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We present a new large-deviation approach to investigate the critical properties of the Anderson
model on the Bethe lattice close to the localization transition in the thermodynamic limit. Our
method allows us to study accurately the distribution of the local density of states (LDoS) down
to very small probability tails as small as 10−50 which are completely out of reach for standard
numerical techniques. We perform a thorough analysis of the functional form and of the tails of the
probability distribution of the LDoS which yields for the first time a direct, transparent, and precise
estimation of the correlation volume close to the Anderson transition. Such correlation volume is
found to diverge exponentially when the localization is approached from the delocalized regime, in
a singular way that is in agreement with the analytic predictions of the supersymmetric treatment.

I. INTRODUCTION

After more than a half century, the subject of Anderson
localization is still very much alive [1] as proved by the
recent observations of Anderson localization of atomic
gases in one dimension [2] and of classical sound elastic
waves in three dimensions [3]. On the theoretical side
several questions remain open: Although there is by now
a good understanding of the localization transition in low
dimensional systems, culminating in a functional renor-
malization group analysis by a 2 + ε expansion [4], the
behavior in high dimensions [5], in particular the exis-
tence of an upper critical dimension and the relationship
with Bethe lattice analysis [6], is still an issue. Recently,
there has been a renewal of interest on this problem
because of its relationship with Many-Body localization
(MBL) [7]. This is a fascinating new kind of phase tran-
sition between a low temperature non-ergodic phase—a
purely quantum glass—and a high temperature ergodic
phase [8–13]. This phenomenon has been argued to take
place for several disordered isolated interacting quantum
systems, and can be thought of as localization in the Fock
space of Slater determinants, which play the role of lat-
tice sites in a disordered Anderson tight-binding model.
A paradigmatic representation of this transition [7, 14–
19] is indeed (single-particle) Anderson localization on a
very high dimensional hierarchical lattice, which for spin-
less electrons consists in an N -dimensional hyper-cube
(where N � 1 is the number of sites of the lattice sys-
tem). Although the analogy between MBL and Anderson
localization on the Bethe lattice involves several drastic
simplifications (e.g. the correlation between random en-
ergies are neglected as well as the specific structure of
the Hilbert space), it is very useful to obtain a qualita-
tive understanding of the problem [19–22].

Localization had an impact on several fields, in par-
ticular Random Matrices and Quantum Chaos. As a
matter of fact, in the delocalized phase the level statis-

tics is described by random matrix theory and gener-
ally corresponds to the Gaussian Orthogonal Ensemble
(GOE), whereas instead in the localized phase is deter-
mined by Poisson statistics because wave-functions close
in energy are exponentially localized on very distant sites
and hence do not overlap; thus, contrary to the GOE
case, there is no level-repulsion and eigenenergies are dis-
tributed similarly to random points thrown on a line.

The relationship with quantum chaos goes back to the
Bohigas-Giannoni-Schmidt conjecture, which states that
the level statistics of chaotic (or ergodic) systems is given
by random matrix theory, whereas integrable systems in-
stead are characterized by Poisson statistics [23]. This
result can be fully worked out and understood in the
semi-classical limit [24, 25]: for a quantum chaotic sys-
tem, in the ~→ 0 limit, wave-functions at a given energy
become uniformly spread over the micro-canonical hyper-
surface of the configuration space. They are fully delocal-
ized as expected for an ergodic classical system that cov-
ers regions with same energy uniformly. Instead, quan-
tum non-ergodic models, such as integrable systems, are
characterized by Poisson statistics and localized wave-
functions. All those results support a general relationship
between delocalization–GOE statistics–ergodicity (simi-
larly between localization–Poisson statistics–lack of er-
godicity).

However, in the last decade several numerical stud-
ies [26–32] have been performed for the Anderson model
on the Bethe lattice, in fact, on Random-Regular Graphs
(RRG), with N nodes and a parameter W controlling
the strength of the local disorder. This is a class of ran-
dom lattices that have locally a tree-like structure but
do not have boundaries, see below for a precise defini-
tion. The results have suggested the possibility of the
existence of an intermediate delocalized but non-ergodic
phase characterized by multifractal eigenfunctions in a
broad disorder range preceding the localization transi-
tion, as first suggested in [15]. The arguments in favour
of this scenario rely mostly on numerical extrapolations
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of results obtained from Exact Diagonalization (ED) of
large but finite samples, and the existence of such a phase
in the thermodynamic limit has been strongly questioned
during recent years [19, 33–38].

Although the possibility of such multifractal delocal-
ized phase is clearly very intriguing, especially due to
its relationship with MBL [15], it appears to be in ex-
plicit conflict with the analytical predictions based on
the supersymmetric approach for the Anderson model on
sparse random graphs [39–42]. Moreover, recent numer-
ical investigations based on the finite-size scaling of the
spectral and the wave-functions statistics on the delocal-
ized side of the Anderson model on RRG [33, 36, 37] and
similar sparse random lattices [34, 35] provided strong
indications against the existence of a truly intermediate
non-ergodic extended phase. These investigations have
highlighted a non-monotonous behavior of the observ-
ables as a function of the system size on the delocalized
side of the transition, which can be explained in terms of
(i) the presence of a characteristic scale which diverges
exponentially fast approaching the transition and is al-
ready very large far from it [33–37]; (ii) the localized
nature of the critical point in the limit of infinite di-
mension [5, 40, 42, 43]. The combination of these two
elements produce dramatic and highly non-trivial finite
size effects even very far from the critical point, and give
rise to a strong non-ergodic behavior in a crossover re-
gion where the correlation volume Nc(W ) is larger than
the accessible system sizes. (On the contrary, there is by
now a general consensus on the fact that the delocalized
phase of the Anderson model on the loop-less Cayley is
genuinely multifractal [21, 44, 56]).

Note that the thorough characterization of such
crossover regime has not only an academic interest but
has also some important practical implications. In fact
the crossover scale turns out to be so large even far
below the localizaiton transition that the multifractal
exponents associated to the spectral statistics appear
to be independent on the system size N in a broad
range of sizes smaller than Nc, producing an effective
non-ergodic behavior on several decades of length and
timescales [20, 21, 30, 31]. Yet, a precise characteriza-
tion of the correlation volume, in particular from the
numerical point of view, remains elusive. Direct nu-
merical simulations would need to focus on intractably
large system sizes. The Anderson transition on tree-like
lattices offers however an alternative route, since it al-
lows for an exact solution [6, 36–42, 45–49]. This can
be obtained in terms of the exact self-consistent equa-
tions for the Green’s functions (in the thermodynamic
limit), which allow to establish the transition point and
the corresponding critical behavior. However, even this
approach suffers from the dramatic increase of the cor-
relation volume, which controls the cutoff of the proba-
bility distribution of the imaginary part of the Green’s
function (i.e., the local density of states (LDoS)) [36, 39–
41, 48]. Since Nc(W ) is so large even far away from the
transition, the cutoff occurs in the far-tails of the distri-

bution which cannot be properly sampled with standard
numerical techniques such as the population dynamics al-
gorithm even using huge populations [48]. Here, we solve
this problem by putting forward a novel large-deviation
technique which allows one to sample very accurately the
tails of the probability distribution of the LDoS down to
extremely small probabilities, and highlight with great
accuracy the crossover scale and its critical behavior.

The main conclusions of our analysis fully confirm the
predictions of the supersymmetric approach [36, 39–42]
and are compatible with a correlation volume which di-
verges exponentially fast as the Anderson localization is
approached, as Nc(W ) ≈ Aec/(WL−W )ν , with ν = 1/2
and WL being the critical disorder strength.

The paper is organized as follows. In the next sec-
tion we introduce the model and briefly review previous
results and studies. In Sec. III we present some recent
numerical results of the spectral statistics obtained from
ED of the Anderson model on the RRG of finite size.
In Sec. IV we describe the new large deviation approach
to sample efficiently the tails of the distributions of the
Green’s functions and determine accurately the correla-
tion volume close to WL. Finally, in Sec. VI we discuss
the physical implications of our results, providing some
concluding remarks and perspectives for future work.

II. MODEL AND STATE OF THE ART

The model we focus on consists in non-interacting spin-
less electrons in a disordered potential:

H = −t
∑
〈i,j〉

(
c†i cj + c†jci

)
−

N∑
i=1

εi c
†
i ci , (1)

where the first sum runs over all the nearest neighbors
sites of the lattice, the second sum runs over all N sites;

c†i , ci are fermionic creation and annihilation operators,
and t is the hopping kinetic energy scale, which we take
equal to 1. The on-site energies εi are i.i.d. random vari-
ables uniformly distributed in the interval [−W/2,W/2]:

p(ε) = U

(
−W

2
,
W

2

)
≡ 1

W
θ

(
W

2
− |ε|

)
. (2)

As anticipated in the introduction, the lattice that we
consider is a (k+1)-RRG, i.e., a lattice chosen uniformly
at random among all graphs of N sites where each of the
sites has connectivity k + 1. The properties of such ran-
dom graphs have been extensively studied (see Ref. [50]
for a review). A RRG can be essentially viewed as a finite
portion of a tree wrapped onto itself. It is known in par-
ticular that for large number of sites any finite portion
of such a graph is a tree with a probability going to one
as N →∞, and that the RRG has large loops of typical
length of order lnN [50].

The model (1) is then a sum of two random matrices,
H = C + D: C is the connectivity matrix of the RRG,
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Cij = −t if sites i and j are connected and zero oth-
erwise. D is the diagonal matrix corresponding to the
on-site random energies, Dij = εiδij . It is known from
previous studies that the former ensemble of sparse ran-
dom matrices belongs to the GOE universality class (with
fully delocalized eigenvectors) [51, 52], while the latter is
described by definition by Poisson statistics (with fully
localized eigenvectors).

Localization on the RRG was first studied by Abou-
Chacra, Anderson and Thouless [6] and then later by
many others, see [26–32, 36–42, 45–49, 53, 54] and
Refs. therein. Many similarities, but also few important
differences, with the 3d behavior have been found. The
differences mainly concern the critical properties. Con-
trary to the finite-dimensional case, the critical behav-
ior is not power-law-like but instead exponential, i.e.,
one finds essential singularities approaching the localiza-
tion transition from the delocalized regime [36, 39–43].
Moreover, the inverse participation ratio (IPR), defined

as 〈
∑N
i=1 |ψα(i)|4〉, is found to have a discontinuous jump

at the transition from a O(1) toward a 1/N scaling [39],
instead of being continuous at the transition. Arguments
based on supersymmetric field theory indicate that the
level statistics should display a transition from GOE to
Poisson statistics concomitant with the localization tran-
sition [39, 40] (see also Ref. [38]). However, the first nu-
merical studies didn’t fully support this claim [26, 55].
Moreover, the arguments of [15] indicates that the two
transitions might actually not coincide. As discussed
above, the possibility of the existence of an intermedi-
ate phase, which is delocalized and yet still not ergodic,
were first suggested in [26]. These findings triggered a lot
of activity. In Ref. [27], based on the numerical extrapo-
lation of the spectrum of fractal dimensions of finite size
systems, it was conjectured that the eigenstates are mul-
tifractal in the whole delocalized phase. More recently,
the authors of Refs. [28, 29] combined EDs and semi-
analytical calculations to claim the existence of the inter-
mediate non-ergodic but delocalized phase in a broad dis-
order strength WE < W < WL. These claims have been
questioned by the numerical investigations of Refs. [33–
38] which analyzed the level and eigenfunction statistics
on the delocalized side of the Anderson transition on the
RRG and similar sparse random lattices, and unveiled the
existence of very strong finite size effects with a charac-
teristic crossover scale Nc(W ) associated to a pronounced
non-monotonous behavior of the observables as a func-
tion of N , and which diverges exponentially fast as the
localization transition is approached. The origin of the
non-monotonicity has been traced back to the localized
nature of the Anderson critical point in the limit of in-
finite dimensions [5, 40, 42, 43]: For N � Nc the sys-
tem flows towards the Anderson transition fixed point,
whose properties on the RRG are analogous to the local-
ized phase, whereas for N � Nc the system approaches
the N → ∞ ergodic behavior. The conclusion of these
investigations are thus that the system is ergodic in the
whole delocalized phase, but is characterized by dramatic

and non-trivial finite-size effects even very far from the
critical point, giving rise to an apparent non-ergodic be-
havoir in a crossover region where the correlation volume
is larger than the accessible system sizes. Nonetheless, as
explained in the introduction, a precise characterization
of the correlation volume Nc is still missing.

In the following, without loss of generality, we focus on
the k = 2 case (i.e., total connectivity k+ 1 = 3) and on
the middle of the spectrum, E = 0. Previous studies of
the transmission properties and dissipation propagation
determined that the localization transition takes place
at WL ≈ 18.2 [6, 45, 48, 56], while previous analysis of
the spectral properties have suggested the presence of the
non-ergodic delocalized phase in the range 10 ≈ WE <
W < WL [26, 28, 29].

III. EXACT DIAGONALIZATION ON THE RRG

The purpose of this section is to show results, in agree-
ment with the recent literature [33–37], that support the
presence of the correlation volume Nc(W ) and its very
fast increase. In particular we shall focus on numeri-
cal results for the level statistics of the Anderson model
on the RRG which unveil the non-monotonic behavior
of the relevant observables. These results are obtained
from EDs of the Hamiltonian (1) on the RRG for several
system sizes N = 2n, from n = 6 to n = 15, and for
several values of the disorder strength W on the delocal-
ized side of the Anderson transition in the disorder range
where previous studies have suggested the possibility of
the existence of a multifractal delocalized phase [28, 29],
WE < W < WL. For each value of N and W , we average
over both the on-site quenched disorder and on RRG real-
izations, taking (at least) 222−n different samples. Since
we are interested in E = 0, we only focused on 1/8 of the
eigenstates centered around the middle of the band (we
have checked that taking 1/16 or 1/32 of the states does
not alter the results, but yields a poorer statistics).

We study the statistics of level spacings of neighboring
eigenvalues: sα = Eα+1−Eα ≥ 0, where Eα is the energy
of the α-th eigenstate in the sample. In the delocalized
regime level crossings are forbidden. Hence the eigenval-
ues are strongly correlated and the level statistics is ex-
pected to be described by Random Matrix Theory (more
precisely, several results support a general relationship
between delocalization and the Wigner’s surmise of the
GOE). Conversely, in the localized phase wave-functions
close in energy are exponentially localized on very distant
sites and do not overlap. Thus there is no level-repulsion
and eigenvalues should be distributed similarly to ran-
dom points thrown on a line (Poisson statistics). In order
to avoid difficulties related to the unfolding of the spec-
trum, we follow [57] and measure the ratio of adjacent
gaps,

rα =
min{sα, sα+1}
max{sα, sα+1}

,



4

10 12 14 16 18

0.4

0.45

0.5

<
r>

n=10
n=9
n=8
n=7
n=6

10 12 14 16 18
W

-3

-2

-1

0

ln
(q

ty
p
/q

G
O

E
)

n=15
n=14
n=13
n=12
n=11

GOE

GOE

P

FIG. 1. (color online) 〈r〉 (upper panel) and ln(qtyp/qGOE)
(lower panel) as a function of the disorder W for several sys-
tem sizes N = 2n with n from 6 to 15. The horizontal dashed
lines correspond to the reference GOE and Poisson asymptotic
values. The vertical orange dashed line spots the position of
the Anderson localization transition, WL ≈ 18.2 [48].

and obtain the probability distribution which displays
a universal form depending on the level statistics [57].
In particular 〈r〉 is expected to converge to its GOE
and Poisson counterpart in the extended and localized
regime [58], allowing to discriminate between the two
phases as 〈r〉 changes from 〈r〉GOE ' 0.53 to 〈r〉P ' 0.39
respectively.

The GOE-Poisson transition can also be captured by
correlations between nearby eigenstates such as the mu-
tual overlap between two subsequent eigenvectors, de-
fined as:

qm =

N∑
i=1

|ψα(i)||ψα+1(i)| .

In the GOE regime the wave-functions amplitudes are
i.i.d. Gaussian random variables of zero mean and vari-
ance 1/N [59], hence 〈q〉 converges to 〈q〉GOE = 2/π.
Conversely in the localized phase two successive eigen-
vector are typically peaked around very distant sites and
do not overlap, and therefore 〈q〉P → 0 for N → ∞. At
first sight this quantity seems to be related to the statis-
tics of wave-functions’ coefficients rather than to energy
gaps. Nonetheless, in all the random matrix models that
have been considered in the literature so far, one empiri-
cally finds that 〈q〉 is directly associated to the statistics
of gaps between neighboring energy levels [60].

In Fig. 1 we show the behavior of the average value
of the ratio of adjacent gaps, 〈r〉, and of (the logarithm
of) the typical value of the mutual overlap between sub-
sequent eigenvectors, qtyp = e〈ln q〉, as a function of the
disorder W , for several system sizes N = 2n, with n from
6 to 15. As expected, for small (resp. large) enough dis-
order we recover the universal values 〈r〉GOE ' 0.53 and
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FIG. 2. (color online) ln(qtyp/qGOE) (left panel) and 〈r〉 (right
panel) as a function of n = log2N for W = 10, 11, . . . , 16.
The data show the non-monotonic behavior of qtyp and 〈r〉.
The position of the minimum nc(W ) extracted from qtyp(W ),

corresponding to the volume Nc(W ) = 2nc(W ), is represented
by the vertical dotted lines.

qtypGOE = 2/π (resp. 〈r〉P ' 0.39 and qtypP → 0) corre-
sponding to GOE (resp. Poisson) statistics. However,
as pointed out in [26] the different curves corresponding
to different values of N cross much before the localiza-
tion transition, occurring at WL ≈ 18.2, as indicated by
the vertical dashed line in the plot. This behavior was
interpreted in terms of an intermediate delocalized but
non-ergodic phase [26]. Nevertheless, analyzing carefully
the data, we realized that the crossing point is in fact
slowly but systematically drifting towards larger values
of W as N is increased (see inset of Fig. 3), as also ob-
served [33, 34, 37].

This is clearly unveiled by Fig. 2, where we plot the
behavior of qtyp and 〈r〉 as a function of n = log2N ,
for several values of the disorder belonging to the range
where the curves of 〈r〉 and qtyp for different n cross, i.e.,
10 . W . 16. One indeed observes that in this region
qtyp and 〈r〉 become non-monotonic functions of n. The
position of the minimum of qtyp (highlighted by dashed
vertical lines in the left panel of Fig. 2) naturally de-
fines a characteristic system size, Nc(W ) = 2nc(W ), gov-
erning the crossover from Poisson to GOE statistics (on
the scale of the mean level spacing): For N < Nc(W )
one has indeed that qtyp decreases as the system size
is increased, as expected for localized wave-functions,
whereas for N > Nc(W ) it is an increasing function of
n and eventually converges to the GOE universal value.
The same non-monotonic behavior as a function of the
system size is found for 〈r〉 (right panel of Fig. 2), as
well as for many other observables related to the wave-
functions’ statistics, such as the IPR and the multifractal
spectrum, as previously observed in Refs. [33, 34, 37].

These results indicate the emergence of a unique char-
acteristic scale which controls the transition from a phase
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FIG. 3. (color online) Main panel: Characteristic crossover
scales nc(W ) = log2Nc(W ) extracted from different observ-
ables related to the level statistics (〈r〉, squares, and qtyp,
circles) and to the statistics of the wavefunctions’ amplitude
(the fractal dimension D2, diamonds, the fractal dimension
D1, up triangles, the edge α− of the support of the mul-
tifractal spectrum f(α), down triangles, and the point α1

where f(α1) = α1 and f ′(α1) = 1, stars). See Ref. [37] for
more details. The black dotted curve is a fit of the form
nc(W ) ∝ c/(WL −W )ν with c ≈ 20 and ν ≈ 0.6. Inset: Evo-
lution with n of the crossing point of the curves of qtyp(W )
of Fig. 1 for two subsequent system sizes.

characterized by Poisson statistics, localization and lack-
of-ergodicity to one displaying GOE statistics, delocaliza-
tion and ergodicity for the Anderson model on RRGs of
finite size. This is confirmed by the main panel of Fig. 3,
where we plot the characteristic crossover scales, nc(W ),
extracted from the different probes related to both the
statistics of the gap and the statistics of the wavefunc-
tions’ amplitudes, showing that, within our numerical
accuracy, they all yield a very similar dependence on the
disorder strength W (see Ref. [37] for more details).

As anticipated above, the non-monotonic behavior has
been interpreted in [33] in terms of the nature of the An-
derson critical point on the RRG, which has properties
similar to that of the localized phase [5, 40, 42, 43], with
critical level statistics of Poisson form and strongly local-
ized critical wave-functions. The observables of systems
of size N � Nc(W ) would then first flow upon increas-
ing N towards the critical values, which tend, for d→∞,
to the ones of the localized phase [5, 40, 42, 43]. Then,
when N becomes larger than the correlation volume Nc,
the observables flow towards their standard values in the
delocalized, fully ergodic, phase.

The black dotted curve of Fig. 3 shows a fit of the data
of the form nc ∝ c/(WL −W )ν , implying an exponen-
tial divergence of the correlation volume at the transition
point. However, our numerical data are clearly too far
from WL to obtain an accurate estimation of ν. Yet, the
value of the exponent is not too far from the one pre-
dicted by the supersymmetric analysis, ν = 1/2 [39–42].

In the next section we put forward a new large-deviation
approach which allows one to access the crossover scale
from the solution of the self-consistent equations for the
Green’s functions in the thermodynamic limit, providing
a much more stringent test of the analytic predictions.

IV. SELF-CONSISTENT ITERATION
EQUATIONS FOR THE GREEN’S FUNCTIONS

AND LARGE DEVIATION METHOD

As discussed in the introduction, the Anderson model
on tree-like structures allows for an exact solution in
the limit of infinite lattices [6, 36, 38–42, 45–48], which
yield the probability distribution function of the diago-
nal elements of the resolvent matrix, defined as G(z) =
(H− zI)−1.

In order to obtain the recursive equations, the
key objects are the so-called cavity Green’s functions,
Gi→j(z) = [(Hi↔j − zI)−1]ii, i.e., the diagonal elements
on site i of the resolvent matrix of the modified Hamil-
tonian Hi↔j where the edge between the site i and one
of its neighbors j has been removed.

Take a given site i and its neighbors {l1, . . . , lk+1} liv-
ing on an infinite tree. If one removes the site i from
the graph, then the sites {l1, . . . , lk+1} are uncorrelated,
since the lattice would break in k + 1 semi-infinite dis-
connected branches. One then obtains (e.g., by direct
Gaussian integration or using the block matrix inversion
formula) the following iteration relations for the cavity
Green’s functions [6]:

G−1i→lm(z) = −εi − z − t2
∑

lj∈∂i/lm

Glj→i(z) , (3)

where lm with m = 1, . . . , k + 1 denote the excluded
neighbor of i, z = E + iη, η is an infinitesimal imagi-
nary regulator which smoothens out the pole-like singu-
larities in the right hand sides, εi is the on-site random
energy taken from the distribution (2), and ∂i/l denotes
the set of all k + 1 neighbors of i except l. (Note that
for each site with k + 1 neighbors one can define k + 1
cavity Green’s functions and k + 1 recursion relations of
this kind.) After that the solution of Eqs. (3) has been
found, one can finally obtain the diagonal elements of the
resolvent matrix of the original problem on a given site
i as a function of the cavity Green’s functions for all the
neighboring sites [45]:

G−1i (z) = −εi − z − t2
∑
lj∈∂i

Glj→i(z) . (4)

In the following we will focus on the middle of the spec-
trum (E = 0) and set t = 1.

The statistics of the diagonal elements of the resolvent
gives—in the η → 0+ limit—the spectral properties of H.
In particular, the probability distribution of the LDoS at
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energy E is given by:

ρi =
∑
α

|ψα(i)|2 δ(E − Eα) = lim
η→0+

1

π
ImGi(z) , (5)

from which the average Density of States (DoS) is simply
given by ρ = (1/N)

∑
i ρi = 1/(Nπ)Tr ImG.

Note that, however, on finite RRGs when site i is re-
moved from the graph, the neighbors {l1, . . . , lk+1} are
not truly decoupled, since they are still connected by
some (typically large) loop present somewhere in the
system. Since the average size of the loops scales as
lnN [50], it is reasonable to expect that Eqs. (3) and (4)
become asymptotically exact in the thermodynamic limit
as the cavity Green’s functions on sites {l1, . . . , lk+1} be-
come uncorrelated in absence of site i if the typical length
of the loops which connect them is larger than the corre-
lation length. This has been in fact proven rigorously in
Ref. [61] using the local convergence of RRGs to Cayley
trees.

Since the Green’s functions Gi→j and Gi are random
variables, Eqs. (3) and (4) naturally lead to functional
equations on their probability distribution Q(G) and
P (G). From Eq. (3) one first gets the self-consistent func-
tional equation for the probability distributions of the
cavity Green’s functions in the N → ∞ limit (averaged
over the on-site disorder and on different realizations of
the random lattice):

Q(G) =

∫
dp(ε)

k∏
l=1

dQ(Gl) δ

(
G−1+ ε+ z +

k∑
i=1

Gl

)
,

(6)

where p(ε) is the probability distribution of the on-site
random energy, Eq. (2). Once the fixed point of Eq. (6) is
obtained, using Eq. (4) one can compute the probability
distribution of the diagonal elements of the resolvent:

P (G) =

∫
dp(ε)

k+1∏
l=1

dQ(Gl) δ

(
G−1+ ε+ z +

k+1∑
l=1

Gl

)
.

(7)

This set of functional equations can be solved numerically
with an arbitrary degree of precision using a population
dynamics algorithm [6, 28, 29, 35, 45, 48, 62].

Since below we will present an advanced large-
deviation algorithm which allows us to sample the distri-
bution Q(G) of cavity Green’s function with a very high
precision in the tails, beyond the scale M−1 set by the
sizeM of the population, we need to specify explicitly the
population dynamics approach [48, 62]: We store a pop-
ulation {Gl} ofM complex-valued elements Gl = al+ibl
(l = 1, . . . ,M), i.e., al = Re(Gl) and bl = Im(Gl). For
each iteration step, we pick k randomly chosen elements
Glj = alj + iblj from the population and draw a uni-
formly distributed random number ε for the local energy
according to (2). This allows us to calculate a new ele-
ment from (3). Since below we will access the imaginary

part of G seperately, we use (3) in the following explicit
form

a+ ib =

(
−ε− E −

∑k
j=1 alj

)
+ i
(∑k

j=1 blj + η
)

(
−ε− E −

∑k
j=1 alj

)2
+
(∑k

j=1 blj + η
)2

≡ fE+
∑k
j=1 alj ,

∑k
j=1 blj+η

(ε) , (8)

which implies the definition of fA,B(ε)

fA,B(ε) =
(−ε−A) + iB

(−ε−A)2 +B2
(9)

for convenience. The iteration step is completed by re-
placing one randomly chosen element by the new one.
This iteration is always performed until approximate con-
vergence of the population, as established by monitoring
mean, variance and few very small quantiles as well as
the full shape of the distribution. Naturally, the resolu-
tion of the approximated distribution, represented by the
population, is determined by the number of elementsM
in the population, as deeply investigated in [48].

Previous studies [6, 45, 48] have shown that in the lo-
calized phase, W > WL ≈ 18.2 (in the M → ∞ limit),
the iteration equations are unstable with respect to the
imaginary regulator η: Q(G) and P (G) are singular and
the average DoS vanishes in the η → 0+ limit. Con-
versely, in the metallic phase the probability distributions
converge to stable non-singular η-independent distribu-
tion functions, provided that η is sufficiently small.

For the distribution Q(b) of the imaginary part b ≡
ImG we aim at obtaining the distribution to a high pre-
cision, i.e., deep in the tails. For this purpose, we have
implemented a large-deviation approach, which is ex-
plained next. Standard large-deviation algorithms rely
on sampling of biased distributions and unbiasing the
obtained data in the end. Such approaches have been
widely used, e.g., to study the large-deviation properties
of random-graphs [63, 64], biological sequence alignments
[65], protein folding [66], random walks [67, 68], models
of transport [69, 70], the Kardar-Parisi-Zhang equation
[71], nonequilibrium work processes [72] and many more.
We have tried such an approach based on a bias here,
but were not able to see convergence of the used Markov
chains deep enough in the tails. For this reason, we have
developed a very different approach here.

To convey the main idea, we notice that for any given
set of randomly selected elements {Glj}, the next (and
only) step is to sample random energy values according to
the uniform distribution to obtain the probability of the
imaginary part b conditioned to this set. This means, for
the given set and given values of E and η, corresponding

to A = E +
∑k
j=1 alj and B =

∑k
j=1 blj + η, we have,

by using a standard property of the delta function δ(x)
and by using that the probability density for the local
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energies is simply 1/W ,

QA,B(b) =

∫ W/2

−W/2
δ
(
b− f̃A,B(ε̃)

) 1

W
dε̃ (10)

=
1

W

∫ W/2

−W/2

∑
l:f̃A,B(ε̃l)=b

1

|f̃ ′A,B(ε̃l)|
δ(ε̃− ε̃l)dε̃ ,

where f̃A,B = ImfA,B and ε̃l are those real-valued ze-

roes of b − f̃A,B(ε̃) which are located in the interval

[−W/2,W/2], and f̃ ′A,B(ε) is the derivative of f̃A,B with
respect to ε. The zeroes are simply to obtain, because
we have to solve only a quadratic equation, leading to
ε̃l = A±

√
B/b−B2.

Let us now assume that a arbitrary value b is given
(fixed), where we want to evaluate Q(b). The require-
ment that we only have to consider real-valued roots
leads immediately to b ≤ 1/B, i.e., QA,B(b) = 0 for
b > 1/B.1 This, on the other hand, means that to evalu-
ate Q(b), we could sample from the population such that
only values are considered which follow this condition,

i.e., where B ≤ 1/b, i.e.,
∑k
j=1 blj + η ≤ 1/b holds. A

simple way to achieve this restricted sampling is to sam-
ple values with blj ≤ 1/b − η > 0, since larger values
will immediately lead to Q(b) = 0. Still, because a sum

B =
∑k
j=1 blj + η is calculated, sometimes the combined

sample values will not meet the condition B ≤ 1/b, hence
this gives rise no contribution to Q(b) as well. But this
rejection happens much less frequently compare to sam-
pling from the full distribution.2 Thus, we restricted the
sampling of all k-tuples to the region ≤ 1/b − η and in-

cluded a bias [
∫ 1/b−η
0

Q̂(b̃)db̃]k (Q̂ is the approximation
of the true probability as given by the finite population)
to all values of QA,B(b) as calculated from Eq. (10). We
technically achieved the restricted sampling by once sort-
ing the population obtained in the standard population
dynamics according to the value of the imaginary part
bl and subsequently drawing uniformly inside the desired
range. Note that if the lmax’th element of the sorted pop-
ulation is the largest element which is inside the desired
range, the bias is simply (lmax/M)k. For each value of b
we were interested in, we performed Nest times this step
of estimating Q(b) and averaged over these estimates. In
Fig. 4 the algorithm is summarized.

1 This also follows directly from Eq. (8) because the imaginary part
can be bounded from above by the value obtained for (ε−A)2 =
0.

2 This could be improved even more by sampling the first element
such that bl1 ≤ 1/b− η, then sampling the second one such that
bl2 ≤ 1/b−η−bl1 etc, but this would increase the efficiency only
by an factor at most k (here k = 2), which we neglected, because
the final sampling is anyway very fast, order of few seconds on a
standard PC, as compared to the equilibration of the population,
which takes more than one day.

algorithm sampling Q(b)
begin

Initialize population of M members.
Iterate population using Eq. (8) until convergence
for b in desired range
begin

s = 0
for t=1 to Nest

begin
sample k elements {gli = ali + ibli} with bli ≤ 1/b− η
A = E +

∑k
j=1 alj , B =

∑k
j=1 blj + η

calculate QA,B(b) according to Eq. (10)

s = s+QA,B(b)× [
∫ 1/b−η
0

Q̂(b̃)db̃]k

end
print b, s/Nest

end
end

FIG. 4. Summary of the large-deviation sampling algorithm
for the distribution of the imaginary part of the cavity Green’s
function (see text).

V. RESULTS

We have applied the large-deviation approach de-
scribed above within computer simulations [73] to ob-
tain the distribution of the cavity Green’s function for
the Anderson model for the Bethe lattice with degree
k+1 = 3 with E = 0 and η = 0 for values of the disorder
parameter W ∈ [13, 17.3]. For the population dynamics
approach, we use a population size M = 107 (for which,
as discussed in Ref. [48] in great detail, the transition
point is expected to be shifted to slightly smaller value
of the disorder compared to theM→∞ limit). To speed
up convergence, since the imaginary parts bl of the ele-
ments Gl are typically small with increasing value of G,
we initalized the elements with random values uniformly
distributed for the real parts as al ∼ U(−1, 1) and for
the imaginary parts as bl ∼ 10−δU(0.5, 1.5). We used
δ = 0 (no special scaling) for W ≤ 16 and δ = 9 for
16 < W ≤ 17.4. For all values of W , we observed con-
vergence when iterating the population 104 times (i.e.,
104 ×M times Eq. (8) is evaluated). For the final esti-
mate of Q(b) we used Nest = 104 and considered loga-
rithmically spaced values of b ≥ 1.

The resulting distributions Q(b) for the imaginary part
b = ImG is shown in Fig. 5. Note that using the
large-deviation approach, probability densities as small
as 10−50 can be accesses with a very high precision, well
below any probability reached by a standard popula-
tion dynamics approach. To extract the correlation vol-
ume, we assume that the distribution follows the heuristic
shape

f(b) = f0b
−λ exp (−(b/Nc)

α) (11)

where the behavior for small values of ImG is governed
by a power decay with exponent λ and the tail behavior
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FIG. 5. (color online) Distribution Q(ImG) of the ImG of
cavity Green’s function for some values W ∈ [13, 17.3]. The
line shows the result of a fit according to Eq. (11) to determine
the correlation volume, see text.

by a stretched exponent with exponent α and scale Nc.
Note that we also tried the fitting from given in

Eq. (57) of Ref. [41], corresponding of the analytic predic-
tion of the supersymmetric treatment for the asymptotic
behavior of the tails of the probability distribution close
to WL. Such function fits equally well the data of Fig. 5.
However, it contains trade-off parameters for the corre-
lation volume, i.e., it is possible to obtain good fits to
the tail of the distributions over broader ranges of Nc for
suitably chosen combinations of the values of the other
parameters. Therefore, in order to obtain a more infor-
mative estimation of the correlation volume, we finally
only considered Eq. (11).

By fitting the (log of the) distributions using the
heuristic function (11) for the different values of W ,
we obtained the cut-off scale as a function of disorder
strength W . Note that for λ we obtained values near
1.5, compatible with the prediction of [36, 41]. We thus
fixed λ = 1.5 for all values of W , resulting in less noisy
data for Nc for the final fits. For the exponent α, we ob-
tained values in the range α ∈ [0.163(2), 0.208(2)] with
a decreasing trend for growing values of λ. The results
for Nc are shown in Fig. 6. We also show on the same
plot the estimation of the correlation volume extracted
from the non-monotonic behavior of qtyp obtained via
EDs (circles of Fig. 3, see also Fig. 2). This comparison
if very insightful for two reasons. (i) The largest correla-
tion volume obtained using the large-deviation approach
for W = 17.3 is about 5.8 × 1013 which is almost 246.
Thus, to observe such correlation volumes directly us-
ing EDs, one would have to treat RRGs of at least this
size, which is, comparing to the results shown in sec-
tion III, clearly infeasible with current methods. (ii) The
estimations of Nc obtained from the non-monotonic be-

havior of the spectral statistics and from the cut-off of
the tails of the probability distribution of the LDoS can
have a different prefactor A appearing in Eq. (12), and
asymptotically coincide only close enough to the Ander-
son transition. Far for the transition the two estimations
can lead to quite different results. Yet, Fig. 6 shows that
the two estimations of Nc are in surprisingly good agree-
ment even far below WL.

10
 1

10
10

 0.1  1  10

WL=17.61

ν=0.50 (fixed)

N
c

W
L
-W

e
c(WL-W)

-ν

 (sim)

e
c(WL-W)

-ν

 (all)
simul.

diag.

FIG. 6. (color online) Log of the correlation volume Nc
as a function of the distance of the disorder parameter W
from the critical point WL, as obtained from the cut-off of
the tails of Q(ImG) using the large-deviation approach (blue
crosses), and from the non-monotonic behavior of qtyp us-
ing EDs (turquoise circles, corresponding to the turquoise
circles of Fig. 3). The lines show the result of fits which
model the divergence of the scale at WL according to Eq. (12).
The upper line is when fitting the large-deviation data only,
while the lower line is for all data combined, which results
in WL = 17.61(3). Just here, since the data is plotted as
function of WL −W , a single value of WL is needed to see a
power-law behavior for W →WL. Thus, for fitting the large-
deviation data, the fixed value of the same WL = 17.61 was
used. Note that when WL is allowed to adjust here, a similar
value WL = 17.77(8) results, which is the value mentioned in
the text.

We have fitted the resulting scale values to the function

Nc(W ) = Aec/(WL−W )ν (12)

(actually by fitting logNc(W ) = logA + c(W − WL)ν

to log of the measured scale). When setting ν = 0.5,
we obtained estimates WL = 17.77(8) and c = 21(3)
(just statistical error bars). We also tried to fit with
the same function the combination of the large deviation
data and the data from the EDs extracted from the non-
monotonic behavior of qtyp, and we got WL = 17.61(3)
and c = 15(1), see also Fig. 6.
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VI. CONCLUSIONS AND PERSPECTIVES

In this paper we have introduced a new large-deviation
approach to investigate the critical behavior of the An-
derson model on the RRG. This approach allows us to
study the distribution of the imaginary part of the cav-
ity Green’s function down to very small probability tails
which are completely out of reach for standard numerical
techniques.

In fact, as shown in Sec. III and previously discussed in
Refs. [33, 34, 37], EDs clearly indicate the existence of a
characteristic crossover scale Nc(W ) governing the finite-
size effects of several observables and probes associated
to the statistics of the gaps and of the eigenfunctions’ am-
plitudes: For small sizes N � Nc these observables seem
first to flow towards towards the critical value upon in-
creasing N (which on the RRG correspond to the ones of
the localized phase [5, 40, 42, 43]), and then for N � Nc
eventually approach the values corresponding to a stan-
dard delocalized, fully ergodic, phase. Although the ED
estimation of Nc(W ) is compatible with an exponential
divergence of the correlation volume upon approaching
the Anderson transition, the numerical data are limited
to relatively small sizes, N ≤ 215, and thus can only ac-
cess a disorder range too far from the transition to allow
one for an accurate determination of its critical behavior.

On the contrary, the large-deviation extension of the
population dynamics approach allowed us to obtain accu-
rately the distribution of the imaginary part of the cav-
ity Green’s function to very small probability densities as
10−50 (in order to obtain them by ED one would need a
system size at least as large as N = 246 sites). The main
idea, is to first perform a standard population dynamics
till convergence. In a second step, a biased sampling of
the such obtained histogram is made. This works out,
because for given values of ImG, only a restricted range
of the histograms contributes, and the magnitude of this
range determines the bias used.

To extract the correlation volume Nc, we have fitted
the distributions by using a stretched exponential, which
describes very well the data. Our result provides the
strongest and more direct numerical evidence to date of
a divergence of the logarithm of the correlation volume
with a power of ν = 0.5 [35, 36, 39–42, 48]. The corre-
sponding transition value that we find is WL ≈ 17.77.

These results provide another transparent and coher-

ent argument supporting the idea that the Anderson
model on the RRG becomes fully ergodic in the whole
delocalized phase, in agreement with the recent results
of [33–35, 37] and with the predictions of [36, 39–42]
based on supersymmetric field theory. Nonetheless, er-
godicity establishes on a system size which becomes ex-
ponentially large as the localization transition is ap-
proached, and exceeds the system sizes accessible via
ED well before the localization transition, resulting in
a very wide crossover region in which the system looks as
if it were in a mixed (delocalized but non-ergodic) phase
for all practical purposes, i.e., on finite but large length
and time scales (volumes smaller than Nc(W ) and times
smaller than ~/N−1c (W )).

In the light of the analogy between Anderson lo-
calization on Bethe lattices and Many-Body Localiza-
tion [7, 14–20], the results presented above might help
us understand the highly non-trivial properties of the
delocalized phase of many-body interacting disordered
systems exhibiting MBL.

On the methodological side, our approach might
present a new type of large-deviation approach. It could
be helpful also for other models, where similar self-
consistent equations, like for field distributions, are ob-
tained. The key property is Eq. (10), which gives the
contribution to an arbitrary location b of the desired dis-
tribution Q as function of any given sample of the previ-
ously obtained population and as a function of the under-
lying disorder distribution. In case the sampling of the
population can be effectively restricted to the relevant
values, depending on b, and if the zeros of the delta func-
tion can be obtained efficiently, our proposed approach
should be useful.
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