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The distributions of thetimes to the first common ancestortmrca is numerically studied for an ecological
population model, theextended Moran model. This model has a fixed population sizeN . The number of
descendants is drawn from a beta distribution Beta(α, 2 − α) for various choices ofα. This includes also the
classical Moran model (α → 0) as well as the uniform distribution (α = 1). Using a statistical mechanics-
based large-deviation approach, the distributions can be studied over anextended range of the support, down
to probabilities like10−70, which allowed us to study the change of the tails of the distribution when varying
the value ofα ∈ [0, 2]. We find exponential distributionsp(tmrca) ∼ δtmrca in all cases, with systematically
varying values for the baseδ. For α = 0 andα = 1 the analytically know resultsδ = exp(−2/N2) and
δ = 2/3 are recovered, respectively.

PACS numbers:

I. INTRODUCTION

Population models [1] have attracted the attention in sci-
ence since many decades [2]. As for any probabilistic model,
one is interested in the behavior of random variables defined
through the model. In the present work the quantity of in-
terest is thetime to the most recent common ancestor, which
describes how fast a population evolves. Often, in exact cal-
culations as well as in numerical studies, one is restrictedto
studying averages (or fluctuations) of these quantities. Nev-
ertheless, to obtain a full description of a model, one would
like to obtain the full distribution. When performing numeri-
cal studies, sophisticated so calledlarge-deviation approaches
[3–9] can be used to obtain, with some additional numeri-
cal effort, probability distributions over a large fraction or
even the full range of the support. Here we apply a statisti-
cal mechanics-based large-deviation approache to obtain the
distribution of the time to the most recent common ancestor
for a certain class of population models. This allowed us to
calculate the distribution in a region where the probabilities
are as small as10−70.

A particular simple class of models was introduced by Can-
nings [10, 11]. These population models are simple because
they exhibit fixed population sizeN ∈ {1, 2, ...}. These mod-
els are characterized by a family of random variablesνi(t),
t ∈ Z = {. . . ,−1, 0, 1, . . .}, i ∈ {1, . . . , N}, whereνi(t) de-
notes the number of offspring of individuali of generationt.
Since we are not interested in the faith of selected individuals,
but only in the evolution of the structure of the population,it
is assumed that for each generationt the offspring variables
ν1(t), . . . , νN (t) are exchangeable. We consider a particular
subclass of the Cannings population models in which in each
generation only one of theN individuals, thesuper parent,
is allowed to have more than one offspring. More precisely,
our model is defined in terms of a family of random variables
UN (t)∈ {0, . . . , N}, which denotes the number of offspring
of the super parent in generationt. The model is defined as

follows. Fort ∈ Z andi ∈ {1, ..., N} define

µi(t) :=







1 if i ∈ {1, . . . , N − UN (t)},
UN (t) if i = N − UN (t) + 1,

0 if i ∈ {N − UN (t) + 2, . . . , N}
. (1)

Now let ν1(t), . . . , νN (t) be a random permutation of
µ1(t), . . . , µN (t). For each fixedt ∈ Z the random variables
ν1(t), . . . , νN (t) are then exchangeable and we interpretνi(t)
as the number of offspring of individuali of generationt of a
corresponding exchangeable Cannings model.

It is assumed that, for each fixedN ∈ N, the random
variablesUN (t), t ∈ Z, are independent and identically dis-
tributed. The most celebrated example is the standard Moran
model [12] corresponding toUN ≡ 2, in which the super par-
ent has two offspring, one other randomly selected individual
has no offspring and all the otherN − 2 individuals have ex-
actly one offspring.

Here, we consider an extended Moran model [13] for the
case whereUN = Nr and the random numberr ∈ [0, 1] is
drawn from a beta-distribution Beta(α, 2−α). The “reproduc-
tion parameter”α allowed us to interpolate between the case
where the super parent has only a small number of offspring
(α → 0) and between the case where the super parent takes
over the population very quickly (α → 2). Also the case of a
uniform distribution is included (α = 1).

II. ALGORITHMS

In the first of the following two subsections, we explain how
we simulated the extended Moran model in order to measure
the timetmrca to the most recent common ancestor. This is
pretty straightforward.

To obtain the distribution in ranges where the probabilities
are as small as10−70, we used a large-deviation algorithm
presented below in the second subsection. It consists of a sep-
arate level of a Markov Chain Monte Carlo (MCMC) simula-
tion, on top of the simulation of the Moran model.

We present it in a general way such that it can be applied to
the simulation an arbitrary “target” stochastic process. Each
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instance of a simulation of the target process is assumed to re-
sult in a measurable scalar quantityW of interest, exhibiting
a probability distributionP (W ) (below W will be the time
tmrca to the most recent common ancestor). On a digital com-
puter, stochastic processes can be simulated using (pseudo)
random numbers, denoted here as{ξi}. Usually, the (pseudo)
random number are computed on the fly while the target sim-
ulation is performed. Equivalently, one canprecompute(or
obtain in a different way) the random numbers before the ac-
tual simulation is performed [14]. Thissetof random numbers
is stored in a vectorξ = (ξ0, ξ1, . . . , ξM−1) of suitable length
M . While the actual target process is simulated, the random
numbers used are taken from the setξ. Therefore, ignoring
the dependence on initial conditions etc, the outcomeW of
the target process depends onlydeterministicallyon the set
of used randoms numbers, i.e.,W = W (ξ). Most general,
the entries ofξ are random variables uniformly distributed in
[0, 1], since any type of random numbers can be obtained from
them via suitable transformations.

Note that, to ensure a good convergence behavior of the al-
gorithm, one should use each entry ofξ always for the same
purpose, independently of other entries ofξ. This means, as
we will see below, some values ofξ will be ignored some-
times. This helps to ensure that a small change inξ leads
typically to a small change ofW , which is necessary for a
good behavior of the algorithms used below.

A. Simulating the extended Moran model

As introduced above, we assume that the random num-
bers, uniformlyU(0, 1) distributed, needed for performing
one run (population sizeN andtmax generations) are stored
in a vectorξ = (ξ0, ξ1, . . . , ξM−1) ∈ [0, 1)M of sizeM =
tmax × (N + 2). Thus, to simulate a single generation (up to)
N + 2 random numbers are needed.

Here, the evolution starts with the population at timet =
0. The evolving fate of the population is stored as vectors
a(t) = (a1(t), . . . , aN (t)) of numbers denoting the corre-
sponding ancestors at the initial timet = 0. Thus, the value
ai(t) denotes in generationt the ancestor of individuali from
generation 0. Therefore, the vector is initialized asai(0) = i
for i = {1, . . . , N}.

The evolution of the population is simulated forward in
time. In each generationt = 1, . . . , tmax, one super parent
n0 ∈ {1, . . . , N} is selected randomly and uniformly in the
population. For this purpose, the entryξt(N+2) is used. Thus,
the random selection is achieved via simply settingn0 =
⌊Nξt(N+2)⌋. Next, the numberUN (t) of offspring ofn0 is se-
lected via drawing a random number from the Beta(α, 2 − α)
distribution. Drawing this random number works using the
inversion method [15], for this purpose the entryξt(N+2)+1 is
used. The generated number is multiplied byN + 1 and the
floor is taken, resulting inUN (t) ∈ {0, . . . , N}. Note that if
UN (t) = 0 we define that still individualn0 will generate one
offspring by the next step: From the population at timet − 1
thoseN −UN (t) membersn have to be selected (uniformly),
which have exactly one offspring, i.e.,an(t) = an(t−1). For

this purpose the entriesξt(N+2)+2, . . . , ξt(N+2)+1+N−UN (t)

are used, i.e., none ifUN (t) = N . Thus, the subsequent
entriesξt(N+2)+1+N−UN (t), . . . , ξ(t+1)(N+2)−1 are not used
for the simulation. Finally, the membersn of the popula-
tion, which werenot among those selected for having exactly
one offspring, are selected as offspring of individualn0, i.e.,
an(t) = an0

(t− 1). By this, the calculation of generationt is
complete.

a(t)
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FIG. 1: Sample evolution for a population withN = 8 individuals.
Shown are the numbert of generations (left), the values of the an-
cestorsa1(t), . . . , aN (t), the selected super parentn0 for the next
generation, and the numberUN (t) of offspring of the super parent.
In this case, after four generations, all individuals of the populations
are descendants of individual 4 of the initial generation.

In Fig. 1 one sample evolution is shown. As visualized
in the figure, at some random time, for a finite population
sizeN and if the total simulation timetmax is large enough,
all members population are for the first time offspring of
the same individual which was present in the initial popula-
tion (t = 0). Thus, they all have a common ancestor, i.e.,
an(tmin) = a1(tmin) for n = 1, . . . , N . We say the in-
dividual dominatesthe population. Thus, looking from this
time backward to the initial configuration, which is statisti-
cally equivalent to looking forward, this time is the timetmrca

to the most recent common ancestor we are interested in, i.e.,
tmrca = tmin

Note that we measure the probabilityP (t) thatanyindivid-
ual dominates (for the first time) aftert = tmin steps, which
means we look forward in time. This probability is interest-
ingly the same as the probabilityP (idom. after t|idom.) that
aspecific(sayi = 1) individual dominates aftert steps, condi-
tioned that it is individuali which dominates after some time,
which basically means one starts at the time where one spe-
cific individual dominates, and looks backwards in time. This
can be seen easily, because:

P (t) =
∑

i

P (idom. after t|idom.)P (idom.) (2)

= NP (1 dom. after t|1 dom.)
1

N
(3)

= P (1 dom. after t|1 dom.) (4)

because by symmetry of all individualsP (idom.) = 1
N and
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the conditional probabilities are all the same, thus the sum
reduces to a multiplication withN .

One can measure, for example, the mean oftmrca and ob-
tain a (small-support) histogram viasimple sampling: One
generates, say,K times a vectorξ of random numbers, runs
each time the above described algorithm to generate a dynam-
ical of the evolution. Then one measures for each run the
resulting time where for the first time all members of the pop-
ulation originate from the same ancestor. Depending on the
valueK of independent runs, the obtained histogram will be
of better or worse quality. Typically, Probabilities of theorder
of 1/K can be measured, like10−9.

B. Large-deviation approach

Following the description so far, one is able to simulate the
evolution of the population in a standard way, only the gener-
ation of the random numbers and the actual simulation of the
stochastic target process are disentangled.

...1
(1) ξξ

2
(1) ξ

3
(1)

1
(2) ξξ

2
(2) ξ

3
(2) ...1...(0) ξξ

2
(0) ξ

3
(0)

ξ ξ ξW(    )(0)W(    ) W(    )(1) (2)

FIG. 2: Schematic representation of the evolution of the setξ(s)

(s being the Monta Carlo step), where each setξ(s) feeds a target
process (middle row, here a simulation of instance of the extended
Moran model) resulting in a measurable quantityW (here the time
to the most recent common ancestor). Thus,W depends in this way
deterministically only on the current setξ, i.e., W = W (ξ), while
the evolution ofξ = ξ(s) is governed by a stochastic process.

Nevertheless, this disentanglement allows one to perform
a Markov-chain Monte Carlo evolution for the setξ: ξ(0) →
ξ(1) → ξ2 → . . .. Thus, the target process is not performed
several times independently, but for a sequence of similar (cor-
related) setsξ(s) (s = 0, 1, 2, . . .), see Fig. 2. This may ap-
pear inefficient on the first sight since the measured quantities
W (ξ(0)), W (ξ(1)), W (ξ(2)), . . . will be correlated as well, in
contrast to using each time a new setξ, corresponding tosim-
ple sampling. On the other hand, the MC evolution allows
one to introduce a bias, such that the measured distribution
for W can be directed into a region of interest, e.g., where the
original probabilitiesP (W ) are very small. Here, since we
are interested in the distribution ofW for a large range of the
support, an exponential Boltzmann biase−W/Θ is used where
Θ is a freely adjustable parameter (a kind of artificial temper-
ature), which allows us to center the observed distributionin
different regions. Note that the choiceΘ = ∞ corresponds to

algorithm large deviation distributions
begin

Generate initial set vectorξ, each entry uniform in[0, 1]
Perform target process using set vectorξ
measure quantityW , i.e. W = W (ξ)
for trial = 1, . . . , nMC−trial

begin
ξ′ = change some entries ofξ randomly
measure quantityW (ξ′)
if W (ξ′) “valid”: acceptξ′ with Metropolis probability

min{1, exp(−(W (ξ′) − W (ξ))/Θ)}
end

end

FIG. 3: Summary of the large-deviation MC algorithm (see text)

the absence of the bias, i.e., to the simple sampling presented
in Sec. II A, only including correslations.

The bias is included in the following way via using the
Metropolis-Hastings algorithm. Each steps consist of chang-
ing a small number of randomly selected entries of the set
ξ(s−1), the value of each drawn again uniformly from[0, 1].
This results in a “trial set”ξ′ with corresponding quantity
W (ξ′). For some applications,W (ξ′) may not be “valid”
(e.g., when the timetmcra exceeds the maximum number
tmax of generations). In this case,ξ′ is immediatelyre-
jected, which meansξ(s) = ξ(s−1). Otherwise, the trial set
ξ′ is accepted(ξ(s) = ξ′) with the Metropolis probability
min{1, exp(−(W (ξ′) − W (ξ(s)))/Θ)}. If not accepted,ξ′

is also rejected. The algorithm is summarized in Fig. 3.
The performance of the algorithm is influenced by the num-

ber of entries of the setξ which are changed to generate the
trial setξ′. As a good rule of thump, this number should be
chosen such that the empirical acceptance rate of the trial con-
figuration is around 0.5.

Since the generation of the random numbers is disentangled
from the target process, this approach does not require the in-
troduction of a “reaction coordinate”, which is a quantity used
to guide certain types of large-deviation simulations. This is in
contrast to many standard large-deviation algorithms for dy-
namical equilibrium and non-equilibrium systems [16], like
transition-path sampling [17]. Thus, within the present ap-
proach the target process leading to the measurable quantity
W can be seen as a black box. This allows to perform large-
deviation measurements for almost arbitrary equilibrium and
non-equilibrium processes which can be simulated on a com-
puter using (pseudo) random numbers.

In Fig. 4 two sample evolutions oftmrca are shown as a
function of the numbers of Monte Carlo steps. Both evo-
lutions are for a population sizeN = 200, reproduction pa-
rameterα = 1 and MC temperatureΘ = −2.5. The negative
temperature results in value oftmrca which are larger than typ-
ical values for this choice ofN andα. Note that the two data
sets start from opposite side: one set is for a initial config-
uration vectorξ(0) which is drawn independently in[0, 1)M .
This corresponds to the typical behavior. The other vector is
drawn such that it exhibits a preference for large values of
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FIG. 4: Timetmrca to most recent common ancestor as function of
the Monte Carlo times for population sizeN = 200, reproduction
parameterα = 1, sampling temperatureΘ = −2.5 for two different
initial start configurationξ(0): one completely random and one with
a bias towards larger values oftmrca.

tmrca. This is achieved by sampling the entries which are re-
sponsible for drawing the number of offspring not uniformly
in the interval[0, 1] but in a smaller interval[0, 0.15]. In spite
of the different initial conditions, after a while the valueof the
measured quantitytmrca agree within the range of the fluctua-
tions. This indicates that the Markov chain has “forgotten”its
initial condition, i.e., can be considered asequilibrated.

For each value ofΘ, one obtains a distribution which in-
cludes the original distribution under the biase−W/Θ. There-
fore it is related to the original distribution [6] via

P (W ) = eW/ΘZ(Θ)PΘ(W ) (5)

whereZ(Θ) is the normalization constant ofPΘ(W ), which
can be determined from the numerical data, as explained
next. By performing the simulation for suitable chosen val-
ues ofΘ, which have to be determined experimentally, one
can cover a broad range of the desired distributionP (W ). If
this is done such that the resulting distributionsPΘ(W ) over-
lap for neighboring values of the temperature, sayΘ1 and
Θ2, one can reconstruct the relative normalization constants
from eW/Θ1Z(Θ1)PΘ1

(W ) = eW/Θ2Z(Θ2)PΘ2
(W ). Actu-

ally, several values ofW in the windows[Wmin
Θ2

,Wmax
Θ1

] of
overlap are considered and the mean-square difference in this
window between the distributionsP (W ) obtained from (5)
is minimized to obtain the “optimum” relative normalization
constantZ(Θ1)/Z(Θ2). This “gluing together” of the dis-
tributions of different values ofΘ is similar to the approach
of Ferrenberg and Swendsen [18] (where the reweighting was
not to infinite temperature, like here, but to finite temperatures
close to the sampled ones). The last missing constraint is ob-
tained from the overall normalization ofP (W ) which then
results in all normalization constants. Details can be found in
Ref. [6], a generalization is explained in Ref. [19].

III. RESULTS

Simulation have performed for different population sizes
N , different values of the reproduction parameterα and vari-
ous temperaturesΘ. The values of different temperatures for
a given combinationN,α ranged from two to seven.

For each combination of these parameters, the number of
how many of the entries of the configuration vectorξ were
redrawn to obtain the trial vector, was somehow adopted. As
a rule of thump (often used for Monte Carlo simulation), this
amount of change was chosen such that the acceptance rate
of the Metropolis steps was roughly near 0.5. Note that the
numbercsp of changes for the entries ofξ which are respon-
sible for selecting the super parent, for selecting the number
of offspring (co), and for selected the one-offspring parents
(c1), were tuned separately. The reason is that the amount of
change for super parent entries and numbers of offspring en-
tries have a higher influence on the acceptance rate than the
amount of change for the one-offspring parent entries.
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FIG. 5: Mean timetmrca to most recent common ancestor as function
of the population sizeN , for different values of the reproduction
parameterα.

Using simple-sampling, we measured the mean of the time
tmrca to the most recent common ancestor as a function of
the population sizeN . The result is shown in Fig. 5 using
a logarithmically-scaledN -axis. When ignoring very small
values ofN the data follows straight lines very well, meaning
that it is described well by a logarithmic growth. This matches
an analytical calculation for the present case [22] very well.

With increasing value ofα, i.e., when the distribution of
the number of decedents shifts to larger fractions of the pop-
ulation, the meantmrca decreases in particular the slope. We
have fitted the data to functiona + b log(N), for the different
values ofα. The result is shown in Fig. 6 as a function of
2 − α. Note that forα = 1 we obtainedb = 1.002(4) which
is compatible withb = 1.
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FIG. 6: Fit parameterb when fittinga+b log(N) N : population size)
to the mean timetmrca to most recent common ancestor as function
of the population sizeN , as a function of2−α (with α being the re-
production parameter). The inset shows the behavior ofa as function
of 2 − α:

In the log-log plot, a straight line is visible forα → 2,
meaning thatb converges to zero. Comparably,a appears to
converge to a finite value near 1 (see inset of Fig. 6). This is
reasonable because forα → 2 the distribution of the number
of descendants converges to the case where the super parent
takes over the full population in one generation, independent
of the size of the population, which meanstmcra = 1 with
a = 1 andb = 0.

Next, we study the full distribution oftmrca, see Fig. 7 for
the caseα = 1, i.e., the uniform distribution, and different
population sizesN . Using the large-deviation approach, we
could measure the distribution over a large range of the sup-
port. Apparently these tails exhibit an exponential shape.We
fitted these tails to functions∼ δtmrca for all values ofN . We
obtainedδ = 0.668(2) (N = 50), δ = 0.665(1) (N = 100),
δ = 0.668(1) (N = 500) (The error bars are just statistical
error bars). All these values are very close to the exact value
[23] δ(1) = 2/3 and are within the fluctuations not depend-
ing on the population size. Thus, even small population sizes
are suitable for obtaining results close to theN → ∞ limit,
if the tails of the distribution are accessible. For this reason,
we proceed with results forN = 100, for various values of
α ∈ [0, 2].

In Fig. 8 the distributions for three different values ofα and
a population size ofN = 100 are shown. Again, the tails
of the distributions can be well fitted to exponential functions
∼ δtmrca for all values ofα. We did this for all values ofα
which we have studied.
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FIG. 7: Distribution of the timetmrca to the most recent common
ancestor for reproduction parameterα = 1 and three different popu-
lation sizesN = 50, N = 100 andN = 500. For better visibility,
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fitting the tails of the distributions to exponential functions, respec-
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FIG. 8: Distribution of the timetmrca to the most recent common
ancestor for population sizeN = 100 and two example values of the
reproduction parameterα.

In Fig. 9, the resulting behavior ofδ as a function ofα is
shown. With increasing value ofα, i.e., when the distribution
of the number of offspring of the super parent is more and
more located at large values, the value ofδ decreases, corre-
sponding to smaller times it takes for one individual to dom-
inate the full distribution. Thus, forα → 2 we obtainδ → 0
corresponding to antmrca = 1.
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FIG. 9: Value of the baseδ of the tailP (tmrca) ∼ δtmrca of the distri-
bution of the time to the most recent common ancestor as a function
of the reproduction parameterα. The value for the standard Moran
model (corresponding toα → 0) is exp(−2/N2), which is shown as
square symbol. The horizontal line indicates the exact valueδ = 2/3
for α = 1.

For the opposite limitα → 0 the model converges to
the classical Moran model [12]. Here, the distribution of
2tmrca/N

2 follows (see Eq. (53) and below in Ref. [20]) in
the tails a simple exponential distributionexp(−t). This cor-
responds to a valueδ = exp(−2/N2) which evaluates for the
present case (N = 100) to δ = 0.995, i.e. very close to 1, as
shown in the figure.

IV. SUMMARY AND DISCUSSION

We have studied the extended Moran model for a
beta(α, 2 − α)-distribution for the fraction of the population

which descends from the super parent. In particular we have
studied the timetmrca to the most-recent common ancestor.
The typical behavior (like the mean) of this quantity can be
readily studied using standard numerical simulations.

In order to describe the statistics of this model to a large ex-
tend, we investigated not only the typical behavior but alsothe
distribution oftmrca towards the tails. To access these tails nu-
merically, we had to use a statistical mechanics-based biased
sampling approach, which is based on a Markov-chain evo-
lution of a vector of uniformly distributed random numbers
from the interval[0, 1], respectively, seen as an input vector to
an arbitrary stochastic process.

We found that the mean timetmrca depends for all values
α < logarithmically on the population size and converges to
a constant forα → 2. The distribution oftmrca shows an
exponential behavior in the tails. For the casesα = 1 and
α = 0 both mean as well as tail behavior are compatible with
previous analytical results.

This work shows that using sophisticated sampling tech-
niques, the distributions of measurable quantities in popula-
tion models can be studied over large ranges of the support.
This allows one to access results in regions where no ana-
lytical results are available, as here for the extended Moran
model. It would be interesting to apply such techniques to
more refined models, such models with varying population
size, or models having a spatio-temporal evolution.
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[13] T. Huillet and M. Möhle, Theor. Popul. Biol.87, 5–14 (2013).
[14] G. E. Crooks and D. Chandler, Phys. Rev. E64, 026109 (2001).
[15] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,

M. Booth, and F. Rossi,GNU Scientific Library Reference Man-
ual (Network Theory Ltd., Bristol, UK, 2006).

[16] J. T. Berryman and T. Schilling, J. Chem. Phys.133, 244101
(2010).

[17] C. Dellago, P. G. Bolhuis, F. S. Csajka, and D. Chandler, J.
Chem. Phys.108, 1964 (1998).

[18] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett.63,
1195 (1989).

[19] M. R. Shirts and J. D. Chodera, The Journal of Chemical
Physics129, 124105 (2008).

[20] T. Huillet, Math. Popul. Stud.23, 164 (2016).



7

[21] T. Huillet, Journal of Statistics: Advances in Theory and Appli-
cations7, 85 (2012).

[22] The mean is stated in general in Ref. [21] after Eq. (37), see
page 121. For the present case one has to perform a short cal-

culation by using the corresponding measure which results in a
log(N) dependence.

[23] See bottom of page 145 of Ref.[21].


