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Abstract. We present a numerical analysis of the entropy rate and statistical

complexity related to the spin flip dynamics of the 2D Ising Ferromagnet at different

temperatures T . We follow an information theoretic approach and test three different

entropy estimation algorithms to asses entropy rate and statistical complexity of binary

sequences. The latter are obtained by monitoring the orientation of a single spin on a

square lattice of side-length L = 256 at a given temperature parameter over time. The

different entropy estimation procedures are based on the M -block Shannon entropy (a

well established method that yields results for benchmarking purposes), non-sequential

recursive pair substitution (providing an elaborate and an approximate estimator)

and a convenient data compression algorithm contained in the zlib-library (providing

an approximate estimator only). We propose an approximate measure of statistical

complexity that emphasizes on correlations within the sequence and which is easy to

implement, even by means of black-box data compression algorithms. Regarding the

2D Ising Ferromagnet simulated using Metropolis dynamics and for binary sequences

of finite length, the proposed approximate complexity measure is peaked close to the

critical temperature. For the approximate estimators, a finite-size scaling analysis

reveals that the peak approaches the critical temperature as the sequence length

increases. Results obtained using different spin-flip dynamics are briefly discussed.

The suggested complexity measure can be extended to non-binary sequences in a

straightforward manner.
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1. Introduction

The basic task of data compression algorithms is to discover patterns (synonymous

with regularities, correlations, symmetries and structure; see Sect. II of Ref. [1]), and

to remove the respective redundancies from supplied input data in order to minimize

the space required to store the data. Interestingly, the pattern discovery and data

compression process of particular data compression schemes finds application in contexts

as diverse as as e.g. DNA sequence classification [2], entropy estimation [3, 4, 5], and,

more generally, time series analysis [6].

Correspondingly, in the analysis of complex systems, one wants to find a measure for

the information-theoretic “complexity” of a system [7]. The most simple measure is the

entropy [8], but this is maximal for a purely random system. This contradicts the basic

idea of complexity, which involves some structure, but not just regular structure. On the

other hand, other measures of complexity, like a (minimal) algorithm/computer/circuit

able of generating (an instance of) the problem [9, 10, 11], are often impractical when

it comes to the analysis of given large systems. Hence, data compression algorithms

are a natural and in particular simple candidate for detecting complexity [4, 12]. Note

that also other practically computable approaches exist, which indeed seem to measure

complexity as expected, like mutual information [13, 8] or statistical complexity [14].

As a first step, different proposed quantities are usually applied to simple toy

systems, e.g. models exhibiting only few states [14, 4, 15, 12]. In statistical mechanics

on the other hand, one studies models which involve many degrees of freedom with

non-trivial interactions. Such models are regarded as being very complex often right

at phase transitions [16]. This large degree of complexity is from the physical point of

view visible via growing correlations in the system. An information-theoretic analysis

of the complexity of such models has to our knowledge been considered so far only in

few studies and only by example [17]. The aim of this work is to study extensively

data compression algorithms for time series generated by the Ising model, which is one

of the most fundamental and important models of statistical mechanics exhibiting a

phase transition. In particular, we want to find out whether the phase transition can

be detected, located and analyzed numerically with high precision just by looking at

complexity measures derived from symbol substitution methods which can be used for

data compression.

By means of these methods, we attempt to estimate the entropy rate of symbolic

sequences and we compute a measure to account for correlations that possibly

characterize the sequence. The latter observable, here referred to as approximate

complexity, is related to the excess entropy which characterizes the statistical complexity

of the sequence and it can very well be understood in terms of information theory.

Further, it can easily be computed by means of black-box data compression algorithms,

as, e.g., the compress algorithm contained in the zlib-library [18]. While the entropy

accounts for the randomness contained in the sequence, the approximate complexity is

sensitive to correlations.
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The symbol substitution method considered in the bulk of the presented article

is a particular dictionary based data compression scheme that operates by a non-

sequential recursive pair substitution process and is hence referred to as NSRPS. The

basic routine of the NSRPS algorithm is a pair substitution step that amounts to

replace the most frequent two-symbol-subsequence by a new symbol that is shorter

in length. If this process is performed in repeated manner, it is possible to achieve a

compression of the input data. Such pair substitution methods, intending to quantify

the degree of “patterness” of symbolic sequences, where introduced several decades ago

by Ebeling and Jiménez-Montaño, see Ref. [19]. In Ref. [20], a sequence compressing

algorithm based on the NSRPS paradigm was introduced and used to estimate the

information content of binary sequences. Rigorous results on the NSRPS method,

presented by Benedetto, Caglioti, and Gabrielle in Ref. [21], imply that for sufficiently

large sequences the NSRPS method can be utilized to estimate the entropy rate of an

ergodic process. On this basis, Calcagnile, Galatolo, and Menconi recently reported on

numerical experiments, see Ref. [22], that compared entropy estimates arising from the

NSRPS method and other well established methods considering different maps and a

stationary process known as “renewal process”. The authors found that the NSRPS

method provided the best approximation to the respective entropy values.

Most recently, a NSRPS based randomness measure for symbolic sequences was

introduced and tested for short sequences [12]. In the latter study, the sequences

where obtained from iterating the logistic map at different bifurcation parameters and

applying a proper discretization procedure. Therein, the NSRPS based randomness

measure appeared to be strongly correlated to the Lyapunov exponent of the map and

hence could be used to quantify whether a particular sequence appears to have a simple

or a random structure (note that the authors of Ref. [22] refer to it as “complexity

measure”. More precise, this type of complexity is termed deterministic complexity [23]

and it merely measures the randomness associated to a symbolic sequence. As regards

this notion of deterministic complexity, the randomness measure presented in [12] is

simply proportional to the entropy rate.). Albeit the NSRPS method is of academic

interest (as documented by the references above), it is commonly not used in practice.

More frequently used dictionary compression algorithms are based on Lempel-Ziv (LZ)

coding [24]. E.g., the compress data-compression tool available in the zlib-library

uses LZ77 compression, a particular variant of LZ coding. Effectively, using LZ coding,

subsequences of the input sequence are replaced by pointers that specify positions within

the sequence where the respective subsequences have occurred earlier [24, 25]. This latter

approach to compression is slightly different from the iterated pair substitution on which

the NSRPS method is build upon. The entropy rate and approximate complexity of a

sequence can also be approximated by means of the NSRPS based randomness measure

and by using the compress-algorithm. Both methods, however, allow only to compute

an upper bound and are not as precise as the more elaborate estimates.

In this work, we aim to assess how well the NSRPS based entropy estimation method

described by Ref. [22] performs on binary sequences that represent the spin-flip dynamics
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of the 2D Ising Ferromagnet (FM) at different temperatures T . For this purpose we

consider single-spin-flip Metropolis dynamics (main part of the presented article) as

well as spin-flip dynamics induced by the Wolff cluster algorithm (results reported in

subsection 4.4). The input data to be analyzed is given by sequences S = (s1, . . . , sN) of

length N , consisting of symbols si over the binary alphabet A = {0, 1}. These sequences

are obtained by monitoring the time-series related to the orientation of a single spin,

located on a square lattice of side length L with fully periodic boundary conditions.

In order to allow for a comparison of the results, we also estimate the entropy rate

and complexity of the binary sequences by a well established approach based on the

Shannon entropy, as presented in Ref. [26]. Previously, the latter approach led to the

analysis of complexity-entropy diagrams that allow for a characterization of the temporal

and spatial dynamics of various stochastic processes, including simple maps as well as

Ising spin-systems, in purely information-theoretic coordinates [23]. We find that for the

whole range of temperatures considered, the entropy rates and approximate complexities

estimated via the elaborate NSRPS algorithm of Ref. [22] are in good agreement with

the Shannon entropy based estimates following Ref. [26]. Furthermore, we find that

the approximate complexity is peaked at a sequence-length dependent, effective critical

temperature. A finite-size scaling analysis in the sequence length (where the size of the

Ising model that supplies the binary input sequences is fixed to 256× 256 spins) reveals

that in the limit of infinitely long sequences, the peak is located close by the critical

temperature Tc ≈ 2.269 of the 2D Ising Ferromagnet.

The remainder of the article is organized as follows. In Sect. 2 we introduce the

well-established information theoretic notation, the entropy rate and the approximate

complexity. For illustration and comparison, we also include the results of these

observables for the 2D Ising FM as function of temperature. In Sect. 3 we discuss the

symbolic substitution method and the three different entropy estimation procedures.

The main part of this work are the results for theses procedures and an assess of the

performance, as presented in Sect. 4. Finally, Sect. 5 concludes with a brief summary.

A more elaborate summary of the presented article is available at the papercore database

[27].

2. Basic notation from information theory and pattern discovery

In subsection 2.1 we introduce basic notation from information theory, needed to

motivate the observables that are considered in the remainder of the article. First

and foremost, these are the entropy rate and excess entropy that might be associated

to a sequence of symbols. If not stated explicitly, we thereby follow the notation used

by Shalizi and Crutchfield [1], and Crutchfield and Feldman [26]. In subsection 2.2 we

then discuss entropy rate and excess entropy as well as the convergence properties of

the entropy rate by considering data obtained for the 2D Ising Ferromagnet at different

temperatures including the critical point. Note that the results for the entropy rate and

excess entropy are similar to those presented by Arnold in Ref. [17], hence, they are
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Figure 1. Schematic plots of the block entropy H(M) (left) and the apparent entropy

rate (or entropy gain) hµ(M) = H(M)−H(M − 1) (right), indicating the relationship

to the asymptotic entropy rate hµ = limM→∞ hµ(M) and the (statistical) complexity

Cµ =
∑

∞

M=1[hµ(M)− hµ].

included here for illustration and comparison only. On the other hand, the convergence

of the entropy rate, which in turn leads to an easy to compute approximate measure

of complexity, has to our knowledge not been discussed yet. Finally, in subsection 2.3

we motivate an “approximate complexity” that quantifies for which parameters a given

model exhibits a small or large statistical complexity.

2.1. Block entropy, entropy rate convergence and complexity

As pointed out in the introduction, the presented article addresses two issues: numerical

estimation of the entropy rate associated to a sequence of symbols, and providing an

approximate measure of statistical complexity that effectively accounts for the rapidity

of entropy convergence. A prerequisite needed to define the subsequent observables is

the Shannon entropy related to blocks ofM consecutive variables in a length N sequence

S = (s1, s2, . . . , sN). This quantity is defined as

H(M) ≡ −
∑

sM∈AM

Pr(sM) log2[Pr(s
M)], (1)

and is henceforth referred to as M-block Shannon entropy the sum runs over all possible

strings sM of M symbols (M ≥ 1) from the alphabet A, and where Pr(sM) denotes the

probability (i.e. the empirical rate of occurrence) of sM in the given sequence (where we

agree to set 0 log2(0) ≡ 0). For a schematic plot ofH(M), see Fig. 1. In general, H(M) is

a nondecreasing function ofM bounded by H(M) ≤ M ·log2 |A|, which is obtained if the

probability of a string factorizes and each letter has the same probability of occurrence,

i.e., Pr(sM) = 1/|A|M . In the limit of large block-sizes, H(M) might not converge

to a finite value. As a remedy, due to the above bounding value, the entropy rate hµ

is considered instead. The entropy rate (also termed per-symbol entropy) specifies the

asymptotic rate of increase of the M-block Shannon entropy regarding the block length,

i.e.

hµ ≡ lim
M→∞

1

M
H(M). (2)
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For a given sequence it quantifies the randomness that remains after patterns on

subsequences of increasing length are taken into account. In order to quantify its

convergence properties, it is useful to consider finite-M approximations to the entropy

rate. By considering the entropy gain ∆H(M) = H(M)−H(M − 1) (with H(0) ≡ 0)

it is possible to show that hµ = limM→∞∆H(M) (see Sect. III B of Ref. [26]). Thus,

one also uses the term apparent entropy rate

hµ(M) ≡ ∆H(M) = H(M)−H(M − 1). (3)

Alternatively one might refer to Eq. (2) and define

h′
µ(M) ≡ H(M)/M, (4)

where both definitions (Eqs. (3) and (4)) are restricted to M > 0. Asymptotically

it holds that limM→∞ h′
µ(M) = limM→∞ hµ(M), but h′

µ(M) typically converges slower

than hµ(M), see Ref. [28]. A measure that quantifies how much the entropy rate at block

length M exceeds the actual entropy rate is given by the per-symbol M redundancy

r(M) ≡ hµ(M)− hµ. (5)

A value r(M) > 0 indicates that upon considering blocks of length M , the asymptotic

entropy rate of the sequence is overestimated. This overestimation is due to redundant

information, i.e. patterns, that characterizes the sequence. Summing up all per-symbol

M redundancies yields the excess Entropy, which might also be referred to as (statistical)

complexity Cµ (see Eqs. (2)–(4) of Ref. [17]):

Cµ ≡
∞∑

M=1

r(M) =
∞∑

M=1

[hµ(M)− hµ]. (6)

In order to compare Eq. (6) above to Eqs. (3) and (4) of Ref. [17], note that the sum

in the former equation can be interpreted as an integration of the discrete function

hµ(M) − hµ = ∆H(M) − hµ. Now, bearing in mind that the entropy gain ∆H(M)

signifies the discrete derivative of the entropy itself, directly leads to

Cµ = lim
M→∞

[H(M)−Mhµ]. (7)

For large blocksize this implies the scaling H(M) ∼ Cµ + Mhµ, allowing for a

geometric interpretation of entropy rate and complexity: the asymptotic straight line

approximation to H(M) gives rise to the randomness, while the intercept with the y-axis

is equal to the complexity, see right of Fig. 1.

2.2. Results for the 2D Ising Ferromagnet

As pointed out in the introduction, the sequences that are under scrutiny here are

obtained by simulating a 2D Ising FM on a regular square lattice with side-length L,

using Metropolis dynamics [29] at a selected temperature T ∈ [2, 2.8]. For the purpose

of modeling the binary sequences, a particular spin on the lattice is chosen as a “source”,

emitting symbols from the binary alphabet A = {0, 1} (after a simple transformation

of the spin variables). Therefore, the orientation of the source-spin is monitored during



Numerical entropy estimation and complexity – 2D Ising Ferromagnet 7

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  4  6  8  10

〈h
µ(

M
)〉

, 〈
h' µ

(M
)〉

M

T=2.767

T=2.267

T=2.000

(a)
〈hµ(M)〉
〈h'µ(M)〉

10-4

10-3

10-2

10-1

100

101

 1  2  4  8

〈h
µ(

M
)〉

-〈
h µ

〉

M

(b)
T=2.267

2.767
2.000

10-2

10-1

100

 1  2  4  8

〈h
' µ(

M
)〉

-〈
h µ

〉

Figure 2. Scaling properties of the apparent entropy rates for three exemplary

temperatures located below, close to, and above the critical temperature. For all

quantities an average 〈. . .〉 over independent sequences of length N = 106 is computed.

(a) the estimator hµ(M) for the apparent entropy rate converges much faster than the

estimator h′

µ(M). (b) the associated per-symbol M redundancies hµ(M) − hµ decay

faster than ∝ 1/M (for M large enough this holds also for h′

µ(M)−hµ, see inset). The

dashed line indicates a scaling of ∝ 1/M .

a number of N Monte Carlo (MC) sweeps to yield a particular length N sequence.

Before the spin orientation is recorded, a sufficient number of sweeps are performed to

ensure that the system is equilibrated. In this regard, for a square lattice with side

length L = 128, and by analyzing the magnetization of the system, we observed an

equilibration time of approximately τeq = 3000 MC sweeps for the lowest temperature.

However, for each system considered we discarded the first 105 sweeps to avoid initial

transients.

In the numerical experiments, the M-block Shannon entropy can only be computed

for block-sizes smaller than some maximal size Mmax. Otherwise, for an input sequence

of finite length, the (true) distribution of possible configurations associated to blocks of

M consecutive variables will be approximated poorly (see Refs. [28, 30]). Effectively,

this provides only an upper bound which might nevertheless yield a reasonable

approximation to the actual entropy of the considered sequences. Further, the sum

in Eq. (6) needs to be truncated to a finite number of terms, implying that only a lower

bound on the excess entropy can be computed. The quality of the lower bound is due to

the rapidity of the convergence of the apparent entropy rate hµ(M). In this regard, Fig.

2(a) shows the convergence for the two estimators hµ(M) and h′
µ(M) of the apparent

entropy rate as function of the block length M for three exemplary temperatures located

below, close to, and above the critical temperature. The input sequences had a length

of N = 106. As evident from the figure, 〈hµ(M)〉 converges substantially faster than

〈h′
µ(M)〉. The brackets 〈. . .〉 indicate an average over independent sequences. For

comparison, at T = 2.267 (i.e. close to the critical point) a fit to the functional form

〈h′
µ(M)〉 = h′

µ + a/M for the block-size interval M ∈ [5, 10] yields the parameters

h′
µ = 0.4388(6) and a = 0.290(1), the reduced chi-square being χ2/dof = 0.09. Note
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Figure 3. Results for the average entropy rate hµ and the average complexity 〈Cµ〉

for binary sequences that describe the spin-flip dynamics for the 2D Ising Ferromagnet

at different temperatures T considering sequences of length N = 106. As explained in

the text, the maximally feasible block-size for the computation of the observables is set

to M = 10. (a) convergence of the apparent entropy rates 〈hµ(M)〉 to the asymptotic

entropy rate 〈hµ〉 For different block sizes M = 1, . . . , 10. The results for M ≥ 3 fall

almost on top of each other. Note that 〈hµ〉 only gives an upper bound on the actual

entropy rate. (b) average complexity 〈Cµ〉 and contribution of the different per-symbol

M redundancies 〈r(M)〉.

that the fit function above describes the data quite well, however, below we argue

that the per-symbol M redundancies decay somewhat faster than ∝ 1/M as the choice

of the particular scaling function suggests. For comparison, at M = 10 we find

〈hµ(10)〉 = 0.436(1). For temperatures away from the critical point the estimates 〈h′
µ〉

and 〈hµ(10)〉 agree even better. Hence, in order to estimate the entropy rate hµ and

complexity Cµ we here consider the maximally feasible blocksize to be Mmax = 10.

Consequently, the (average) asymptotic entropy rate is set to 〈hµ〉 = 〈hµ(10)〉. Again,

note that this only provides an upper bound to the true entropy rate. The difference

to the latter is due to long-range correlations in the sequences that are missed by

restricting the analysis to blocks of maximal length Mmax = 10. Fig. 2(b) shows

the scaling properties of the per-symbol M redundancies 〈r(M)〉 for the particular

choice Mmax = 10, defined in Eq. (5). As evident from the main plot of the figure,

the redundancy 〈hµ(M)〉 − 〈hµ〉 decays faster than ∝ 1/M . For large enough block-

size this holds also for the alternative definition 〈h′
µ(M)〉 − 〈hµ〉, see inset of Fig. 2(b).

Such a scaling behavior is characteristic for finitary processes, i.e. processes with a finite

complexity Cµ.

Finally, results for the numerical estimation of the entropy rate and the complexity

considering Mmax = 10 as a function of temperature T are illustrated in Figs. 3(a)

and (b), respectively. The estimate of the average entropy rate 〈hµ〉, computed as

explained above and shown in Fig. 3(a), will subsequently serve as a benchmark to

which estimates that rely on the methods described in Sect. 3 will be compared to. The

numerical derivative of the entropy rate with respect to the temperature indicates that
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right at the critical temperature, the increase of 〈hµ〉 is strongest (not shown). Further,

the fluctuations χhµ
≡ 〈h2

µ〉 − 〈hµ〉
2 exhibit an accentuated peak at Tc. In the high-

temperature paramagnetic phase, i.e. for all temperatures T > Tc, the single-symbol

entropy rate assumes its extremal value H(1) = log2(|A|) = 1. Also note that the

complexity shown in Fig. 3(b) has an isolated peak close to the critical temperature.

As evident from the latter figure, all terms in the sum of Eq. (6) (i.e. the individual

per-symbol M redundancies) display a similar scaling behavior.

Again, note that part of these illustrating results on the one-dimensional symbolic

sequences reported above are qualitatively similar to those reported earlier in Ref. [17].

Conceptually similar analyses carried out on two-dimensional configurations of spins

obtained from a simulation of the 2D Ising FM, reported in Ref. [23], conclude that

the excess entropy is peaked at a temperature Tc ≈ 2.42 in the paramagnetic phase

slightly above the true critical temperature. Similar results on the mutual information

(which is equivalent to the excess entropy; see Ref. [26]) for the 2D Ising FM (and

more general classical 2D spin models) where recently presented in Ref. [31]. Therein,

the authors conclude that the mutual information reaches a maximum in the high-

temperature paramagnetic phase close to the system parameter K = J/kBT ≈ 0.41 (for

J = kB = 1 this corresponds to T ≈ 2.44). Our new results and analyses, which go

beyond the cited literature are presented in our main result part Sec. 4.

2.3. An approximate measure of statistical complexity

Regarding the complexity, the convergence properties of the per-symbol M redundancies

as a function of the block-size, displayed in Fig. 2(b), suggest that r(1) constitutes

the dominant contribution to the sum in Eq. (6). As evident from the figure, r(2) is

approximately one order of magnitude smaller than r(1). In tandem with the observation

that, pictured as a function of temperature, r(1) already has the shape characteristic

for Cµ (see Fig. 3(b)) leads us to suggest r(1) as an approximate estimator that might

tell under which circumstances a given model exhibits a larger or smaller complexity.

Using the fact that hµ(1) ≥ hµ, we here define the approximate complexity cµ ∈ [0, 1] as

cµ ≡ r(1)/hµ(1) = 1− hµ/hµ(1). (8)

By definition, it is related to the complexity Cµ that quantifies the convergence

properties of the entropy rate. Appealing to the definition of the per-symbol M

redundancies, cµ quantifies the amount by which the entropy rate on the single-symbol

level exceeds the asymptotic entropy rate. To support intuition on the gross behavior of

the approximate complexity note that the larger the correlations between the symbols

in a given sequence, the more patterns are missed by considering hµ(1) in comparison

to hµ, and the larger the numerical value of cµ appears. In the two limits of completely

ordered and fully random symbol sequences, cµ assumes a value of zero, respectively.

Note that Eq. (8) is conceptually similar to the multi-information (given by the entropy

rate difference between an elementary subsystem, i.e. a single spin, and the infinite

system) introduced by Erb and Ay in Ref. [32]. There, the authors considered the
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multi-information to characterize spatial spin-configuration for the 2D Ising FM in the

thermodynamic limit by analytic means. Among other things, the authors conclude

that the multi-information exhibits an isolated global maximum right at the critical

temperature (see Theorem 3.3 of Ref. [32]).

The benefit of the approximate complexity is that if there is a way to numerically

estimate the entropy rate hµ (either as explained above, or by one of the algorithms

introduced below in Sect. 3), there will immediately be a way to estimate also hµ(1).

The proposed measure of approximate complexity can even be computed by means of

black-box data compression algorithms. To facilitate intuition on that issue, consider a

sequence S of symbols that stems from the observation of a stochastic and ergodic

process that possibly contains long-range correlations. Now, picture a black-box

algorithm A[·] that upon postprocessing S yields some estimate of the entropy rate,

i.e. h
(A)
µ = A[S]. So as to pave the way towards an estimate of h

(A)
µ (1), consider the

following: for a process in which the values of the variables are independently and

identically distributed, i.e. for an IID process, it holds that hiid
µ = hiid

µ (1) = hiid
µ (2) = . . ..

For an IID process the block entropy rate grows linearly with the blocksize, and the

associated complexity is zero (see Sect. V.A. on IID processes in Ref. [26]). An IID

sequence related to the observed sequence S is easily obtained as Siid = π[S], wherein

π[·] signifies the permutation operator. Applying the permutation operator to the

observed sequence destroys all patterns and yields an IID sequence with the same

symbol frequencies as contained in S. In Ref. [33] this is referred to as “standard

random shuffle”. Consequently, an estimate of the single-symbol entropy rate using

A[·] is provided by h
(A)
µ (1) = A[π[S]]. Note that for the Ising FM we find that at

temperatures above the critical point it holds that hµ(1) ≈ 1 (see Fig. 3(a)), hence we

find cµ = 1− hµ for T > Tc.

3. Pattern discovery by means of symbolic substitution methods

As pointed out in the introduction, pair substitution methods like the NSRPS

method, intending to quantify the degree of patterness of symbolic sequences, where

introduced several decades ago by Ebeling and Jiménez-Montaño, see Ref. [19]. The

underlying elementary pair-substitution process is illustrated below in subsection 3.1.

An algorithmic procedure that uses the NSRPS method in order to provide an elaborate

estimate of the entropy rate for a symbolic sequence is explained in subsection 3.2. Two

further plans to approximately estimate the entropy rate are motivated in subsection

3.3.

3.1. Non-sequential recursive pair substitution (NSRPS)

In order to describe an elementary non-sequential recursive pair substitution process,

consider a sequence S(0) = (s1, . . . , sN), composed of N symbols stemming from a finite

m-symbol alphabet A = {ai}
m−1
i=0 . Bear in mind that here, the initial sequences are
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Figure 4. Stopping criteria used to terminate the NSRPS procedure. (a) Considering

sequences at different temperatures T , the entropy rate for sequence lengths N > 104

converges to a plateau at ≈ 5 − 20 pair substitution steps. In order to compute the

entropy rate via Eq. (9) we thus fix N = 105 and consider a number of n = 20

pair substitution steps. (b) For sufficiently large sequence length the frequency fmfp

of the most frequent pair decreases with the number of pairs substitution steps as

fmfp ∝ n−1.25. For other temperatures, the scaling behavior appears to be the same.

The inset illustrates the scaling behavior of the entropy rate as a function of the

frequency fmfp. The dashed vertical line corresponds to the stopping condition fmin
mfp

used by Ref. [22].

assembled of symbols s
(0)
i that stem from A = {0, 1}. The fundamental routine of

the NSRPS algorithm, referred to as pair substitution, might be illustrated as two step

procedure:

(i) For a given sequence S(0), determine the frequency of all ordered pairs e ∈ A × A

and identify emfp, signifying the most frequent (ordered) length-two subsequence of

symbols. If the most frequent pair is not unique, signify one of them as emfp.

(ii) Construct a new sequence S(1) from S(0), wherein each full pattern emfp is replaced

by a new symbol am. For this purpose, S(0) is scanned from left to right, and the

existing alphabet A is augmented by am.

This elementary pair substitution process might be executed iteratively. If one keeps

track of the most frequent pairs of symbols and their substitutes at each iteration step,

the initial sequence S(0) can be reconstructed any time. This offers the possibility to

design lossless compression algorithms based on NSRPS.

3.2. Numerical estimation of the entropy rate following Calcagnile et. al.

Based on the rigorous results reported in Ref. [21], and further work by Ref. [22],

an elaborate entropy estimation algorithm based on the NSRPS method can be

implemented. Therein, the idea is that after a couple of pair substitutions, the most

frequent blocks, signifying the most common patterns up to a certain length within

the sequence, are condensed into single symbols. Thus, it should by possible to find a
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good approximation to the actual entropy by considering the M-block entropy (block

entropy=BE) for small blocksize M only. Following Ref. [22], and denoting a symbolic

sequence after a number of n pair substitution steps as S(n), a connection to the per-

symbol entropy is available as

h(NSRPS−BE)
µ [S(0)] = lim

n→∞
lim

N→∞

H(S(n), 2)−H(S(n), 1)

ℓ(S(0))/ℓ(S(n))
, (9)

where N refers to the length of the initial sequence S(0), H(S,M) specifies the M-block

entropy as estimated for the particular sequence S and ℓ(S) stands for the length of the

sequence S (note that ℓ(S(0)) = N). From a point of view of numerical experiments,

note that for a finite value of N , the number n of pair substitution steps is limited.

If the value for n is chosen to be comparatively large and ℓ(S(n)) gets rather small,

the statistics for the M = 2, 1-block entropies might become poor. So as to cast Eq.

(9) into a working algorithm for a symbolic sequence of length N , a proper stopping

criterion for the iteration of the pair substitution step is required. Regarding that issue,

the authors of Ref. [22] decided to stop the iteration of the pair substitution process

as soon as the frequency of the most frequent pair gets smaller than fmin
mfp = 0.02. We

here follow a slightly different approach that nevertheless yields quite similar results.

I.e., by considering sequences at different temperatures we monitored the evolution of

the entropy rate as function of the number of pair substitution steps. Regardless of the

temperature we found that for sufficiently long sequences (N > 104) and after a number

of approximately 5− 30 pair substitution steps, the entropy rate converges to a plateau

before it starts to decrease until hµ = 0 is reached. In Fig. 4(a) this is illustrated for

three exemplary temperatures. Consequently, in order to assess the entropy rate via

Eq. (9) (following the approach of Calcagnile et. al.), we here fix the sequence length to

N = 105 and perform a number of n = 25 pair substitution steps for all the sequences

considered. Regarding the frequency fmfp of the most frequent pair we found that for

sequences not too short (i.e. sequence lengths N > 104), it decreases algebraically with

the number of pair substitution steps as fmfp ∝ n−1.25, see Fig. 4(b). The stopping

criterion of Ref. [22] would thus correspond to n ≈ 32. The inset of Fig. 4(b) shows that

for sequence lengths > 105 the stopping condition fmfp = 0.02 yields an entropy value

along a plateau immediately before the value of hµ starts to decrease.

3.3. Approximation of the entropy rate using further symbol substitution techniques

The following subsection is based on the observation that data compression methods

allow to distinguish between regular and random sequences in the following sense:

A sequence that contains patterns (possibly on many scales) is not random but is

compressible by means of symbol substitution methods. Therein, a sequence S is

considered to be random if there exists no shorter sequence S ′ (written on the same

alphabet as S) that allows to construct S. This further implies that the less patterns a

sequence exhibits, the less compressible it is. In terms of the sequences obtained for the

2D Ising Ferromagnet it is thus intuitive that a sequence recorded at T ≈ 0 is highly
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compressible, whereas a sequence recorded at T → ∞ cannot be compressed much. The

sequences are called algorithmically simple and algorithmically random, respectively.

Now, consider an algorithm M [·] that returns some quantity describing how

compressible a given sequence appears to be. In this regard, the notion of algorithmically

simple (random) shall translate to a small (large) value returned by M [·]. Further,

consider a length N sequence recorded at finite temperature T as well as a whole set of

length N sequences recorded at T = ∞. A measure that might be used to approximate

the entropy rate is given by the algorithmic entropy (AE), here defined as

h(AE)
µ [S(T )] =

M [S(T )]

〈M [S(∞)]〉
. (10)

The value of 〈M [S(∞)]〉 is used to normalize the observable so that as T → 0 (T → ∞)

algorithmically simple (random) corresponds to 〈h
(AE)
µ 〉 → 0 (〈h

(AE)
µ 〉 → 1). Therein,

the brackets 〈·〉 denote an average over different sequences. Note that, by means of

compression based estimators, it is possible to compute upper bounds to the true per-

symbol entropy, only. However, the aim of the presented subsection is not to provide

competitive estimators in comparison to those presented earlier in subsects. 2.2 (BE) and

3.2 (NSRPS-BE), but to prepare easy to compute approximations to the approximate

complexity (as reported later in subsects. 4.1 and 4.2).

Lempel-Ziv coding: If we consider data compression algorithms based on Lempel-Ziv

coding, as, e.g., the compress algorithm contained in the zlib-library [18], where M [·]

returns the length of the compressed sequence, i.e. M [S(T )] = ℓ(compress[S(T )]), then

h
(AE)
µ effectively corresponds to the algorithmic entropy according to Lempel and Ziv as

used by Ref. [3] and we define

h(ZLIB−AE)
µ [S(T )] =

ℓ(compress[S(T )])

〈ℓ(compress[S(∞)])〉
. (11)

Note that Eq. (11) represents a fully data-compression based measure for the entropy

rate.

NSRPS based symbol substitution: Recently, Nagaraj et. al. detailed a method to

measure the degree of randomness for symbolic sequences [12]. The idea behind their

measure is as follows: for a given sequence S the pair substitution process might be

iterated until the representation of the sequence requires a single character, only. If this

occurs after Nps pair substitution steps, the corresponding sequence has zero entropy,

i.e. H(S(Nps), 1) = 0, and S(Nps) is called a constant sequence. In Ref. [12], the minimal

number of pair substitution steps Nps, needed to transform S to a constant sequence, is

adopted as a measure of algorithmic randomness associated to the initial sequence. As

an example, consider the sequence S = 110010. It consists of six symbols and exhibits

the maximal single symbol entropy for a binary sequence. A first application of the pair

substitution routine identifies the most frequent pair emfp = 10 and thus substitutes the

respective subsequences by means of the new symbol a2 = 2 (consequently the alphabet
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is amended to A = {0, 1, 2}), to yield S(1) = 1202 having H(S(1), 1) = 1.5. Finally, a

repeated application of the pair substitution step on S terminates after Nps = 4 steps for

the constant sequence S(4) = 5. For the slightly modified sequence S̃ = 101010 (initially

also having maximal entropy H(S̃, 1) = 1), the NSRPS algorithm terminates after just

a single pair substitution process, where the constant sequence reads S̃
(1)

= 222. One

may now conclude that sequence S exhibits a higher degree of randomness than the

sequence S̃, since the NSRPS algorithm requires a larger number of pair substitution

steps in order to arrive at a constant sequence. This is in accord with intuition, since,

in contrast to the sequence S = 110010, S̃ = 101010 exhibits a regular structure. The

value Nps tells how well a given sequence might be compressed in terms of the NSRPS

routine. A small (large) value of Nps indicates that the sequence is highly (hardly)

compressible. In accord with Eq. (10) we then define the NSRPS based algorithmic

entropy rate as

h(NSRPS−AE)
µ [S(T )] =

Nps[S(T )]

〈Nps[S(∞)]〉
. (12)

Other than for the NSRPS-BE measure, explained in subsection 3.2, the NSRPS-AE

measure requires no further tuning of a method-specific parameter.

4. Results

Using the methods illustrated in the preceding section and for a range of temperatures

including the critical point, we numerically compute the per-symbol entropies and

approximate complexities for the 2D Ising Ferromagnet in subsection 4.1. In subsection

4.2, we then discuss the finite-size scaling behavior of the observables with respect to the

system size L. Further, we analyze the finite-size scaling behavior of the approximate

complexity in the sequence length N for the data-compression based estimators NSRPS-

AE and ZLIB-AE in subsection 4.3. In subsection 4.4 we report the results obtained

for a spin-flip dynamics based on the Wolff cluster algorithm. Finally, in subsection 4.5,

we present the results obtained for the two different dynamics in purely information

theoretic terms.

4.1. Numerical results for the entropy rate and approximate complexity

In Fig. 5(a) we show the results for the per-symbol entropy hµ obtained by using the

different estimators introduced earlier. As a benchmark we here consider the curve

of 〈h
(BE)
µ [S(T )]〉, obtained for 100 independent sequences of length N = 105. For the

computation of of an individual estimate h
(BE)
µ [S] for a given sequences S, the block size

was restricted to M ≤ 10. As pointed out in Ref. [33], upon analysis of an ensemble of

independent finite sequences that stem from the same source, the per-symbol entropies

associated to the sequences are subject to statistical fluctuations. So as to account for

the spread of the per-symbol entropy among the 100 independent sequences at each value

of T , the shaded area in the main plot indicates the difference between the maximal
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Figure 5. Results for (a) the per-symbol entropy and (b) approximate complexity

using different estimators for sequences of length N = 105. The results are averaged

over a number of 100 independent sequences that characterize the spin-flip dynamics

of the 2D Ising model simulated via Metropolis dynamics at different temperatures

T . The dashed line indicates the result for the average value obtained using the

M -block entropy (BE) defined in Eq. (1). The shaded are gives an account for

the difference between the maximal and minimal values of the entropy rate and

approximate complexity (in (a) and (b), respectively), obtained using the estimator

BE. As evident from the main plots, the NSRPS-BE estimator (see Eq. (9)) yields

results in agreement with those of BE. The compression based methods ZLIB-AE and

NSRPS-AE (Eqs. (11) and 12, respectively) yield only upper (lower) bounds to the

true per-symbol entropy (approximate complexity). The inset in subfigure (a) shows

the difference between the estimates obtained via the NSRPS-BE and BE method in

units of the standard error for the NSRPS-BE estimator (see text).

and minimal value of the entropy rates thus obtained. As evident from the figure, the

entropy rates computed using the NSRPS-BE method for n = 25 compare quite well

to the benchmark results. In this regard, the inset illustrates the difference between

the NSRPS-BE and BE measures in units of the standard deviation for the NSRPS-BE

results, defined as

δ(T ) ≡
〈h

(NSRPS−BE)
µ [S(T )]〉 − 〈h

(BE)
µ [S(T )]〉

sDev(h
(NSRPS−BE)
µ [S(T )])

. (13)

The inset shows that for T > 2.2, the NSRPS-BE method systematically overestimates

the benchmark curve. While the deviation increases for T up to a value close to Tc, it

decreases as T → ∞. Note that for the whole range of temperatures considered, the

numerical estimates obtained using the NSRPS-BE and BE methods satisfy |δ(T )| < 1.

Further, an analysis for different values of n reveals that as n < 20 (n > 30) and in the

low (large) T domain it holds that |δ(T )| > 1 (not shown). The computation of the

per-symbol entropy by means of the estimators h
(ZLIB−AE)
µ and h

(NSRPS−AE)
µ (defined in

Eqs. (11) and (12), respectively) are less precise, see Fig. 5(a), and will not be discussed

further.

As explained earlier, the approximate complexity associated to a given sequence S
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Figure 6. System size dependence of the per-symbol entropy (main plot) and

approximate complexity (inset). The sequence length is fixed toN = 105. (a) shows the

results obtained using the NSRPS-BE method (data points) and BE method (dashed

lines) introduced in subsects. 3.2 and 2.1, respectively. (b) shows the results obtained

using the NSRPS-AE and ZLIB-AE methods introduced in subsection 3.3 (here, the

dashed lines are just guides to the eye). In either case, the solid line in the inset

(without symbols) illustrates the curve 1− 〈hµ[S(T )]〉 for L = 64.

is computed as

cµ[S(T )] = 1−
hµ[S(T )]

hµ[π[S(T )]]
. (14)

The numerical results, obtained for the approximate complexities considering 100

independent sequences of length N = 105 are presented in Fig. 5(b). Again, we

consider the averages obtained by means of the BE method as benchmark to which

the other methods are compared to. As for the entropy rated considered above, the

results obtained using the NSRPS-BE method yields an approximate complexity which

compares well to the BE estimate. However, note that for temperatures T ' 2.1 the

NSRPS-BE estimate overestimates the BE estimate systematically. The results obtained

by means of the estimators c
(ZLIB−AE)
µ and c

(NSRPS−AE)
µ (computed similar to Eq. (14))

only yield a crude lower bound on the approximate complexity, as compared to the more

sophisticated estimates.

As defined here, the numerical value of cµ lies in between zero and one and is

small at low and high temperatures, where the sequences are algorithmically simple and

random, respectively. At intermediate temperatures, i.e. in the vicinity of the critical

temperature, long range correlations between symbols in the sequences appear, resulting

in a comparatively large value of cµ. Thus, the quantity cµ behaves as we expect it for a

quantity indicating “complexity” of a sequence. Note that albeit the magnitude of the

approximate complexity at a given temperature for the various estimator might differ,

the peak positions of the different curves are all locate close by the critical temperature

Tc ≈ 2.269.
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4.2. Finite-size scaling regarding the system size

An analysis of the per-symbol entropy for sequences of length N = 105, obtained for

systems of different sizes L = 32 through 256 and for the different estimation methods,

is shown in the main plots of Figs. 6(a) and (b). Regarding the elaborate NSRPS-BE

method, the curves for different system sizes have a common crossing point close to Tc,

see Fig. 6(a). At a given temperature below (above) the critical point, increasing L

results in a smaller (larger) value of the per-symbol entropy. At T → 0 as well as for

T → ∞, the data points for the different system sizes coincide (note that the figure

only shows a zoom-in on the interval T ∈ [2.2, 2.4], enclosing Tc). While it is possible

to distinguish the data curves for L = 32 and L = 256, it is hard to tell apart the

curves for L = 128 and L = 256. This might indicate that the data curves at L = 128

and 256 are reasonable approximations to the thermodynamic limit L → ∞. For the

approximate complexity shown in the inset of Fig. 6(a) we find that its peak gets more

pronounced as L increases. Further, for the smallest system size, i.e. L = 32, the peak is

located slightly below Tc, shifting towards a higher temperature as L increases. Again,

it is hard to tell apart the data curves for L = 128 and 256. The dashed line in the

inset illustrates the curve 1−〈hµ[S(T )]〉 for L = 64, which compares well to the scaling

of 〈cµ[S(T )]〉 as T > Tc (as pointed out in subsection 2.3 this is due to the fact that

〈hµ[π[S(T )]]〉 ≈ 1 for temperatures T > Tc). While similar observations can be made

for the NSRPS-AE method, the finite-size scaling for the ZLIB-AE method is different.

As can be seen from Fig. 6(b), data curves obtained using the ZLIB-AE method exhibit

no crossing point at all. However, still there is the tendency that for temperatures above

Tc, an increasing system size leads to an increasing value of the per-symbol entropy.

4.3. Sequence length dependence of the approximate complexity

A relevant parameter that controls how well the statistics of the spin-flip dynamics is

captured by the analyzed sequences is the sequence length N . The longer the sequence,

the more patterns might be resolved and the better the approximation of the statistical

properties of the spin-flip dynamics. In this regard, we performed a finite-size scaling

analysis for the peak-location of the approximate complexity as obtained by the NSRPS-

AE and ZLIB-AE measures. We did not perform such an analysis for the NSRPS-BE

method, since, as evident from Fig. 4, the convergence properties of the entropy rate

render it hard to yield reliable results for sequence lengths N < 104.

Considering the NSRPS-AE estimator, Fig. 7(a) indicates that for increasing values

of N the peak-position approaches the critical value Tc from above. The same holds

also for the ZLIB-AE estimator, see Fig. 7(c). As evident from the figures, the curves

for the different sequence lengths N are peaked at effective critical points T eff
c (N) > Tc.

The peaks get more pronounced as N increases. By fitting 5th-order polynomials to

the data curves in order to estimate the precise location of the peaks (where errorbars

are obtained via bootstrap resampling [34]), we found that the effective critical points

exhibit the scaling behavior T eff
c (N) = T∞

c + a · N−b, see inset of Figs. 7(a),(c). This
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Figure 7. Results of the finite-size scaling analysis for the peak-location considering

the approximate complexity for different sequence lengths N at fixed system size

L = 256. (a) illustrates the data curves obtained by means of the NSRPS-AE method

and the inset shows the scaling of the associated peak locations. (b) indicates the

scaling behavior of the finite-size fluctuations for the approximate complexities. The

subfigures (c) and (d) show the same data as (a) and (b), obtained using the ZLIB-AE

method. Lines are guides to the eyes only.

corresponds to standard finite-size scaling near phase transitions [16] when changing

the system size L, which is instead kept fixed here. The fit parameters obtained for the

NSRPS-AE (ZLIB-AE) method read T∞
c = 2.286(1) and b = 0.50(1) (T∞

c = 2.289(1)

and b = 0.52(2)). Note that this exponent is different from the scaling observed when

varying the system size, where the exponent −1/ν = −1 is relevant and related to the

correlation length exponent ν = 1. For increasing sequence length, the approximation

of the peak-position by means of the 5-th order polynomials gets rather imprecise,

which might account for the deviation between T∞
c and the true critical temperature

Tc. Accordingly, we performed a further analysis considering the NSRPS-AE method

for sequences up to length N = 5000 only (where the peaks can be fit well), resulting

in the improved estimate T∞
c = 2.270(5). Note that in any case, the value of T∞

c is

reasonably close to the critical temperature, and that these results are obtained at fixed

L = 256 by varying the length N of the sequences. Further, the finite-size fluctuations

χN(T ) = N × var(cµ[S(T )]), shown in Figs. 7(b),(d) for NSRPS-AE and ZLIB-AE,
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Figure 8. Results of the finite-size scaling analysis for the per-symbol entropy (main

plot) and complexity (inset) considering different system sizes L for a spin-flip dynamics

based on the Wolff cluster algorithm. The solid line in the inset illustrates the curve

1 − 〈hµ[S(T )]〉 for L = 64. In the figure, data points correspond to the estimate

obtained using the NSRPS-BE method, while the dashed lines indicate the respective

results obtained using the BE method.

respectively, exhibit a peak that also tends towards Tc as N increases. Thereby, once

the sequence length exceeds N ≈ 5 × 103, the peaks are located right at the critical

temperature. These results show that the methods we used to estimate the “complexity”

of a sequence are not only giving qualitatively satisfying results but can be used for

rather precise quantitative estimates from finite-size system data.

4.4. Spin-flip dynamics based on the Wolff cluster algorithm

In Fig. 8 we show the results for the entropy rate and approximate complexity, where,

instead of a single spin-flip MC simulation using Metropolis-dynamics (as above) we

used the Wolff-cluster-algorithm [35]. The time-unit within these simulation is given

by a single cluster-construction process (in contrast: using the single spin-flip MC

simulation for a square lattice of side length L, the time unit consists of a number

of L × L independent spin-flip attempts for randomly chosen spins, comprising one

sweep). The Wolff-cluster-algorithm is most efficient at Tc, yielding binary sequences

where subsequent symbols are effectively uncorrelated, as reflected by the minimum

of the approximate complexity, where 〈cµ[S(Tc)]〉 assumes a small value close to zero.

Further, the fact that 〈hµ[S(T )]〉 exhibits a peak value of nearly one at Tc indicates that,

at the critical temperature, the sequences appear to be algorithmically random. Hence,

although the system being simulated is the same, the strong differences in the resulting

entropy and complexity curves are easily understood by the dynamics of the algorithm.

The system size dependence of the per-symbol entropy, illustrated in the main plot

of Fig. 8, can be understood in terms of the cluster-construction characteristics of the
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Wolff cluster algorithm. At a temperature T < Tc, a cluster constructed at a given

time-step comprises almost all spins on the lattice, regardless of the system size (in the

limit T → 0, a cluster comprises all spins). It is thus very likely that a given spin

is contained in that cluster and gets flipped frequently. At temperatures T > Tc, the

clusters have some typical size that does not depend on the size of the system (in the

limit T → ∞, a cluster consists of a single spin only). Considering a fixed temperature

> Tc, the larger the system size L, the smaller the relative size of a (typical) cluster

appears. Consequently, for a given spin it is less likely to be contained in a cluster as L

increases and the spin gets flipped only rarely. Thus, the flip-frequency decreases upon

increasing system size.

Further, at temperatures below Tc where a given spin flips rather frequently, we

find 〈hµ[π[S(T )]]〉 ≈ 1. Hence, for T < Tc it holds rather precisely that 〈cµ[S(T )]〉 ≈

1−〈hµ[S(T )]〉. For T > Tc, 〈hµ[π[S(T )]]〉 decreases slightly with increasing temperature

(not shown). The decrease is monotonous and the observable takes values in between 1

and 0.8, so we still find that the above relation holds approximately. This is also evident

by visually inspecting the data curves for the per-symbol entropy and approximate

complexity displayed in Fig. 8. In the inset, the dashed line illustrates 1 − 〈hµ[S(T )]〉

for L = 64, which compares well to the respective data curve showing 〈cµ[S(T )]〉. This

leads us to suggest that for the spin-flip dynamics induced by the Wolff cluster algorithm,

hµ and cµ are trivially correlated.

In general, one should find that as T → ∞ the results for the dynamics using the

Wolff cluster algorithm should match those of the single spin-flip Metropolis dynamics.

However, as a comparison of Figs. 6 and 8 indicates, the results for the per-symbol

entropies and approximate complexities in the limit T → ∞ for the different dynamics

are completely different. This difference is solely due to the definition of a time-unit

regarding the two spin-flip dynamics. By means of a proper rescaling of the time-unit

related to the Wolff-cluster-algorithm we verified that the sequences supplied by both

spin-flip dynamics yield similar results as T → ∞. In particular at T = 10.0 and for

a comparatively small sequence length of N = 103 we obtained 〈cµ[S(T )]〉 = 0.022(2)

and 〈cµ[S(T )]〉 = 0.023(7) for Metropolis dynamics and Wolff-cluster algorithm using the

NSRPS-AE method, respectively (we further checked that for sequence-lengths N ≥ 104

the NSRPS-BE method yields approximately the same results).

4.5. Aproximate Complexity-Entropy diagrams for the different spin-flip dynamics

In the subsections above, we illustrated the information-theoretic observables “entropy

rate” and “approximate complexity” as function of the model parameter T . In order to

account for a completely information-theoretic characterization of the different spin-flip

dynamics, we illustrate the corresponding (approximate) complexity-entropy diagrams

in Fig. 9. As evident from the figure, the relation between the information-theoretic

coordinates depends on the underlying spin-flip dynamics. In case of the single-spin flip

Metropolis update the dynamics close to the critical temperature suffers from severe
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Figure 9. Approximate complexity-entropy diagram obtained for a spin-flip dynamics

based on single-spin Metropolis update and the Wolff cluster algorithm. In the analysis,

we considered symbolic sequences S of length N = 105 at different temperatures T (the

relation between temperature and entropy is illustrated in Fig. 5(a)). In the figure,

data points correspond to the results obtained using the NSRPS-BE method, while the

solid lines indicate the respective results obtained using the BE method. The figure

characterizes the different dynamics in purely information-theoretic coordinates.

slowing down due to long-range correlations. Off criticality, correlations are less strong.

Consequently, the approximate complexity (which effectively accounts for correlations)

is peaked at an entropy value ≈ 0.5, reflecting the critical temperature. In terms of

this very simple update mechanism, the evolution of the 2D Ising FM appears to be

highly intricate. On the contrary, the elaborate dynamics provided by the Wolff cluster

algorithm makes the evolution of the 2D Ising FM at the critical temperature maximally

efficient. It does not suffer from critical slowing down and successive spin configurations

are effectively uncorrelated. Consequently, the time series related to the orientation of a

particular spin on the lattice appears to be maximally random at Tc. Hence, the critical

temperature is reflected by a large entropy rate and low approximate complexity. The

region of very low entropy rate and very large complexity indicates periodic sequences,

obtained at small temperatures T where at each time step almost all spins are flipped.

Further, as pointed out in subsection 4.4, Fig. 9 shows that for the dynamics provided by

the Wolff cluster algorithm approximate complexity and entropy are trivially related via

cµ = 1−hµ. Thus, there is no accentuated peak in the approximate complexity-entropy

diagram.

5. Summary

In the presented article we performed numerical experiments to assess the performance

of three different entropy estimation algorithms that are based on symbolic substitution

methods. Binary test sequences where obtained by simulating the 2D Ising FM via
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single spin-flip dynamics at different temperatures T , thereby recording the orientation

of a single spin. We found that the most elaborate entropy estimation algorithm

yields results that are in good agreement with those obtained by an information

theoretic method based on the M-block Shannon entropy. We further proposed and

analyzed a measure that approximately accounts for the statistical complexity of the

binary sequences. The respective observable, termed approximate complexity, can

be understood in terms of information theory. It measures the amount by which

the entropy rate on the single-symbol level exceeds the asymptotic entropy rate and

it can easily be computed by means of black-box data-compression algorithms. To

support intuition on the gross behavior of the approximate complexity note that

the larger the correlations between the symbols in a given sequence, the larger the

numerical value of the approximate complexity appears. In the limits of completely

ordered and fully random symbol sequences it assumes a value of zero. Therefore, the

approximate complexity behaves as one naively would expected for a quantity measuring

the “complexity” of a system. For all entropy estimation procedures considered, we find

that the approximate complexity is peaked at the critical point. Even for the less

precise entropy estimation algorithms that systematically overestimate (underestimate)

the entropy rate (approximate complexity), a finite-size scaling analysis in the sequence

length shows that the peak of the approximate complexity tends towards the critical

point of the 2D Ising FM as the sequence length increases. Further, qualitative

differences between the dynamics induced by a single-spin flip Metropolis update and the

Wolff cluster algorithm are discussed in terms of the information theoretic observables.

For future work, we plan to apply these methods to systems exhibiting quenched

disorder, like spin glasses and random-field systems, to find out whether the proposed

methods will work with similar high efficiency and precision.
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