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The information theoretic observables entropy (a measure of disorder), excess entropy (a measure
of complexity) and multi information are used to analyze ground-state spin configurations for dis-
ordered and frustrated model systems in 2D and 3D. For both model systems, ground-state spin
configurations can be obtained in polynomial time via exact combinatorial optimization algorithms,
which allowed us to study large systems with high numerical accuracy. Both model systems exhibit
a continuous transition from an ordered to a disordered ground state as a model parameter is varied.
By using the above information theoretic observables it is possible to detect changes in the spatial
structure of the ground states as the critical point is approached. It is further possible to quantify
the scaling behavior of the information theoretic observables in the vicinity of the critical point.
For both model systems considered, the estimates of critical properties for the ground-state phase
transitions are in good agreement with existing results reported in the literature.
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I. INTRODUCTION

The standard analysis of physical phase transitions in-
volves the analysis of order parameters and other deriva-
tives of the free energy [1]. An alternative approach
is based not on physical but information-theoretic ap-
proaches, an approach which has recently started to be
occasionally used in the analysis of (more or less) com-
plex systems [2].

The presented study extends on previous studies that
employed information-theoretic methods to measure en-
tropy (i.e. disorder and randomness) and statistical com-
plexity (i.e. structure, patterns and correlations) for d ≥
1-dimensional systems [3–6]. For 1D systems, the ex-
cess entropy constitutes a well understood information-
theoretic measure of complexity. Effectively, it accounts
for the rapidity of entropy convergence. While the exten-
sion of entropy to higher dimensions is rather intuitive,
the extension of excess entropy is not. As a remedy, in
Ref. [5], three different approaches were developed in or-
der to extend the definition of excess entropy to d > 1,
allowing to quantify the complexity for spatial systems
in higher dimensions.

Most previous studies focused on characterizing the
above information-theoretic observables for systems
without disorder, only. As regards this, the local states
method [7], proposed for the calculation of free energies
within importance-sampling Monte Carlo (MC) simula-
tions, was based on entropy estimation techniques for
lattice models with discrete interactions and translation-
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invariant interactions (i.e. non-disordered, pure systems).
It combined upper and lower bounds for the entropy den-
sity to compute free energies (along with an error esti-
mate). A comparison of numerical simulations to exact
results for the 2D Ising ferromagnet indicated that it
yields reliable estimates already for short simulation runs
(even in the critical region).

Using quite similar entropy estimation techniques, the
simulations reported in Ref. [5] were performed for the
2D square lattice Ising model with nearest and next near-
est neighbor interactions. By means of single spin-flip
Metropolis dynamics at a comparatively low tempera-
ture, two variants of the excess entropy were put un-
der scrutiny. A careful analysis indicated that these are
sensitive to changes in the spatial structure of the spin
configurations as the nearest neighbor coupling strength
was varied. They were further found to be superior to
conventional structure factors. This study allows to con-
clude that the excess entropy in 2D comprises a general
purpose measures of 2D structure.

Only recently, Ref. [8] used similar methods to charac-
terize local, i.e. lattice site dependent, entropies and local
excess entropies for the Kaya-Berker model. The latter
is based on the Ising antiferromagnet (IAFM) on a trian-
gular lattice, wherein a particular sublattice is diluted,
only. The IAFM exhibits geometric frustration and does
not order at finite temperature. In contrast to the pure
model, the Kaya-Berker model orders at finite temper-
ature if at least a fraction p = 0.0975 of the sites on
the diluted sublattice are deleted. The simulations were
performed using single spin-flip Metropolis dynamics at
fixed dilution p = 0.15, where the freezing temperature
amounts to Tc ≈ 0.84. In the simulation, various temper-
atures down to T = 0.4 were considered. It was found
that the distribution of local entropies broadens in the
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FIG. 1: GS samples for (a) the L = 64 2D RBIM with mixed
boundary conditions (periodic = solid line, free = dashed line)
at µ = 1.15, 0.97, 0.40 (from left to right), and (b) the L = 48
3D RFIM with fully periodic boundary conditions at b =
2.0, 2.4, 2.9 (from left to right; only the spins on the x, y, z =
0 planes are displayed).

glassy phase below T ≈ 0.8, indicating that for low tem-
peratures local entropy is not homogeneously distributed
over the lattice. Further, the average of the local excess
entropy was observed to exhibit a pronounced peak at
the critical temperature, indicating that it is sensitive to
structural changes for the 2D configurations as a result of
the spin glass ordering. Finally, complexity-entropy dia-
grams for the frustrated Kaya-Berker model, recorded at
various temperatures, were found to be qualitatively dif-
ferent from those corresponding to pure models (see Ref.
[6]). This study allows to conclude that local entropy
density and local excess entropy are valuable observables
that yield insight to local structure and randomness for
frustrated 2D systems.

Here, we aim to characterize the spatial structure dis-
played by exact ground states (GSs) of disordered model
systems in terms of the information-theoretic observables
entropy and excess entropy. For this purpose we consider
the 2D random bond Ising model (2D RBIM) as well as
the 3D random field Ising model (3D RFIM), which both
exhibit disorder-driven zero-temperature phase transi-
tions. More precise, we use one of the approaches devel-
oped in Ref. [5], aimed at understanding spatial patterns
for 2D systems by parsing them into 1D sequences. In
addition we also consider the multi-information, which,
for the ordinary Ising ferromagnet in the thermodynamic
limit was proved to be maximized at the critical point
[9]. In contrast to the previous studies we work at T = 0,
aiming to characterize the ground-state phase transitions
that appear as the disorder is varied for the above two
disordered model systems (see sect. II). In doing so,
we were interested whether one can observe a change in
the structure of the ground states by using the above
information-theory inspired observables. Further, if the
latter is possible, it is of interest to quantify the scaling

behavior of these observables in the vicinity of the phase
transition.
The remainder of the presented article is organized as

follows. In section II we introduce the spin models that
are considered in the presented study. In section III,
the information-theoretic observables entropy and excess
entropy are introduced and illustrated in more detail.
Section IV reports on the numerical results, further dis-
cussed in section V. An elaborate summary of the pre-
sented article is available at the papercore database [10].

II. MODELS

Next, we present the two models which were studied
in this work, the 2D RBIM and the 3D RFIM.

A. 2D random bond Ising model

We investigated GSs for the 2D RBIM, considering a
square lattice of side length L. The respective model
consists of N = L2 Ising spins, for which a particular
spin configuration might be written as σ = (σ1, . . . , σN ),
where σi ∈ {+1,−1}. The energy of a given spin config-
uration is measured by the Edwards-Anderson Hamilto-
nian [11]

HRBIM(σ) = −
∑

〈i,j〉
Jij σiσj , (1)

where the sum is understood to run over all pairs of
nearest-neighbor spins (on a 2D square lattice), with pe-
riodic boundary conditions (BCs) in the x-direction and
free BCs in the y-direction. In the above energy function,
the bonds Jij are quenched random variables drawn from
the disorder distribution

P (Jij) = exp[−(Jij − µ)2/(2σ2
J)]/(σJ

√
2π), (2)

where the width of the distribution was fixed to σJ = 1.
Consequently, one realization of the disorder consists of
a mixture of antiferromagnetic bonds (Jij < 0) that pre-
fer an antiparallel alignment of the coupled spins, and
ferromagnetic bonds (Jij > 0) in favor of parallel aligned
spins. In general, the competitive nature of these in-
teractions gives rise to frustration. A plaquette, i.e. an
elementary square on the lattice, is said to be frustrated
if it is bordered by an odd number of antiferromagnetic
bonds. In effect, frustration rules out a GS in which all
the bonds are satisfied. As limiting cases one can identify
the random bond Ising ferromagnet (FM) as µ → ∞ and
the (Gaussian) 2D Edwards Anderson Ising spin glass
(SG) [11–13] at µ = 0. A GS spin configuration σGS is
simply a minimizer of the energy function Eq. 1. Thus,
regarding the GSs as a function of the variable µ, we ex-
pect to find a ferromagnetic phase (spin glass phase) for
µ > µc (µ < µc) wherein µc denotes the critical point
at which the T = 0 FM-SG transition, i.e. a continuous
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disorder-driven phase transition, takes place. Samples of
GSs for the 2D RBIM for different values of the param-
eter µ are shown in Fig. 1(a).

The Ising spin glass is a paradigmatic model for a dis-
ordered magnet. Since the effects of the disorder are well
visible at zero temperature, the investigation of ground
state properties is of prime importance. For a planar ver-
sion of this model, e.g., a 2D square lattice with periodic
boundary conditions in only one direction, a solution of
the GS problem is possible by means of a mapping to
an appropriate minimum-weight perfect-matching prob-
lem. This latter problem can be solved by means of
exact combinatorial optimization algorithms from com-
puter science [12, 14–18], whose running time increases
only polynomially with the system size. Hence, very large
systems can be treated exactly, giving very precise and
reliable estimates for the observables. The GS problem
for lattice dimensions d> 2 or systems subject to an ex-
ternal magnetic field belong to the class of nondetermin-
istic polynomial (NP)-hard problems [15, 19]. For those
problems, no exact algorithm with a polynomial running
time has been found so far. From a conceptual point of
view, the existence of numerically exact and highly effi-
cient algorithms for the 2D SG with periodic boundary
conditions in at most one direction motivates the special
interest in this setup during the last decades.

As pointed out above, for the 2D RBIM on planar lat-
tice graphs (including the Ising spin glass), GS spin con-
figurations can be found in polynomial time. We here use
a particular mapping to an appropriate minimum-weight
perfect matching problem, presented in Ref. [18]. The use
of this approach permits the treatment of large systems,
easily up to L= 512, on single processor systems. In a
previous study [20], we performed such GS calculations
and employed a finite-size scaling analysis for systems
of moderate sizes (L ≤ 64) to locate the critical point
at which the transitions takes place. Therefore, we ana-
lyzed the Binder parameter [21] bL=

1
2 [3− 〈m4

L〉/〈m2
L〉2]

that is associated to the magnetization mL and is ex-
pected to scale as bL(ρ)∼ f [(ρ − ρc)L

1/ν ], where f is a
size-independent function and ν signifies the critical ex-
ponent that describes the divergence of the correlation
length as the critical point is approached. The magneti-
zation is simply the sum of all spin-values in the GS spin
configuration, i.e. mL =

∑
i σGSi/L

2. Using the data
collapse anticipated by the scaling assumption above we
obtained µlit

c = 1.031(2) and νlit = 1.49(4) (for a fur-
ther study of this transition, yielding similar results using
renormalization group techniques, see Ref. [22]). Finally,
we characterized the transition using a finite-size scaling
analysis for the largest and second-largest ferromagnetic
clusters of spins within the GS spin configurations. These
clusters form as one proceeds from spin glass ordered to
ferromagnetic ground states. The results obtained from
the related scaling analysis support the results obtained
earlier by considering the Binder parameter and magne-
tization.

B. 3D random field Ising model

We further investigated GSs for the 3D RFIM on a sim-
ple cubic lattice of side length L. The respective model
consists of N = L3 Ising spins, and the energy of a given
spin configuration is measured by the Hamiltonian

HRFIM(σ) = −J
∑

〈i,j〉
σiσj −

∑

i

biσi, (3)

where the first sum is understood to run over all pairs
of nearest-neighbor spins on a 3D simple cubic lattice
with fully periodic BCs. In the above energy function,
the bonds that couple adjacent spins are ferromagnetic,
i.e. J > 0, and the local fields bi (i = 1, . . . , N) introduce
disorder to the model. The values of the local fields are
independently drawn from the disorder distribution

P (bi) = exp[−(bi)
2/(2b2)]/(b

√
2π), (4)

where the mean of the distribution is fixed to zero and the
width amounts to b. Thus, one realization of the disorder
consists of ferromagnetic spin-spin couplings with each
spin coupled to a local random field.
The RFIM is a basic model for random systems [23,

24] and also gives rise to frustration. While in order
to minimize Eq. 3 the ferromagnetic spin-spin coupling
will tend to align coupled spins in parallel, the random
fields will tend to align the spins parallel to the local
field, possibly introducing a paramagnetic effect on the
GSs. For a field width that is small compared to the
ferromagnetic coupling, i.e. for b � J , one might expect
a dominance of the ferromagnetic spin-spin coupling in
the GS spin configurations. In contrast to this, for a
comparatively large field width, the orientation of the
majority of spins in a GS will be determined by the local
random fields, suggesting a paramagnetic GS for large
values of b. As a result, at T = 0, the RFIM exhibits a
disorder driven, continuous ferromagnet to paramagnet
(PM) transition regarding the ground state structure at
a finite value bc. Samples of GSs for the 3D RFIM for
different values of the field strength b are shown in Fig.
1(b).
The solution of the GS problem for the general RFIM

(not only its 3D variant) is possible by means of a map-
ping to an appropriate maximum-flow problem [14, 25,
26]. This latter problem can be solved in polynomial
time by means of exact combinatorial optimization algo-
rithms from computer science. As for the 2D RBIM this
offers the possibility to study large systems, easily up to
L=64, giving very precise and reliable estimates for the
observables.
Using such optimization methods, the critical point

and critical exponents for the GS phase transition can
be obtained by analyzing the magnetic properties of the
model [27–29]. For the 3D RFIM we here quote the val-
ues blitc = 2.28(1) for the critical point and νlit = 1.32(7)
for the critical exponent that describes the divergence of
the correlation length as the critical point is approached.
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Further, the 3D RFIM also exhibits a particular perco-
lation transition. I.e., regarding the simultaneous span-
ning of up and down spin domains as a function of the
field strength b, Ref. [30] report on the percolation criti-
cal point blitp = 2.32(1) and the value νlitp = 1.00(5) (note
that for random percolation in 3D one has νp = 0.88;
see Ref. [31]). However, the results appeared to depend
on the particular spanning criterion. In this regard, in
the limit of the spanning probability approaching to zero
(indicating the onset of percolation) the scaling analysis
extrapolated to νlitp = 1.3(1).

III. INFORMATION-THEORETIC
OBSERVABLES IN 1D AND EXTENSION TO

d = 2 AND 3

In the current section we introduce basic notations
from information theory, needed to define the entropy
rate, excess entropy, and multi information that might
be associated to a (1D) sequence of symbols. In this re-
gard, for the definition of the entropy rate and excess
entropy we follow the notation of Refs. [6, 32, 33]. For
the definition of the multi information we follow Ref. [9].
In the above references, a more elaborate discussion of
the individual information-theoretic observables can be
found.
A prerequisite for the definition of these observables

is the M -block Shannon entropy H [SM ] for a block of
M consecutive random variables SM = S1 . . . SM . Each
random variable Si might assume values σi ∈ A, where
the set A denotes a finite alphabet (subsequently, the
random variables will be identified with Ising spins, in
which case A will denote the binary alphabet {−1,+1}).
For σM = σ1 . . . σM denoting a particular symbol block
of length M > 0, the M -block Shannon entropy reads

H [SM ] ≡ −
∑

σM∈AM

Pr(σM ) log2(Pr(σ
M )), (5)

where Pr(σM ) signifies the joint probability for blocks
of M consecutive symbols (i.e. spin orientations in the
present context). In the above formula, the sum runs over
all possible blocks, i.e., combinations of of M consecutive
symbols from A.

A. Entropy density, excess entropy, and multi
information for one-dimensional symbol sequences

Using the M -block Shannon entropy, the asymptotic
entropy density for a 1D system is given by

h = lim
M→∞

H [SM ]/M . (6)

A sequence of finite-M approximations h(M) to the
asymptotic entropy density that typically converges

faster than the expression above is provided by the con-
ditional entropies

h(M) = H [SM |SM−1] = H [SM ]−H [SM−1]. (7)

As given above, h(M) denotes the entropy of a single
variable (spin) conditioned on a block of M − 1 adjacent
variables (spins). Thus, h is the randomness that still
remains, even after correlations over blocks of infinite
length are accounted for. Viewed as a function of block
size, the finite-M conditional entropies converge to the
asymptotic value h from above. Hence, at small length
scales the system tends to look more random than it is
in the limit M → ∞.
For one-dimensional systems, there are three different

but equivalent expressions for the excess entropy. These
are based on the convergence properties of the entropy
density, the subextensive part of the block entropy in the
limit of large block sizes, and, the mutual information
between two semi-infinite blocks of variables, see Refs.
[5, 6]. Here, we focus on the definition of excess entropyE
that relates to the convergence properties of the entropy
density in the form

E =
∞∑

M=1

[h(M)− h]. (8)

The conditional entropies h(M) constitute upper bounds
on the entropy rate, allowing for an improving estimate of
h for increasingM . Thus, the individual terms in the sum
comprise the entropy density overestimates on the level
of blocks of finite length M . In total, the excess entropy
measures the area between h(m) and the horizontal line
at h. As such, E accounts for the randomness that is
present at small lengths and that vanishes in the limit of
large block sizes.
In 1D and in the limit of large block sizes, the multi

information is given by the first summand in Eq. 8, i.e.

I = h(1)− h. (9)

Albeit I is closely related to E (this holds only in the limit
of large block sizes M ; see Ref. [9] for a more general dis-
cussion of the multi information), it captures somewhat
different characteristics regarding the convergence of the
entropy density. In this regard it measures the decrease
of average uncertainty in the description of the system by
switching from the level of single variables (spins) statis-
tics to the statistics attained as M → ∞.

B. Extension to d = 2 and 3

Following Ref. [5], the most general approach designed
to write the 2D entropy density as the entropy of a partic-
ular variable conditioned on a block of neighboring vari-
ables (similar to the 1D case), uses so called neighbor-
hood templates of a given size. In general, for a neighbor-
hood template only spins in the same row left of a “target
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FIG. 2: Neighborhood templates for the definition of the con-
titional entropies (see Eq. 7) for (a) the 2D RBIM, and (b)
the 3D RFIM. The target variable is represented by a shaded
cell and the numbers within the cells reflect the order in which
the sites are picked in order to compute the condititional en-
tropies (see text).

spin” and the spins in all rows below the target spin are
considered. Fig. 2(a) shows such a finite-size template
for a 2D system, covering an overall number of 25 spins.
Similar to Ref. [5] we use the parameter M in the condi-
tional entropy (Eq. 7), to account for a successive addi-
tion of single sites from the neighborhood template shown
in Fig. 2(a). Therein, the numbers within the cells indi-
cate the order in which the lattice sites are added to the
2D neighborhood template (from initial numerical exper-
iments we found that it is not necessary to exceedM = 10
(M = 6) for the 2D RBIM (3D RFIM)). In this regard,
let the subscript (∆x,∆y) denote the relative position of
a variable S in the neighborhood template, specifying its
distance to the target variable in terms of site-to-site hops
(in particular the target variable is labeled S(0,0)). Then,
the order in which the sites are picked from the template
reflects the increasing Euclidean distance of the particu-
lar lattice site to the target site. Thereby, we follow the
convention that if there is a draw regarding the distance
of two or more lattice sites, we add them to the neigh-
borhood template from the top left to the bottom right,
increasing the value of ∆y before ∆x (see the order of
spins 7 through 10 in Fig. 2(a)). As an example note that
h(6) = H [S(0,0)|S(0,−1)S(1,0)S(1,−1)S(1,1)S(0,−2)]. We fol-
lowed a similar approach in 3D, where the corresponding
neighborhood template is shown in Fig. 2(b), and where
e.g. h(4) = H [S(0,0,0)|S(0,0,−1)S(0,1,0)S(−1,0,0)].

Note that by the procedure discussed above, we disre-
garded the practice that if the interactions between the
variables are of finite range, the neighborhood template
only needs to be as “thick” as the interaction range [5, 7].
For disordered model systems that exhibit competing in-
teractions, nontrivial correlations between the spin de-
grees of freedom might emerge that extend towards the
intrinsic range of the interactions (for a brief discussion
of this issue and its implications, in particular for the
design of an efficient cluster algorithm for the fully frus-
trated Ising model, see Ref. [34]). Consequently, for the
2D RBIM and 3D RFIM we considered it more adequate
to include more than just the nearest neighbors for the
construction of a neighbor template.
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FIG. 3: Results for the entropy density of the 2D RBIM with
side length L = 384. (a) illustrates the convergence of the
average entropy density 〈h(M)〉 as a function of the neigh-
borhood size M for three values of the disorder parameter µ.
(b) shows the average entropy density for different neighbor-
hood sizes as a function of the disorder parameter µ.

Subsequently, 2D and 3D configurations of spins are
analyzed by parsing them into one dimensional sequences
using the order of the spins as illustrated in Fig. 2. The
resulting sequences can then be analyzed using Eqs. 7
and 8, above. From a practical point of view it will sub-
sequently be necessary to truncate the sums in Eqs. 7, 8
to a maximally feasible neighborhood size Mmax.

IV. RESULTS

Here, our approach is somewhat different than that
reported in Ref. [8]. In that study, one particular real-
ization of disorder for the Kaya-Berker model was put
under scrutiny at a particular value of the dilution pa-
rameter and for different temperatures (above as well as
below the freezing temperature of the system). For that
particular disorder instance and for a given temperature,
a single-spin flip Metropolis dynamics was used to gener-
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FIG. 4: Results for the 2D RBIM for different square lattices with side length up to L = 512. (a) The main plot shows the
average excess entropy 〈E〉 as a function of the mean µ of the bond disorder distribution (lines are guides to the eyes only).
The inset illustrates the finite-size scaling of the peak position, the line shows the result of a fit to Eq. 10. For all data-points
error bars are obtained via bootstrap resampling. (b) The main plot shows the finite-size susceptibilities χE(L) = L2var(E)
associated to the excess entropy (lines are guides to the eyes only). The inset signifies the finite-size scaling of the peak width
obtained from a fit of the data points close to the peak to a Gaussian function, the line shows the result of a fit to Eq. 11.
(c),(d) are the same as (a),(b), respectively, but for the multi-information I .

ate independent spin configurations. These spin config-
urations were then used to accumulate statistics for spin
blocks (specified by the utilized neighborhood template)
that provide means to estimate conditional entropies on
either local (i.e. lattice site dependent) or global scale,
where the latter is a spatial average of the local condi-
tional entropies. As pointed out by the authors of Ref.
[8], it is important to accumulate spin-block statistics in
a lattice site dependent manner so as to not overestimate
the entropy of the system. A later average over the local
observables yield the correct thermodynamic entropy, as
verified by the authors.

However, note that here we work at T = 0, aiming to
characterize ground state phase transitions for disordered
model systems in 2D and 3D. I.e. for each realization of
the disorder (and due to the particular disorder distribu-
tions used in the presented study), there is one particular

spin configuration that qualifies as a ground state (aside
from a trivial degeneracy stemming from the global spin-
flip symmetry of the energy function Eqs. 1. As a remedy,
in order to collect statistics for blocks of spins we sweep
the neighborhood template over the full lattice (as one
would do for pure systems, see Ref. [6]), thus averaging
over different ”local” configurations of the disorder. For
one ground state and for a chosen block size M , this
yields one spatially averaged estimate for the conditional
entropy on the level of M -spin blocks. The results are
then averaged over many realizations of the disorder. In
doing so, we were interested whether one can observe a
change in the structure of the ground states by using
the above information-theory inspired observables, and
how this compares to phase transitions, which were pre-
viously observed when using standard statistical-physics
observables.
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Furthermore, it is of interest to quantify the scaling
behavior of these observables in the vicinity of the phase
transition. Note that we also performed additional sim-
ulations using the definition of 2D and 3D neighbor-
templates as used in Ref. [7] and found no qualitative
difference to the results reported below.

A. Results for the 2D RBIM

a. Entropy density: As evident from Fig. 3(a), the
entropy density for the 2D RBIM for L = 384 exhibits
a rapid convergence. In this regard, for a neighborhood
size of M = 5 the average entropy density appears to
take its asymptotic value for the full range of considered
parameters µ. However, for the numerical simulations at
L = 384 we considered the maximally feasible neighbor-
hood size Mmax = 10. For smaller system sizes, Mmax

had to be adjusted to somewhat smaller values to assure
that for a given system size L the measurement of the
conditional entropies at a given level h(M) are based on
sufficient statistics for the underlying M -block shannon
entropies. In this regard, at L = 64 we used Mmax = 6.
The average entropy densities, restricted to neighbor-
hood sizes M = 1 through 10, are shown in Fig. 3(b).
It can be seen that for small (large) values of µ the en-
tropy density converges to a comparatively large (small)
value representing the disordered (i.e. SG ordered) and
ordered (i.e. ferromagnetic) phase, respectively. Espe-
cially the curve corresponding to M = 1 exhibits a steep
decrease in the interval µ ∈ [1, 1.1]. Moreover, the fluc-
tuations var(h(µ)) ≡ 〈h(µ)2〉 − 〈h(µ)〉2 of the entropy
density are peaked at µ ≈ 1.025 (not shown). As it ap-
pears, this parameter value is close to the asymptotic
critical point µlit

c = 1.030(2) that indicates the T = 0 SG
to FM transition for the RBIM [20, 22] in the limit of
large system sizes.
b. Excess entropy: A finite-size scaling analysis of

the system size dependent peak position of the average
excess entropy 〈E〉 (see Fig. 4(a)) was performed in the
following way: polynomials of order 5 were fitted to the
data curves at different system sizes L in order to obtain
an estimate µc,i(L) of the peak position. Thereby, the in-
dex i labels independent estimates of the peak positions
as obtained by bootstrap resampling [35]. For the analy-
sis, we considered 40 bootstrap data sets, e.g. resulting in
the final estimate µc(L = 256) = 0.975(1). Anticipating
the scaling form

µc(L) = µc − aL−b, (10)

see inset of Fig. 4(a), and considering the fit interval
L ∈ [64, 512] yields the fit parameters µc = 0.995(5),
b = 1.0(1) and a = O(1) for a reduced chi-square
χ2/dof = 1.19 (dof = 4). Note that as L → ∞,
the location of the peak disagrees with the location
µlit
c = 1.031(2) of the T = 0 SG to FM transition.

The latter estimate was obtained from an analysis of the
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FIG. 5: Results for the entropy density of the 3D RFIM with
side length L = 64. (a) illustrates the convergence of the aver-
age entropy density 〈h(M)〉 as a function of the neighborhood
size M for three values of the field strength b. (b) shows the
average entropy density for different neighborhood sizes as a
function of the field strength b.

binder-parameter for the GS magnetization [20]. Ear-
lier simulations, using a transfer-matrix approach at fi-
nite temperature and extrapolated to T = 0, report on
µ′lit
c = 1/rc = 1.04(1) [22].
A similar scaling analysis for the location of the

peaks related to the finite-size susceptibilities χE(L) ≡
L2var(E) by means of Gaussian fit-functions results in
the estimate µc = 1.029(1). Further, the width of the
Gaussian fit-function obeys the scaling

σ(L) = aL−b, (11)

where a = O(1) and b = 0.65(2) (χ2/dof = 0.45, dof =
5). Note that the inverse of the latter fit parameter reads
1/b = 1.54(5) and is thus strikingly close to the critical
exponent νlit = 1.49(7) [20] (ν′lit = 1.42(8) [22]) that
characterizes the T = 0 SG to FM transition.
c. Multi-information: A scaling analysis of the sys-

tem size dependent peak position displayed by the av-
erage multi-information 〈I〉 (see Fig. 4(c)) according to
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the scaling assumption Eq. 10 in the range L ∈ [64, 512]
yields the fit-parameters µc = 1.026(3), a = O(1),
and b = 0.63(4), i.e. 1/b = 1.6(1) (χ2/dof = 0.20,
dof = 4). Neglecting the smallest system size, i.e. re-
stricting the fit interval to L ∈ [96, 512], leads to the
estimate µc = 1.031(6) which is even closer to the known
critical point.

Further, an analysis of the position and width of the
peaks related to the finite-size fluctuations χI ≡ L2var(I)
by means of Gaussian fit-functions results in the addi-
tional estimate µc = 1.032(5) (see Fig. 4(d)). As above,
the widths σ(L) obay the scaling form of Eq. 11, where
a fit yields a = O(1) and b = 0.65(2), i.e. 1/b = 1.54(5)
(χ2/dof = 0.32, dof = 5; inset of Fig. 4(d)).

Note that here, both estimates of µc and both esti-
mates of the exponent 1/b are reasonably close to those
found earlier for the 2D RBIM. Hence, this might indi-
cate that in comparison to the full excess entropy, the

multi-information is more sensitive to structural changes
at the T = 0 order-to-disorder transition in the 2D
RBIM.

d. Geometric properties of the GSs: Upon increas-
ing the value of the disorder parameter from µ = 0 to
µ > µc, it is possible to identify ferromagnetic clusters of
spins with increasing size. A finite size scaling analysis
of the relative size of the largest and second largest fer-
romagnetic clusters of spins for the independent GSs can
be utilized to characterize the T = 0 SG to FM transi-
tion in the 2D RBIM. E.g. as reported in Ref. [20], the
relative size of the largest ferromagnetic cluster scales as
〈M1〉 ∝ L−β/νf [(µ−µc)L

1/ν ], where a data collapse (for
system sizes L = 24 . . . 64) yields the scaling parame-
ters µfc

c = 1.032(2), νfc = 1.49(4), and βfc = 0.039(4).
Note that the results obtained for the multi-information
is also in excellent agreement with those obtained from
an analysis of the largest cluster size, which constitutes
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an observable that links to the geometric properties of
the GS spin configurations.

B. Results for the 3D RFIM

e. Entropy density: As can be seen from Fig. 5(a),
the entropy density for the 3D RFIM (the figure shows
the data for L = 64) convergence rapidly. I.e. for a neigh-
borhood size of M = 6 the average entropy density ap-
pears to take its asymptotic value for the full range of
considered field strengths b. During the numerical simu-
lations, carried out on cubic systems of side length L = 8
through 64, we thus considered the maximally feasible
neighborhood size Mmax = 6. The average entropy den-
sities for M = 1 . . . 6 are shown in Fig. 5(b). For the
3D RFIM the ordered, i.e., ferromagnetic (FM)) and
disordered, i.e., paramagnetic (PM) phases are located
at small and large values of the disorder parameter b,
respectively. As discussed above, the curve correspond-
ing to n = 1 exhibits a steep decrease in the interval
b ∈ [2.2, 2.5], which already allows to shed some light on
where the characteristics of the model at T = 0 change
from ferromagnetic to paramagnetic. In a previous study,
using the finite-size scaling of standard physical quanti-
ties, the critical strength of the random field at which the
T = 0 FM to PM transition takes place was found to be
blitc = 2.28(1) [29].
f. Excess entropy: The scaling analysis of the sys-

tem size dependent peak position of the average excess
entropy 〈E〉 (see Fig. 6(a)) was performed similar to the
2D RBIM above. Assuming that the system size depen-
dent peak locations bc(L) exhibit a scaling of the form

bc(L) = bc − aL−c, (12)

see inset of Fig. 6(a), yields the fit parameters bc =
2.38(1), c = 0.81(2) and a = O(1) (χ2/dof = 0.05,
dof = 4). Note that as L → ∞, the location of the
peak extrapolates to a value that is close by the criti-
cal point blitp = 2.32(1), describing the transition of the
probability for a simultaneous spanning of up and down
spin domains from 1 to 0, see Ref. [30]. A similar scal-
ing analysis for the location of the peaks related to the
finite-size susceptibilities χE(L) ≡ L2var(E), again by
means of polynomials of order 5, results in the estimate
bc = 2.23(1), see inset of 6(b). As it appears, the es-
timates of bc obtained from the excess entropy and its
fluctuation do not match up well.
g. Multi-information: A finite-size scaling analysis

of the system size dependent peak position shown by the
average multi-information 〈I〉 (see Fig. 6(c)) according to
the scaling assumption Eq. 12 in the range L ∈ [12, 64]
yields the fit-parameters bc = 2.34(1), a = O(1), and c =
0.79(3) (χ2/dof = 0.22, dof = 4). Further, an analysis of
the peak location for the related finite-size fluctuations
χI ≡ L3var(I) results in the estimates bc = 2.30(1), a =
O(1) and c = 0.80(7) (χ2/dof = 0.26, dof = 5); see Fig.
6(d).

Note that here, both estimates of bc and both esti-
mates of the exponent c match up well. Also, the nu-
merical estimates bc agree with the numerical value of
blitp within errorbars and the numerical value of 1/c =
1/0.80(7) = 1.3(1) (obtained by means of the above anal-
yses) is in good agreement with the correlation length
exponent νlit = 1.3(1) reported in Ref. [29]. Further,
they are in good agreement with the numerical values to
which the scaling analysis for the percolation criterion in
Ref. [30] extrapolates to. Again, these results indicate
that the multi-information is very sensitive to structural
changes in GS spin configurations at the T = 0 order-to-
disorder transition.

C. The T = 0 phase transition in purely
information theoretic coordinates

In the above analyses the information theoretic co-
ordinates entropy density h and excess entropy E, giv-
ing measures of randomness and complexity, respectively,
were studied as a function of a model specific parame-
ter. So as to facilitate a comparison of different models
complexity-entropy diagrams are of great use [36]. A sur-
vey of complexity-entropy diagrams for different model
systems can be found in Ref. [6]. The complexity-entropy
relationship for the 2D RBIM and 3D RFIM for different
system sizes are shown in Fig. 7. As evident from the fig-
ure, the curves for both models exhibit similar features.
I.e. they have an isolated peak at a particular value of
h. This is similar to the complexity-entropy curve for
the 2D Ising FM, where the corresponding peak is lo-
cated at entropy density 〈h〉 ≈ 0.57 with a peak height
of 〈E〉 ≈ 0.4, see Ref. [6]. In order to illustrate finite-size
effects for the complexity-entropy diagram, three differ-
ent system sizes for both models are shown. A scaling
analysis of the finite-size peak locations indicates that for
the 2D RBIM (3D RFIM) the peak shifts to the entropy
density value hc = 0.26(1) (hc = 0.107(1)) as L → ∞.
Comparing with the result of the FM mentioned before,
one can say that for the 2D RBIM and the 3D RFIM,
the order-disorder transition appears at smaller entropy
but is connected with a higher complexity. Note, for the
considered models, the complexity-entropy diagram con-
tains the FM phase in the parameter range h ∈ [0, hc].
The SG phase for the 2D RBIM (PM phase for the 3D
RFIM) is found for h ∈ [hc, 1].

V. DISCUSSION

Regarding the excess entropy, conceptually similar
analyses carried out on spin configurations for the 2D
Ising FM, reported in Ref. [6]. The respective study con-
cluded that the excess entropy is peaked at a tempera-
ture T ≈ 2.42 in the paramagnetic (i.e. disordered) phase
above the true critical temperature Tc = 2.269. Qualita-
tively similar results on the mutual information for the
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2D Ising FM (and more general classical 2D spin models)
were recently presented in Ref. [37]. There, the authors
conclude that the mutual information (equivalent to the
excess entropy for 1D systems; see Ref. [33]) reaches a
peak-value in the paramagnetic phase close to the system
parameter K = J/kBT ≈ 0.41 (for J = kB = 1 this cor-
responds to T ≈ 2.44), again in disagreement with the
critical point of the underlying model. Further, the au-
thors note that the true critical point appears to coincide
with the inflection point where the first derivative of the
excess entropy tends to minus infinity in the thermody-
namic limit (however, the authors present no systematic
analysis of this observation). Hence, it is not too surpris-
ing that a finite-size scaling analysis for the peaks of the
bare excess entropy does not directly allow to identify
the critical point of the model considered here. Similar
to the previous studies for the Ising FM, we here find
that the excess entropy assumes an isolated peak at a
parameter-value located slightly below the true critical
point in the disordered phase. However, a scaling analy-
sis reveals that in the thermodynamic limit, the peak of
the related finite-size fluctuations is located right at the
critical point.

The multi-information was introduced by Erb and Ay
in Ref. [9], where the authors considered the multi-
information to characterize spin-configuration for the 2D
Ising FM in the thermodynamic limit by analytic means.
Among other things, the authors conclude that the multi-
information exhibits an isolated global maximum right
at the critical temperature (see Theorem 3.3 of Ref. [9]).
Here, we find that in contrast to the excess entropy and
in qualitative agreement with analytic results for the 2D
Ising FM, the peak of the multi-information tends to-
wards the critical points reported in the literature as
L → ∞. However, the critical point to which the ef-
fective, system size dependent critical points related to
the peaks of the excess entropy for the 3D RFIM con-
verges is in good agreement with the precise location
that corresponds to a particular percolation transition
for the respective spin model. Nevertheless, given the so
far achieved numerical accuracy, it is still not clear to us
whether these two transition points are really distinct.
Anyway, both observables studied in this work basically
turned out to be useful information-theoretic measures
that might be used to distinguish the ordered and disor-
dered phase of frustrated model systems, as e.g. the 2D
RBIM and 3D RFIM. Further, the finite size scaling of
these observables allows to estimate critical points and
exponents that are in good agreement with the critical
properties reported in the literature.

Given these promising results for systems exhibiting
quenched disorder, it would be of particular interest to
apply these methods to structural glasses [38], where a
simple way of analyzing snapshots of configurations is
still missing [39].
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