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The distributions of théimes to the first common ancesty... is numerically studied for an ecological
population model, thextended Moran modelThis model has a fixed population si2é. The number of
descendants is drawn from a beta distribution Beta — «) for various choices of. This includes also the
classical Moran modelo( — 0) as well as the uniform distributiory(= 1). Using a statistical mechanics-
based large-deviation approach, the distributions can be studied oestearded range of the support, down
to probabilities likel0~"°, which allowed us to study the change of the tails of the distribution when \gryin
the value ofa € [0,2]. We find exponential distributions(tmrca) ~ 3" in all cases, with systematically
varying values for the bas& Fora = 0 anda = 1 the analytically know result§ = exp(—2/N?) and
0 = 2/3 are recovered, respectively.

PACS numbers:

I. INTRODUCTION follows. Fort € Z andi € {1, ..., N} define
1ifie{l,....N—Un(t),
pi(t) == q Un(t) ifi=N—Un(t) +1, . (D)
Population models [1] have attracted the attention in sci- 0ifie{N-Un(t)+2,...,N}
ence since many decades [2]. As for any probabilistic model )
one is interested in the behavior of random variables defineBlow let v1(t),....vx(t) be a random permutation of
through the model. In the present work the quantity of in-#1(t), -, un(t). For each fixed € Z the random variables
terest is thaime to the most recent common ancestanich ~ V1(t) - -, ¥ (t) are then exchangeable and we interpét)

describes how fast a population evolves. Often, in exaet cal@S the number of offspring of individuabf generatiort of a
culations as well as in numerical studies, one is restritted COrresponding exchangeable Cannings model.

studying averages (or fluctuations) of these quantitiess-Ne It is assumed that, for each fixed < N, the random
ertheless, to obtain a full description of a model, one wouldvariablesUx (t), t € Z, are independent and identically dis-
like to obtain the full distribution. When performing numeri tributed. The most celebrated example is the standard Moran
cal studies, sophisticated so calladye-deviation approaches model [12] corresponding ty = 2, in which the super par-
[3-9] can be used to obtain, with some additional numeri-€nt has two offspring, one other randomly selected indaidu
cal effort, probability distributions over a large fractior ~ has no offspring and all the othéf — 2 individuals have ex-
even the full range of the support. Here we apply a statisti&Ctly one offspring.

cal mechanics-based large-deviation approache to obitain t Here, we consider an extended Moran model [13] for the
distribution of the time to the most recent common ancestofase wher&/y = Nr and the random number < [0, 1] is

for a certain class of population models. This allowed us toirawn from a beta-distribution Beta(2 —«). The “reproduc-

calculate the distribution in a region where the probabgit tion parametert allowed us to interpolate between the case
are as small a&0~7". where the super parent has only a small number of offspring

(e — 0) and between the case where the super parent takes
over the population very quicklyn( — 2). Also the case of a

A particular simple class of models was introduced by Can{niform distribution is includedd( = 1).
nings [10, 11]. These population models are simple because
they exhibit fixed population siz¥ € {1, 2, ...}. These mod-
els are characterized by a family of random variablgs),
teZ=4...,-1,0,1,...},i € {1,...,N}, wherey,(t) de-
notes the number of offspring of individuabf generatiorr. In the first of the following two subsections, we explain how
Since we are not interested in the faith of selected indafislu  we simulated the extended Moran model in order to measure
but only in the evolution of the structure of the populatiin, the timet,,,., to the most recent common ancestor. This is
is assumed that for each generatiotie offspring variables pretty straightforward.

v (t),...,vn(t) are exchangeable. We consider a particular To obtain the distribution in ranges where the probabditie
subclass of the Cannings population models in which in eachre as small as0~"°, we used a large-deviation algorithm
generation only one of th&/ individuals, thesuper parent  presented below in the second subsection. It consists @f-a se
is allowed to have more than one offspring. More preciselyarate level of a Markov Chain Monte Carlo (MCMC) simula-
our model is defined in terms of a family of random variablestion, on top of the simulation of the Moran model.

Un(t)e {0,..., N}, which denotes the number of offspring  We present it in a general way such that it can be applied to
of the super parent in generation The model is defined as the simulation an arbitrary “target” stochastic procesacte
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instance of a simulation of the target process is assumes to rthis purpose the entrie§ v 2)12, - - §¢(N+2)+1+N—Un (1)
sult in a measurable scalar quanfiy of interest, exhibiting are used, i.e., none #y(t) = N. Thus, the subsequent
a probability distributionP (1) (below W will be the time  entriesé,(ni2)+14N—Ux () - - - > E(41)(N+2)—1 are not used

tmrea t0 the most recent common ancestor). On a digital comfor the simulation. Finally, the members of the popula-
puter, stochastic processes can be simulated using (Pseud@n, which werenotamong those selected for having exactly
random numbers, denoted here{gs}. Usually, the (pseudo) one offspring, are selected as offspring of individugl i.e.,
random number are computed on the fly while the target sima,, (t) = a,, (t — 1). By this, the calculation of generatioris
ulation is performed. Equivalently, one carecomputgor  complete.

obtain in a different way) the random numbers before the ac-

tual simulation is performed [14]. Thigetof random numbers t a(t) no Uy
is stored in a vectof = (£, &1, . . ., Ea—1) Of suitable length 0 1 23456738 4 3
M. While the actual target process is simulated, the random '_|_|
numbers used are taken from the etTherefore, ignoring 1 143446728 6 2
the dependence on initial conditions etc, the outcdmef
the target process depends odgterministicallyon the set |—|
of used randoms numbers, i.&l] = W({). Most general, 2 14346678 2 4
the entries of are random variables uniformly distributed in | I I |
[0, 1], since any type of random numbers can be obtained from 3 14346474 6 5
them via suitable transformations. |

Note that, to ensure a good convergence behavior of the al- 4 Lll 4 [ll 4 L lll Lll 4

gorithm, one should use each entryéoélways for the same

purpose, independently of other entriesofThis means, as

we will see below, some values ¢fwill be ignored some- FIG. 1: Sample evolution for a population wiffi = 8 individuals.
times. This helps to ensure that a small changé leads  Shown are the numberof generations (left), the values of the an-
typically to a small change of’, which is necessary for a cestorsai(t),...,an(t), the selected super paremi for the next

good behavior of the algorithms used below. generation, and the numb&iy () of offspring of the super parent.
In this case, after four generations, all individuals of the populations

are descendants of individual 4 of the initial generation.

A. Simulating the extended Moran model . Lo . .
g In Fig. 1 one sample evolution is shown. As visualized

in the figure, at some random time, for a finite population

As introduced above, we assume that the random nuUMsize v and if the total simulation timé,,.. is large enough,
bers, uniformlyU(0, 1) distributed, needed for performing 4| members population are for the first time offspring of
one run (population siz&/ andzy.. generations) are stored he same individual which was present in the initial popula-

in a vectors = (o, &1,.--,6m-1) € [0,1)M of sizeM = {ion (¢ = 0). Thus, they all have a common ancestor, i.e.,
tmax X (N + 2). Thus, to simulate a single generation (up to) an(tmin) = a1(tmm) for n = 1,...,N. We say the in-
N + 2 random numbers are needed. dividual dominatesthe population. Thus, looking from this

Here, the evolution starts with the population at time-  time backward to the initial configuration, which is statist
0. The evolving fate of the population is stored as vectorsally equivalent to looking forward, this time is the tifig.ca

a(t) = (ai(t),...,an(t)) of numbers denoting the corre- g the most recent common ancestor we are interested in, i.e.

sponding ancestors at the initial time= 0. Thus, the value 4 4

a;(t) denotes in generatianthe ancestor of individualfrom Note that we measure the probabilt) thatanyindivid-

generation 0. Therefore, the vector is initializedia®) = i yal dominates (for the first time) after= ¢,,;, steps, which

fori ={1,...,N}. means we look forward in time. This probability is interest-
The evolution of the population is simulated forward in jngly the same as the probabilifj(i dom. after ¢|i dom.) that

time. In each generatioh= 1,...,{max, ONe super parent aspecifisay: = 1) individual dominates aftersteps, condi-

no € {1,..., N} is selected randomly and uniformly in the tioned that it is individuat which dominates after some time,

population. For this purpose, the enfiiyy ) is used. Thus, \hich basically means one starts at the time where one spe-

the random selection is achieved via simply setting =  cific individual dominates, and looks backwards in time.sThi

| N&t(n+2) |- Next, the numbet/x (t) of offspring ofng isse-  can be seen easily, because:
lected via drawing a random number from the Bet&(— «)

distribution. Drawing this random number works using the

inversion method [15], for this purpose the enffyy 1 2)41 is P(t)
used. The generated number is multiplied/®y+ 1 and the

Z P(idom. after t|i dom.)P(i dom.)  (2)

floor is taken, resulting i/ (t) € {0,...,N}. Note that if 1
Un(t) = 0 we define that still individuak, will generate one = NP(ldom.after¢|1dom.) ®)
offspring by the next step: From the population at tiime 1 = P(1dom. after t|1 dom.) (4)

thoseN — Uy (t) members: have to be selected (uniformly),
which have exactly one offspring, i.e.,(t) = a,(t—1). For  because by symmetry of all individual¥(i dom.) = % and



the conditional probabilities are all the same, thus the suni!gorithm large deviation distributions

reduces to a multiplication with. beg(';” nitial H orm i
One can measure, for example, the mean,of, and ob- enerate initial set vectday, eac entry uniform if0, 1]
. . . . Perform target process using set vegtor

tain a (small-support) histogram vEmple sampling One measure quantityy’, i.e. W — W (¢)

generates, say{ times a vectog of random numbers, runs ¢ il — 1. ... navo ol

each time the above described algorithm to generate a dynam- begin T

ical of the evolution. Then one measures for each run the ¢ = change some entries 6frandomly

resulting time where for the first time all members of the pop- measure quantityy’ (¢')
ulation originate from the same ancestor. Depending on the  if W(¢') “valid”: accept¢’ with Metropolis probability
value K of independent runs, the obtained histogram will be min{1, exp(—(W (&) = W(£))/0)}
of better or worse quality. Typically, Probabilities of theder end
of 1/K can be measured, like) 2. end
B. Large-deviation approach FIG. 3: Summary of the large-deviation MC algorithm (see text)

Following the description so far, one is able to simulate the

evolution of the population in a standard way, only the generthe absence of the bias, i.e., to the simple sampling predent

ation of the random numbers and the actual simulation of thén Sec. Il A, only including correslations.

stochastic target process are disentangled. The bias is included in the following way via using the
Metropolis-Hastings algorithm. Each stegonsist of chang-
ing a small number of randomly selected entries of the set

(000 ] [0 ] [200 ] ¢=1 | the value of each drawn again uniformly frgfh 1].
This results in a “trial set’¢’ with corresponding quantity

W (). For some applicationsy (¢') may not be “valid”

! ] |
(e.g., when the timée,,.., exceeds the maximum number
tmax Of generations). In this casé; is immediatelyre-
I_T H jected which meang®) = ¢(s=1), Otherwise, the trial set
¢ is accepted(¢(®) = ¢’) with the Metropolis probability

v v V min{1, exp(—(W (&) — W(£()))/©)}. If not acceptedg’
_ _ _ is also rejected. The algorithm is summarized in Fig. 3.
The performance of the algorithm is influenced by the num-
ber of entries of the s&t which are changed to generate the

FIG. 2: Schematic representation of the evolution of thegést  tfial set¢’. As a good rule of thump, this number should be
(s being the Monta Carlo step), where each &ét feeds a target Cchosen such that the empirical acceptance rate of the éral ¢
process (middle row, here a simulation of instance of the extendefiguration is around 0.5.
Moran model) resulting in a measurable quantity (here the time Since the generation of the random numbers is disentangled
to the most recent common ancestor). THiSdepends in thisway  from the target process, this approach does not requir@ihe i
deterministically only on the current sgti.e., W = W (¢), while  troduction of a “reaction coordinate”, which is a quantised
the evolution of = ¢ is governed by a stochastic process. to guide certain types of large-deviation simulations.sTin
contrast to many standard large-deviation algorithms fer d
Nevertheless, this disentanglement allows one to performamical equilibrium and non-equilibrium systems [16] elik
a Markov-chain Monte Carlo evolution for the set¢(®) —  transition-path sampling [17]. Thus, within the present ap
€M - ¢2 - .. Thus, the target process is not performedproach the target process leading to the measurable guantit
several times independently, but for a sequence of sintitar (W can be seen as a black box. This allows to perform large-
related) setg(®) (s = 0,1,2,...), see Fig. 2. This may ap- deviation measurements for almost arbitrary equilibriurd a
pear inefficient on the first sight since the measured quesitit non-equilibrium processes which can be simulated on a com-
W(E©), W(eW), W(®), ... will be correlated as well, in  puter using (pseudo) random numbers.
contrast to using each time a new §etorresponding tgim- In Fig. 4 two sample evolutions df,,,., are shown as a
ple sampling On the other hand, the MC evolution allows function of the numbegr of Monte Carlo steps. Both evo-
one to introduce a bias, such that the measured distributiolutions are for a population siz& = 200, reproduction pa-
for W can be directed into a region of interest, e.g., where theametera = 1 and MC temperatur® = —2.5. The negative
original probabilitiesP (V) are very small. Here, since we temperature results in value©f,.. which are larger than typ-
are interested in the distribution &f for a large range of the ical values for this choice oV anda. Note that the two data
support, an exponential Boltzmann bias’/® is used where sets start from opposite side: one set is for a initial config-
O is a freely adjustable parameter (a kind of artificial temper uration vector¢(?) which is drawn independently o, 1)".
ature), which allows us to center the observed distribuition This corresponds to the typical behavior. The other vestor i
different regions. Note that the choie= oo corresponds to drawn such that it exhibits a preference for large values of




200 %ﬂt #a% E I1l. RESULTS
*ﬁﬁ Simulation have performed for different population sizes
150 N, different values of the reproduction parameteand vari-
ous temperature®. The values of different temperatures for
long + a given combinationV, « ranged from two to seven.

For each combination of these parameters, the number of
how many of the entries of the configuration vecfowere
redrawn to obtain the trial vector, was somehow adopted. As
a rule of thump (often used for Monte Carlo simulation), this
amount of change was chosen such that the acceptance rate
of the Metropolis steps was roughly near 0.5. Note that the
numberc,, of changes for the entries gfwhich are respon-
sible for selecting the super parent, for selecting the rermb

0 10000 20000 30000 of offspring (), and for selected the one-offspring parents
s (c1), were tuned separately. The reason is that the amount of
change for super parent entries and numbers of offspring en-
tries have a higher influence on the acceptance rate than the
FIG. 4: Timet.... to most recent common ancestor as function of amount of change for the one-offspring parent entries.
the Monte Carlo times for population sizeV = 200, reproduction

ter a

100 | random O

50

0

parametery = 1, sampling temperatur® = —2.5 for two different T T
initial start configuratiort(?): one completely random and one with 80 - a=0.25 |
a bias towards larger valuesf, .. a=0.50 = )
70 a=0.75 = /,?"/._
a=1.00 = e

tmrea. This is achieved by sampling the entries which are re- 60 | 0=1.25 e .
sponsible for drawing the number of offspring not uniformly a=1.50 o T
in the interval[0, 1] but in a smaller intervgd, 0.15]. In spite Ag 50 | cx=1.75;}_-;_*,,.~ T
of the different initial conditions, after a while the valakthe £ 40 b j,,,--/"" |
measured quantithf,,.., agree within the range of the fluctua- Vv -
tions. This indicates that the Markov chain has “forgotti&s” 30 F e
initial condition, i.e., can be consideredexuilibrated e

For each value 06, one obtains a distribution which in- 20w e v 1
cludes the original distribution under the bias’V/©. There- 10 - T
fore it is related to the original distribution [6] via . g o & Z ; . .

P(W) = "/© 2(©) Po (W) ©) 0ol e pe o

whereZ(0) is the normalization constant &l (W), which N

can be determined from the numerical data, as explained

next. By performing the simulation for suitable chosen val- _ _
ues of©®, which have to be determined experimentally, OneFIG. 5: Mean tllm(-:tm.rca to most'recent common ancestor as fungtlon
can cover a broad range of the desired distribufigi’). If of the population sizeV, for different values of the reproduction
this is done such that the resulting distributidhs(11) over- parametet:.

lap for neighboring values of the temperature, €y and

©,, one can reconstruct the relative normalization constants Using simple-sampling, we measured the mean of the time
from /€1 Z(0,)Po, (W) = eV/©2Z(0,) Po,(W). Actu-  tmrca 10 the most recent common ancestor as a function of
ally, several values ofV in the windows[W(g{;“, W(gllaX] of the population sizeV. The result is shown in Fig. 5 using
overlap are considered and the mean-square differencésin tha logarithmically-scaledV-axis. When ignoring very small
window between the distributionB (1) obtained from (5) values ofN the data follows straight lines very well, meaning
is minimized to obtain the “optimum” relative normalizatio thatitis described well by a logarithmic growth. This magsh
constantZ(0,)/Z(©,). This “gluing together” of the dis- an analytical calculation for the present case [22] very.wel
tributions of different values o® is similar to the approach With increasing value ofy, i.e., when the distribution of

of Ferrenberg and Swendsen [18] (where the reweighting wathe number of decedents shifts to larger fractions of the pop
not to infinite temperature, like here, but to finite tempar@é  ulation, the mean,,,,., decreases in particular the slope. We
close to the sampled ones). The last missing constraintis olhave fitted the data to functian+ blog(N), for the different
tained from the overall normalization @?(17) which then values ofa. The result is shown in Fig. 6 as a function of
results in all normalization constants. Details can be fbun 2 — «. Note that fora. = 1 we obtained = 1.002(4) which
Ref. [6], a generalization is explained in Ref. [19]. is compatible withh = 1.
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FIG. 7: Distribution of the timé& ..., t0 the most recent common
] o ) ) ancestor for reproduction parameter= 1 and three different popu-
FIG. 6: Fit parametely when fittinga+-blog(V) N: population size)  |ation sizesV = 50, N = 100 and N = 500. For better visibility,
to the mean time;u:c. to MOst recent common ancestor as function the data forv' = 100 is shifted by 20 time units to the right, and the
of the population siz&v, as a function o2 — « (with a being the re- - gata for v = 500 by 40 time units. The lines show the results of
p;OQductlon parameter). The inset shows the behaviarasffunction fitiing the tails of the distributions to exponential functions, respec-
or2—o tively.

In the log-log plot, a straight line is visible faxr — 2,
meaning thab converges to zero. Comparablyappears to
converge to a finite value near 1 (see inset of Fig. 6). This is
reasonable because for— 2 the distribution of the number
of descendants converges to the case where the super parent
takes over the full population in one generation, indepatde
of the size of the population, which meahg.,., = 1 with
a=1andb=0. N

Next, we study the full distribution of,,,.., see Fig. 7 for &
the casex = 1, i.e., the uniform distribution, and different
population sizesV. Using the large-deviation approach, we
could measure the distribution over a large range of the sup-
port. Apparently these tails exhibit an exponential shajde.
fitted these tails to functions §t=r= for all values ofN. We
obtained) = 0.668(2) (N = 50), § = 0.665(1) (N = 100), ;
d = 0.668(1) (N = 500) (The error bars are just statistical 0 200 400 600

mrca

error bars). All these values are very close to the exacevalu
[23] §(1) = 2/3 and are within the fluctuations not depend- Unrca

ing on the population size. Thus, even small populationssize
are suitable for obtaining results close to thie— oo limit,
if the tails of the distribution are accessible. For thissmg
we proceed with results fav = 100, for various values of
a € [0,2].

In Fig. 8 the distributions for three different valuescoénd
a population size ofV = 100 are shown. Again, the tails

of the distributions can be well fitted to exponential fuong In Fig. 9 the resu_lting behavio_r a@fas a functiqn (_m i_s
~ §tmres for all values ofc. We did this for all values oy~ Shown. With increasing value of, i.e., when the distribution

which we have studied. of the number of offspring of the super parent is more and
more located at large values, the valuedafecreases, corre-
sponding to smaller times it takes for one individual to dom-
inate the full distribution. Thus, fott — 2 we obtainé — 0
corresponding to at},.c, = 1.

FIG. 8: Distribution of the tim&m:c. to the most recent common
ancestor for population siz& = 100 and two example values of the
reproduction parameter.
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103 ' ' ' which descends from the super parent. In particular we have
studied the timé .., t0 the most-recent common ancestor.
The typical behavior (like the mean) of this quantity can be
0.8 X N readily studied using standard numerical simulations.
In order to describe the statistics of this model to a large ex
"""""""""""""""""" Koo tend, we investigated not only the typical behavior but &tgo
0.6 + . distribution oft,,.., towards the tails. To access these tails nu-
X merically, we had to use a statistical mechanics-basee@dbias
sampling approach, which is based on a Markov-chain evo-
04 t . lution of a vector of uniformly distributed random numbers
Moran m%del = X from the interval0, 1], respectively, seen as an input vector to
() — an arbitrary stochastic process.
0.2 X We found that the mean timg,,., depends for all values
a < logarithmically on the population size and converges to
a constant forw — 2. The distribution oft,,.., shows an

0 . . . exponential behavior in the tails. For the cases- 1 and
0 05 1 15 o) a = 0 both mean as well as tail behavior are compatible with
a previous analytical results.

This work shows that using sophisticated sampling tech-
niques, the distributions of measurable quantities in fpu

FIG. 9: Value of the bas&of the tail P(tmrca) ~ 5 of the distri-  tion models can be studied over large ranges of the support.
bution of the time to the most recent common ancestor as a functiomhis allows one to access results in regions where no ana-
of the reproduction parameter The value for the standard Moran lytical results are available, as here for the extended Nora
model (corresponding io — 0) isexp(—2/N?), whichis shownas  model. It would be interesting to apply such techniques to
square symbol. The horizontal line indicates the exact vake2/3 more refined models, such models with varying population
fora =1. size, or models having a spatio-temporal evolution.

For the opposite limite:. — 0 the model converges to

the classical Moran model [12]. Here, the distribution of Acknowledgments
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