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We study fractional Brownian motion (fBm) characterized by the Hurst exponent H. Using
a Monte Carlo sampling technique, we are able to numerically generate fBm processes with an
absorbing boundary at the origin at discrete times for a large number of 107 time steps even for
small values like H = 1/4. The results are compatible with previous analytical results that the
distribution of (rescaled) endpoints y follow a power law P+(y) ∼ yφ with φ = (1−H)/H, even for
small values of H. Furthermore, for the case H = 0.5 we also study analytically the finite-length
corrections to the first order, namely a plateau of P+(y) for y → 0 which decreases with increasing
process length. These corrections are compatible with the numerical results.
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I. INTRODUCTION

The Brownian motion plays a key role in modern the-
oretical physics, as it explains many effects observed in
physical systems. It is currently used in various fields of
science to understand, for instance, the trend of financial
markets, the dynamics of complex molecules within the
cell or the animals food-searching strategies. In order to
describe the fluctuations in these systems, it is often nec-
essary to go beyond the Brownian motion and consider
random walkers whose mean square displacement grows
over time in a nonlinear way. The term used to refer
to this situation is anomalous diffusion, in particular sub

diffusion if the mean square displacement grows less than
linearly, super diffusion if it is faster.

In practice, anomalous diffusion occurs whenever the
process x(τ) is self affine (at least at large time) with
a characteristic value of the so-called Hurst exponent

H 6= 1/2, so that the displacement grows with time as
τH . A remarkable example of process displaying anoma-
lous diffusion is the fractional Brownian motion (fBm),
originally introduced by Mandelbrot [1]. This process is
self-affine Gaussian process with 0 < H < 1. A Gaus-
sian process is completely defined by its autocorrelation
function, which for fBm writes as

〈x(τ)x(τ ′)〉 = τ2H + (τ ′)2H − |τ − τ ′|2H . (1)

The brackets 〈. . .〉 refer to an ensemble average over the
realizations of the Gaussian processes. The strength of
the correlation is described by the Hurst exponent. Note
that Eq. (1) implies 〈[x(τ1)−x(τ2)]

2〉 = 2|τ1−τ2|2H . This
means, H = 1/2 corresponds to the Brownian motion
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(standard diffusion), H > 1/2 to super-diffusive paths,
while H < 1/2 correspond to sub-diffusive paths.

Recently these random walks have found to be relevant
for many physical applications. Among them we mention
the fluctuations of a tagged monomer of an equilibrated
Rouse chain [2, 3] or of a tagged particle in the one di-
mensional system [4, 5]. In both cases the motion of the
tagged object can be modeled as a fractional Brownian
motion with H = 1/4. Other physical processes such as
the mechanical unzipping of DNA [6] or the transloca-
tion of biomolecules through nanopores [2, 7–9] can be
well described by fBm diffusion.

Despite the large number of cases where fBm is ob-
served, very little is known about the properties of this
process when is confined in a domain of the space, which
is the case for many of the above mentioned applications.
In presence of boundaries the translational invariance
is lost and analytical representations like the fractional
Langevin equation are of little help. In these situations,
numerical simulations remain the option to answer many
concrete questions arising from biology and physics [10–
12]. Here we present a new numerical method to study
these processes in presence of boundaries. We will study
in detail the case where there is an absorbing wall in
x = 0: we thus consider only the paths that remain pos-
itive up to the final time τ . Recently, analytical pre-
dictions [7, 13] were obtained for the distribution P+(y)
of rescaled motion endpoints y ∼ x/(τH) at end time
τ . A possible numerical strategy consists in the direct
sampling of L-step fBm paths x0, x1, . . . , xL at discrete
times, starting at x0 = 0. This strategy is demanding,
in particular for H < 1/2, since in presence of an ab-
sorbing boundary the success probability of generating a
non-absorbed trajectory is very small. Hence, such sim-
ulations were restricted to a small number L of discrete
steps. Here, using a Markov Chain approach, we were
able to generate long fBm processes up to L = 107 dis-
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crete steps for values such as H = 1/4, 1/2 and 2/3.
The outline of the remainer of the paper is as follows:

Next, we present our numerical approach and then we
present our numerical results: First - in order to verify
that our approach is working- we consider the case of
Brownian motion (H = 1/2), where analytical results for
the finite-length corrections are available. Furthermore
we study the cases H = 1/4 and H = 2/3 as examples
for the two regions H < 1/2 and H > 1/2. In both
cases the results are compatible with previous analyitcial
predictions. Finally, we summarize our results.

II. NUMERICAL METHODS

To generate fBm processes on a computer, we study
discrete-time random walks with suitable correlations. It
is useful to introduce the increments of the random walk,
namely ∆xl = xl+1 − xl. For Gaussian processes the
increments are Gaussian variables defined by their auto-
correlation function. Using Eq. (1) we can compute the
autocorrelation function of the Gaussian increments:

Cl+m,l ≡ 〈∆xl+m∆xl〉 (2)

= |m + 1|2H − 2|m|2H + |m − 1|2H ≡ C(m) ,

We note that this function is independent of the initial
time l. Matrices having this property are called Toeplitz

matrices. Moreover thus the increments are identical
Gaussian numbers with variance σ2 = 2 displaying power
law correlations. Taking the limit m → ∞ it is easy to
extract the power law decay of these correlations. For
super diffusive fBm (H > 1/2), C(m) is positively cor-
related with a decay as m−2(1−H). Positive correlation
means that there is a high probability to observe a long
sequence of increments of same sign. For sub diffusive
fBm (H < 1/2), C(m) is negatively correlated and decay
as −m−2(1−H). Negative correlation means that there is
a high probability to observe a long sequence of incre-
ments of oscillating sign.

The direct generation of L steps with increment corre-
lation Eq.(2) is straightforward, in principle. The start-
ing point is a vector ξ = (ξ0, ξ1, . . . , ξL−1) of L inde-
pendent and identically distributed (iid) Gaussian (mean
zero, variance one) numbers ∼ G(0, 1). For the uncorre-
lated case (H = 1/2) one could directly use the ran-

dom numbers, multiplied by
√

2 to obtain the right Cl,l,
as increments of the fBm processes, i.e., xuncorr(L) =
∑L−1

l=0

√
2ξl.

For the case H 6= 1/2, since C as a correlation ma-
trix is positive semi-definite, there exist a matrix A such
that C = A2. Thus, one could use ∆x = Aξ to obtain a
random vector with the desired property Eq. (2). Nev-
ertheless, this is too time consuming, since it requires
diagonalizing a L × L C matrix once (∼ L3 operations)
and, for each process, the multiplication with the L × L
matrix, A (∼ L2 operations) [26]. This is not feasible, in
practice, given the sizes L = 107 we study here.

Instead, we generate random increments which are ap-
proximately correlated according to Eq.(2) by generating
a periodic increment sequence of period L′, with L′ ≥ 2L.
The correlation of this periodic sequence are encoded in
a covariance matrix Cl,l+m = C(m) of size L′ × L′ built
using the original covariance C and defined as:

C(m) = C(m) for m = 0, . . . , L′/2 − 1 (3)

C(m) = C(L′ − m) for m = L′/2, L′ − 1 .

Toeplitz matrices displaying this periodicity are called
circulant matrices. For the actual analysis of the nu-
merical simulations we consider only the first L steps
∆x1,∆x2, . . . ,∆xL. If L is large, the correlation between
the first and the last increment is small and the periodic-
ity has no large influence. The advantage of this approach
is that the periodicity of the matrix C allows the appli-
cation of Fast Fourier Transformation (FFT) to generate
the fBms [14]. The FFT is performed in ∼ L′ log(L′) op-
erations, technically we use the GNU Scientific Library
(GSL) [15]. Let be ĉk the FFT of C(m) from Eq. (3),

i.e., ĉk =
∑L′

−1
m=0 C(m)e−2πi k

L′
m. Since C(m) is symmet-

ric and positive, the coefficients ĉk are real positive num-
bers. The generation of the correlated random numbers
works as follows.
(i) the starting point are L′ independent and identically
distributed (iid) Gaussian numbers (with zero mean and
variance one).

ξ = (ξ0, ξ1, . . . , . . . , ξL−1).

(ii) we define

δ̂k =
√

L′ĉkξk (k = 0, . . . , L′ − 1) (4)

which are real numbers as well and where the factor
√

L′

takes into account the correct normalization.
(iii) The vector of the increments is obtained after back

transforming the vectors of δ̂k:

δl =
1

L′

L′
−1
∑

k=0

δ̂ke2πi l

L′
k , (5)

and taking real and imaginary part:

∆xl = Re {δl} + Im {δl} (6)

with l = 1, 2, . . . , L′.
It is easy to check that these three steps lead to the

desired correlation. Using ξk = ξ∗k and 〈ξkξk′〉 = δk,k′

one arrives at 〈δx(∗)
l δx

(∗)
j 〉 = C(±i ± j) where the first

and second signs are + for the case of having δxl and
δxj on the left, respectively, and − for the conjugate
complex, respectively Thus, using Re(z) = (z + z∗)/2,
Im(z) = (z − z∗)/2i, and C(m) = C(−m) one obtains
finally, as desired

〈∆xl+m∆xl〉 =

1

4
〈(δl+m + δ∗l+m − iδl+m + iδ∗l+m)(δl + δ∗l − iδl + iδ∗l )〉

= C(m) .
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A numerical test of the method is shown in Fig. 1, which
proves that indeed the generated ranomd numbers follow
Eq. (2).
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FIG. 1: Correlation between increments. Shown are the
wanted function C(m) and the numerical data for L = 104.
The main plot is for H = 1/4, which the inset displays
H = 2/3.

For a direct simulation of fBm processes, one gener-
ates a vector of L′ real random numbers, constructs the
vector of complex numbers, ξ, uses the transformation
Eqs. (4),(6) to obtain the correlated increments ∆xl and
finally

x ≡ x(L) =

L
∑

l=1

∆xl (7)

Nevertheless, since we use an absorbing boundary at
x = 0, most of the time at least one of the intermediate

steps will visit the negative half axis, i.e.
∑ℓ

l=1 ∆xl < 0
(for some ℓ ≤ L), and the obtained value x(L) does not
contribute to the distribution P+(y). The probability
of being not absorbed, i.e., the persistence (or survival
probability), behaves like

S(x0 = 0, L) ∼ L−θ (8)

with θ being the persistence exponent known to be θ =
1 − H [3]. Hence, for the case L = 107 and H = 1/4,
which we study here, we obtain P0(L) ≈ 10−5. This
means, a direct simulation is not feasible.

To circumvent this problem, we performed a Markov-
chain Monte Carlo simulation with the configuration
space being the set of all feasible random vectors ξ. Fea-
sible means that the resulting fBm process (after FFT
to generate the correlation of the increments ∆x) is not

absorbed. The simulation must be initialized with an al-
lowed configuration, namely we start from a random vec-
tor ξ(0) and a corresponding correlated increment ∆x(0)

such that the resulting process is not absorbed. In prac-
tice, for H ≤ 1/2, we facilitate the generation of a feasible
initial configuration by sampling from a shifted Gaussian
G(ξ, 1) (ξ > 0) and repeat the search for an initial con-
figurations until one feasible increment vector is found.
This initial configuration is clearly biased, but does not
have influence on the final result since only after some
sufficient equilibration time we start to sample the ob-
servables.

Each Monte Carlo step ξ(t) → ξ(t+1) consists of chang-
ing a fraction p of randomly chosen entries of the config-
uration ξ(t), the new entries being iid G(0,1), resulting in
a trial configuration ξtrial. Then, again after using FFT
to introduce the correlation, we obtain ∆xtrial: if the re-

sulting fBm {
∑L̂

l=1 ∆̃xtrial
l } (L̂ = 1, . . . , L) is absorbed,

the trial configuration is rejected, i.e., ξ(t+1) = ξ(t). If
the resulting fBm is allowed, the trial configuration is
feasible, hence it is accepted, i.e., ξ(t+1) = ξtrial. This
approach satisfies detailed balance, hence converges to
the correct distribution: The distribution of the configu-
rations is given by a product of Gaussians over the space
of feasible configurations, i.e.,

P (ξ) =

L′

∏

i=1

(

1√
2π

exp(−ξ2
i /2)

)

Iξ

where the indicator function Iξ is 1 if ξ is feasible, i.e.,
the resulting fBm is not absorbed, and 0 else. Hence, if
a certain fraction p of the entries of ξ is replaced to yield
ξ′, the resulting change of weight is given by

w(ξ → ξ′) =
∏

j

′

(

1√
2π

exp(−ξ′2j /2)

)

Iξ′

where the product runs over the changed entries. This
change of weight is symmetric to the exchange ξ ↔ ξ′,
hence detailed balance is fulfilled: P (ξ)w(ξ → ξ′) =
P (ξ′)w(ξ′ → ξ).

The Markov chain in the configuration space
is reflected by the sequence of the endpoints
x(0)(L), x(1)(L), . . . of our Monte Carlo simulation.
Here we studied the statistics of the rescaled variable
y = x(L)/(σLH) Since we are interested in the behavior
of P+(y) near y = 0, we also used a bias b(y) = y−a

(a > 0), by imposing an additional Metropolis criterion
[16–18] and accepting a feasible configuration with
the probability paccept = min{1, b(ytrial)/b(y(t))}. This
drives the simulation into the range of interest. We
adjusted the fraction p of changed entries such that the
total acceptance probability of an MC step is near 0.5.
Hence, for each value H of the Hurst exponent and each
length L, we had to find a suitable value p = p(H,L)
empirically.

In Fig. 2 a sample trajectory in the space of (rescaled)
endpoints is shown for the case H = 1/2 and L = 107.
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FIG. 2: Sample trajectory of a Monte Carlo simulation: End-
point y(t) of a non-absorbed fBm (H = 1/2) as a function
of the MC time t. A bias ∼ y−1.2 is used to increase the
statistics near y = 0.

Via a bias b(y) ∼ y−1.2 the simulation is concentrated
near y ≈ 0.

Concerning equilibration of our Monte Carlo Simula-
tion, we found that typically, for the longest fBm pro-
cesses, after 1000 sweeps we do not find any sign of the
initial configuration. After disregarding this initial bunch
of Monte Carlo sweeps, we measured histograms [19] of
the rescaled endpoints of the processes. In case a bias is
applied, the histograms have to be multiplied by b−1 = ya

and normalized to get the final distributions P+(y).

III. RESULTS

We have performed simulations to generate fBms for
values of the Hurst exponent H = 1/4, H = 1/2 and
H = 2/3, of lengths L = 103, 104, 105, 106 and 107,
respectively. For the rescaling, we used a = 2 (H = 1/4),
a = 1.2 (H = 1/2) and a = 0.5 (H = 2/3). For each case,
we determined the parameter p, such that the acceptance
probability is (very roughly) about 0.5. The values we
used are shown in table I.

Note that for H = 1/4 and H = 1/2, we have restricted
the simulations to fBm processes with y > 0.0001 to pre-
vent the simulation being caught near y = 0 due to a
very small acceptance ration via the rescaling factor in
that region.

First, to verify our method, we studied the case of
standard random walks, H = 1/2. For this case it is
possible to know the first corrections to the continuum

L H = 1/4 H = 1/2 H = 2/3

103 0.010 0.030 0.40

104 0.020 0.020 0.40

105 0.020 0.020 0.20

106 0.010 0.020 0.10

107 0.015 0.015 0.05

TABLE I: Value of the Monte Carlo parameter p for different
lengths of the fBms and different values of the Hurst exponent
H.
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FIG. 3: Distribution P+(y) of endpoints for non-absorbed
fBms (Hurst exponent H = 1/2)

limit behavior (see Appendix):

P+(y, L) = f0(y) − c√
L

f1(y) + . . . (9)

where L is the number of increments, the constant c de-
pends on the increments distribution of the random walk.
For Gaussian numbers (zero mean, unit variance) we have

c = ζ(1/2)/
√

2π ∼ −0.582597 . . . and the scaling func-
tions are:

f0(y) = y e−y2/2 (10)

f1(y) =

(

1 − 2y

π

)

e−y2/2 .

The rescaled distributions P+(y) of the endpoints are
shown, together with the predictions of Eq.(9) valid for
large L, in Fig. 3. One is able to see strong finite-size
effects for small values y → 0, where a plateau is visible.
For increasing length L, the plateau decreases as c/

√
L

and the data approaches better and better the continuum
limit scaling function f0.
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We conclude that for a generic fBm for which first cor-
rections to the continuum limit behavior is not known,
the plateau should also vanish when the size of the system
is large and for very long walks (L = 107) the continuum
limit behavior is displayed over several order of magni-
tudes.
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FIG. 4: (color online) Distribution P+(y) of endpoints for
non-absorbed fBms (Hurst exponent H = 2/3)

Based on scaling arguments it has been conjectured [7]
that, in the continuum limit P+(y) vanishes as yφ with
φ = (1 − H)/H = θ/H for y → 0 , θ being the persis-
tence defined via Eq. (8). This conjecture was confirmed
by an epsilon expansion around the Brownian solution
obtained thanks to a field theory calculation [13]. The
numerical check of the conjecture for values of H far from
1/2 remains very challenging. We first consider the dis-
crete random walk with H = 2/3. In this case, since the
persistence is decreasing not very fast (θ = 1/3), numeri-
cal results were obtained for moderate lengths L = 2×104

by direct simulations [13], which were compatible with
the analytics. Here, we were able to study this case again.
Our results, up to a length of L = 107, confirm the ana-
lytics with much better accuracy, see Fig. 4.

Finally, we turn to the most difficult case whith H =
1/4 where we expect that P+(y) vanishes as y3 as y → 0.
Direct simulations on this process are not conclusive
and a scaling behavior ∼ y2 is consistent with the data
[20, 21]. Using our Markov chain approach we can see
the finite size effects remain important even for long pro-
cesses (see Fig. 5). Even if we are not able to extract
the correct continuum limit behavior, we can show that
the apparent scaling exponent grows with the size of the
system. When L = 107 the best fit give ∼ y2.59, much
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FIG. 5: (color online) Distribution P+(y) of endpoints for
non-absorbed fBms (Hurst exponent H = 1/4)

more close to the expected y3 behavior than previous
simulations.

IV. SUMMARY

We have introduced a Markov-chain Monte Carlo ap-
proach to study numerically fractional Brownian motion
in the presence of an absorbing boundary via generating
finite-step random walks with correlated disorder. Our
approach allowed us to study long walks up to L = 107

steps. For the test case H = 1/2 the result for the dis-
tribution P+(y) of the rescaled endpoints y of the walks
agrees in the limit L → ∞ with the exacty analytic result.
We also derived analytical expression for the fite-length
corrections, which turn also to be compatible with the nu-
merical results, better with increasing step number L. Fi-
nally, we studied the cases H = 1/4 and H = 2/3 where
we find for y → 0 a power law behavior P+(y) ∼ yφ.
For the case H = 2/3, the exponent is compatible with
the analytical prediction φ = (1 − H)/H. For the case
H = 1/4 we also find a finite-size dependece of the effec-
tive exponents with a strong trend towards the predicted
value φ = 3. In particular, from our results it is clear
that φ > 2.
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APPENDIX A: DERIVATION OF EQ. 8 AND EQ.

9

We consider a random walk starting at the origin. Its
position at discrete time steps evolves via

xn = xn−1 + ηn (A1)

starting from x0 = 0. The random variables ηn’s are in-
dependent and identically distributed noises, each drawn
from a symmetric and continuous probability density
function (pdf) f(η). Let pL(x) denote the probability
density that the particle arrives at x at step L while
staying above 0 at all intermediate steps. An exact ex-
pression for pL(x), or rather for its generating function,
is known explicitly for arbitrary jump density f(η) and
is given by [22]

∫

∞

0

dx e−λ x
∞
∑

L=0

pL(x) sL = φ(s, λ) (A2)

with

ϕ(s, λ) = exp

(

−λ

π

∫

∞

0

ln [1 − sf̂(k)]

k2 + λ2
dk

)

(A3)

where f̂(k) =
∫

∞

−∞
ei k η f(η) dη is the Fourier transform

of the noise density. Our goal is to extract the leading
(and subleading) scaling behavior of pL(x) for large L
from Eq. (A2).

To make progress, it is useful to consider an alternative
expression for φ(s, λ) derived in Ref. [23], valid for all
f(η)’s with a finite variance σ2 =

∫

∞

∞
η2 f(η) dη,

φ(s, λ) =
1

[
√

1 − s + σ λ
√

s/2]
×

× exp

[

−λ

π

∫

∞

0

dk

λ2 + k2
ln

(

1 − s f̂(k)

1 − s + s σ2k2/2

)]

.

(A4)

We next consider the scaling limit when x → ∞, L → ∞,
with the ratio y = x/

√
L fixed. In the Laplace place, this

corresponds to taking the limit λ → 0, s → 1, keeping
the ratio λ/

√
1 − s fixed. Taking this scaling limit in Eq.

(A4), one gets

φ(s, λ) → 1 − c λ√
1 − s + σ λ/

√
2

(A5)

where c is a constant with the following expression [23,
24]

c =
1

π

∫

∞

0

dk

k2
ln

[

1 − f̂(k)

σ2 k2/2

]

. (A6)

Substituting the scaling-limit expression of φ(s, λ) from
Eq. (A5) on the right hand side of Eq. (A2) and inverting
the Laplace transform with respect to λ gives,

∞
∑

L=0

pL(x) sL ≈
√

2

σ

[

1 +

√
2

σ
c
√

1 − s

]

e−
√

2 (1−s) x/σ ,

(A7)
valid in the scaling limit s → 1, x → ∞ but keeping the
product

√
1 − s x fixed. Next, one can invert this gener-

ating function with respect to s, using Cauchy’s inversion
formula. Skipping details, we find that the two leading
terms, in the scaling limit where x → ∞, L → ∞, but
keeping y = x/

√
L fixed, are given by

pL(x) ≈ 1

σ2
√

π L

[

y e−y2/2σ2 − c√
L

e−y2/2σ2

]

. (A8)

The conditional probability PL(x) (probability density
to reach the position x given that it has survived up to
L steps) is defined as

PL(x) =
pL(x)

∫

∞

0
pL(x) dx

. (A9)

Substituting the scaling behavior for pL(x) from Eq.
(A8) in the above definition, we find that PL(x) has the
following scaling behavior

PL(x) → 1√
L

P+(y, L) (A10)

with y = x/
√

L and

P+(y, L) = f0(y) − c√
L

f1(y) + O(1/L) (A11)

where

f0(y) =
y

σ2
e−y2/2σ2

(A12)

f1(y) = e−y2/2σ2 − 2

πσ
y e−y2/2σ2

(A13)

and the constant c is given by Eq. (A6). For the special

case of the Gaussian jump density, f(η) = e−η2/2/
√

2π
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(with σ2 = 1), one can evaluate the constant c in Eq.
(A6) explicitly [23]

c =
ζ(1/2)√

2π
= −0.582597 . . . (A14)

In this case, in particular, putting y = 0 we get

P+(0, L) ≈ − c√
L

=
0.582597 . . .√

L
, (A15)

which is consistent with our simulations.
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