
the critical point TFK, the distribution ns of cluster sizes
for an infinite system is expected to follow a power-law

ns(TFK) ∼ s−τ , (6)

defining another critical exponent τ .
The critical exponents are not independent of each

other. Instead, they are connected through scaling re-
lations, such that there are only two independent expo-
nents. The scaling relations for the standard percolation
problem are often expressed13 as functions of exponents
describing the shape of ns, i.e. for an infinite system

ns = s−τfn (sσ (T − TFK)) , (7)

which defines another exponent σ. In terms of τ and σ
the standard scaling relations are13

ν =
τ − 1

σd
, γ =

3 − τ

σ
, β =

τ − 2

σ
. (8)

We don’t measure σ, since this would require addi-
tional numerical effort, but we can remove σ from the
equations by solving the first equation with respect to σ
and inserting the solution into the other two, resulting
in:

γ =
3 − τ

τ − 1
νd , β =

τ − 2

τ − 1
νd . (9)

We will verify that our computed values for ν, τ, γ and
β obey these relations.

III. RESULTS

We perform simulations for various values of p ∈

[0, 0.5]. For each value of p we treated different system
sizes L ∈ [10, 100],, and for a few values of p we also did
simulations for L = 200, see below. All results are dis-
order averages over typically 1000 realisations. For each
realisation we perform Monte Carlo simulations using the

Wolff algorithm for 72 temperatures equally spaced in
[3.615, 4.68], i.e. with spacing ∆T = 0.015. For the se-
lected cases of p = 0.1, 0.3 and 0.5 (and also for p = 0
as a comparison with other work and a check on our
code), we studied 20 additional temperatures spaced by
∆T = 0.003 very close to TFK, in order to determine the
critical properties precisely.

To check for equilibration we average over intervals
[t/2, t] for a logarithmically increasing set of times t, and
require that there is no systematic trend for the last sev-
eral values of t. Typically, due to the high temperatures,
equilibration is achieved within a few steps. For small
systems, L ≤ 30, we perform 2×105 Wolff steps per re-
alisation, while for the larger systems, which run slower
but still need only a few steps to equilibrate, we do 5×103

steps.
To determine the position of the FK percolation tran-

sitions, we monitor the wrapping probability of the FK
clusters. An example is shown for p = 0.1 in the inset
of Fig. 2. A clear decrease of the wrapping probability
beyond T ≈ 4 is visible. We performed a data collapse
according to Eq. (2), see main plot of Fig. 2, to determine
TFK and the critical exponent ν of the percolation length,
resulting in TFK = 4.059(3) and ν = 0.89(8). The best fit
parameters were determined from the method discussed
in the appendix of Ref. [29] and in Ref. [30].
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FIG. 2: Wrapping probability as function of temperature T
for p = 0.1, for various system sizes L. The inset shows the
raw data, while in the main plot a data collapse to determine
TFK and ν gives 1/ν = 1.10(5) and TFK = 4.059(3).

In a similar way, we analysed the data for other val-
ues of p. The resulting values of TFK as a function
of p are shown in the phase diagram in Fig. 1, along
with the values for the FM-PM and SG-PM phase tran-
sitions obtained from the literature26,27, and the crit-
ical concentration pc for the zero-temperature FM-SG
transition.28 Interestingly, the FK percolation transition
seems to coincide with magnetic-ordering transition only
for the pure ferromagnetic system (p = 0). For all other
values of p, Tc < TFK even close to the pure ferromagnet.
Hence, even if the ground state is ferromagnetic, i.e. for
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0 < p < pc, the FM-PM phase transition cannot be un-
derstood as a percolation transition of the FK clusters.

The resulting values of ν as a function of p are shown
in Fig. 3. For p = 0, we recover the literature value
for the pure Ising ferromagnet,31 but with larger error
bars (which is natural, because our main numerical effort
goes into the necessary disorder average and considering
several values of p). For all other values of p, includ-
ing both ferromagnetic and spin glass regions, we find
that ν is compatible with the previously found16 value of
ν = 0.88(5). This is also compatible with the value32 for
the standard percolation problem, in which there are no
correlations between the occupancies of the bonds. By
contrast, in FT clusters there are correlations for all p
but interestingly they do not seem to affect the critical
behavior, except for p = 0 where the bond occupancies
are rigorously constrained to follow Ising correlations.
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FIG. 3: The critical exponent ν as a function of p. The value
of ν for p = 0 is from Ref. [31] and the value for p = 0.5
indicated by a triangle is from Ref. [16].

To investigate universality more carefully we have eval-
uated the other critical exponents with additional data
near TFK for the values p = 0 (for a consistency check),
p = 0.1 (a ferromagnetic case), p = 0.3 and p = 0.5 (SG
cases; for the latter value the critical behavior is already
partially known16).

For the fraction of sites in the infinite cluster (the order
parameter), we show data for p = 0.3 in Fig. 4. From a
finite-size scaling collapse of the data we obtain the best
fitting parameters β = 0.48(4), ν = 0.87(8) and TFK =
3.939(3). The result for the other intensively studied
cases are shown in Table I. Note that for TFK and ν, we
usually have several independent estimates available and
the stated values and their error bars are chosen such
that they are compatible with all results.

In addition to the order parameter, we have also ana-
lysed the data for the average cluster size S. As example,
we show the result for p = 0.1 and size L = 50 as a
function of temperature T in Fig. 5. The data exhibits a
peak at some point (T ⋆, S⋆). One can read off the critical
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FIG. 4: (color online) The fraction of sites in the infinite
cluster, P , as a function of the temperature T in the vicinity of
TFK, for p = 0.3 and various system sizes L. The inset shows
the raw data, while the main plot shows the data rescaled
according to Eq. (3), with best fitting values β = 0.48(4),
ν = 0.87(8), and TFK = 3.939(3).

exponent γ from the Lγ/ν scaling, see Eq. (5), of the peak
height as a function of L. The data is shown in the inset
of Fig. 5. For different values of p, the resulting values of
γ are also shown in Table I. Again, we observe that for
p > 0 the results seem to agree with each other.
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FIG. 5: Mean cluster size S at L = 50 and p = 0.1 as a
function of temperature T , near the FK percolation transition
TFK. The data exhibits a peak with peak height S⋆. The inset
shows the peak height as function of L.

To obtain the critical exponent τ , we analyse the dis-
tribution of cluster sizes, excluding the largest cluster, at
the critical point for a rather large system size, L = 200.
As an example, we present our results for p = 0.3 in
Fig. 6. The data exhibits a high quality which allows us
to observe a power law over about 10 decades in proba-
bility. A fit resulted in a value τ = 2.23(5). This value,
and the results for the three other selected cases, are also
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TABLE I: Best estimates for the critical temperatures TFK and critical exponents ν, τ , γ and β. The number in brackets denote
the error bars in the last digit. Also shown are the values for γ and β obtained by inserting the values for ν and γ into the
scaling relations in Eq. (9). They agree with the values for γ and β obtained directly within the error bars.

p TFK ν τ γ β γ = 3−τ

τ−1
νd β = τ−2

τ−1
νd

0.0 4.5116(5) 0.65(4) 2.27(3) 1.18(6) 0.31(4) 1.1(2) 0.4(1)

0.1 4.059(3) 0.89(8) 2.196(8) 1.82(8) 0.48(4) 1.79(12) 0.44(4)

0.3 3.941(3) 0.89(8) 2.23(5) 1.84(6) 0.41(4) 1.7(2) 0.49(16)

0.5 3.934(3) 0.88(9) 2.26(1) 1.8(1) 0.41(5) 1.6(2) 0.54(9)

shown in Table I. The values we have found for all val-
ues of p > 0 are compatible with the values for standard
percolation in three dimensions.
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FIG. 6: Cluster size distribution at p = 0.3 with a system size
of N = 2003.

The exponents should obey the scaling relations in
Eqs. (9). The values obtained when inserting the mea-
sured values for ν and τ from Table I to estimate γ and
β from the scaling relations are shown in the last two
columns in Table I. All these values are compatible with
the directly measured values within error bars. Note that
the error bars from the scaling relations are larger than
the error bars of the directly measured exponents due to
error propagation.

Finally we consider the question of whether the Wolff
algorithm might be more efficient in the spin-glass phase
near the FM-SG transition, i.e. for p just slightly greater
than pc, rather than for p = 1/2. In Fig. 7 we show the
average effective size of the flipped cluster (which is not
always the largest one), as a function of the temperature
T for p = 0.25 (> pc). By “effective” we mean that if the
cluster of flipped spins is larger than half of the system
size, then the spins which are not flipped are counted. We
see that the clusters which are flipped near the SG phase
transition are very small. One could already expect this
from the phase diagram in Fig. 1, which shows that for
p = 0.25 the FK percolation transition is considerably
above the critical temperature TSG. Thus, applying the
Wolff algorithm in the spin glass phase but near the spin

glass-ferromagnet phase boundary, does not lead to any
benefit relative to studying the standard spin glass model
which has p = 1/2.
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FIG. 7: Average size of the clusters flipped (or not flipped
if this is smaller) by the Wolff algorithm as a function of
temperature T for L = 10 and p = 0.25.

IV. SUMMARY

We have studied the percolation transitions of Fortuin-
Kasteleyn clusters for the three-dimensional random-
bond Ising model. Near the cluster percolation transi-
tion the Wolff algorithm can be used to efficiently sample
equilibrium configurations. However, except for the pure
Ising case (p = 0), the temperature of the percolation
transition is higher that of the ferromagnet-paramagnet
and spin glass-paramagnet transitions, and for most val-
ues of p it is much higher, see Fig. 1. This renders
the Wolff algorithm inefficient for the magnetic transi-
tions except for p = 0. Indications of this behaviour
were already found in some test simulations of a previ-
ous study,27 where, for the FM-PM phase boundary at
one value of p > 0, cluster algorithms were tried but
turned out to be inefficient.

We have determined the critical exponents at the FK
cluster percolation transition. For p = 0, the pure Ising
case, we obtain the known values, which are those of
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the Ising model since the FK clusters are controlled by
Ising correlations in this limit. For all other values,
0 < p ≤ 1/2, our results are compatible with the uni-
versal behaviour of standard percolation, irrespective of
whether the ground state exhibits ferromagnetic or spin-
glass order. Since standard percolation has no correla-
tions between the occupancy of the bonds, whereas bonds
in the FK clusters are correlated, this implies that the
correlations are irrelevant for universal properties, and so
presumably are of short range for p > 0.

For future studies, it would be interesting to investi-
gate other types of cluster algorithms17,20,21 for the three-
dimensional random-bond Ising model. So far, from the
literature studies known to us, none of them turned out
to be efficient enough to study the pure spin-glass case
(p = 1/2) for large enough systems, but it could be that
some will work well close to the FM-SG phase bound-

ary or perhaps at least for ferromagnetic ordering of the
random (p > 0) case.
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