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Abstract

We present a continuum theory and a Monte Carlo model of self-organized surface pattern formation by ion beam
sputtering including effects of beam profiles. Recently, it has turned out that such secondary ion beam parameters
may have a strong influence on the types of emerging patterns. We first discuss several cases, for which beam profiles
lead to random parameters in the theory of pattern formation. Subsequently we study the evolution of the averaged
height profile in continuum theory and find that the typical Bradley-Harper scenario of dependence of ripple patterns
on the angle of incidence can be changed qualitatively. Beam profiles are implemented in Monte Carlo simulations,
where we find generic effects on pattern formation. Finally, we demonstrate that realistic beam profiles, taken from
experiments, may lead to qualitative changes of surface patterns.
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1. Introduction

The control of pattern formation on solid surfaces
during ion beam sputtering (IBS) has reached a con-
siderable level of sophistication (see Ref.[1]). Under
well defined processing conditions, it turns out that even
changes in secondary ion-beam parameters like, for ex-
ample, the beam profile may lead to different patterns
[2, 3]. The current theoretical descriptions of pattern
formation by IBS do not include secondary ion beam
parameters and are therefore not able to explain any ef-
fects due to these parameters. Here, we make a first
step towards a consistent continuum theory and a Monte
Carlo model of the effects of ion beam profiles on pat-
tern formation. We present some results of these de-
scriptions, which confirm the non-trivial and important
influence of beam profiles on the evolution of IBS in-
duced patterns. In particular we show that both the pro-
posed continuum theory and the Monte Carlo simula-
tions imply substantial changes of the dependence of
patterns on mean incidence angle, if non-trivial beam
profiles are included.
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2. Continuum Theory

Continuum theories of IBS, which are based upon the
assumption of proportionality,vn ∝ E(r ), of the erosion
velocityvn and the powerE(r ) deposited by the incident
ions at a pointr of the surfaceS have assumed that the
ion beam is focused into a single direction of inciden-
dence. Here, we want to study cases, wherevn depends
upon (random) ion beam parameters, and we will study
beam profiles, described by a distribution of the angles
of incidence of the beam,θ with repect to the z-axis and
φ with respect the x-axis of the cartesian lab frame. The
heighth(x, y, t), which describes the surfaceS in Monge
representation, obeys the equation〈

∂h
∂t

〉
=
〈√

g vn[θ, φ; h]
〉

(1)

whereg = 1+ (∇h)2, and〈· · · 〉 denotes an average over
the beam parameters, which has to be specified further.
Suppose that the beam is composed of ions incident
at varying directionsm. Then we distinguish between
three prototypical cases, defined as follows.

(i) homogeneous subbeams: Ion beams consisting
of identical ensembles of subbeams of different direc-
tions m emanate from every point of the source illu-
minating the sample. The total power deposited atr
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is the sum of contributions from all subbeams and thus
〈vn〉 =

∫
vn(m) p(m)d2m, wherep(m) is the weight of

subbeamm within the ensemble.
(ii) temporally fluctuating homogeneous beam: The

substrate is illuminated homogeneously, but the direc-
tion constitutes a stationary, temporally homogeneous
stochastic processm(t).

(iii) spatio-temporally fluctuating beam: The direc-
tions of incident ions form a homogeneous and station-
ary stochastic fieldm(x, y, t).

In all three cases, the average direction remains fixed,
〈m〉 = m0. For these cases we have performed the small
slope and gradient expansion, which for an ideal beam
starts with [4, 5],

√
gvn = −v0(θ) +w(θ)

∂h
∂x
+ ax(θ)

∂2h
∂x2
+ ay(θ)

∂2h
∂y2
+ · · · .

(2)
To simplify the expressions, we will leave out noise

in φ in the current work and concentrate onθ profiles
for illustrative purposes. The full problem of ion beam
noise will be discussed elsewhere. For cases (i) and (ii)
Equ. (2) can be averaged term by term, but for case
(iii) the expansions will produce additional terms con-
taining spatial derivatives ofθ. Here, we only consider
smoothly varying direction fields, so that|∇θ| � |∇h|.
Then we find that such terms can be neglected.

We have studied the time evolution ofh̃ = 〈h〉 −
〈
∫

v0dt〉 taking into account the linear terms depicted in
Equ. (2). The linear evolution equation is written in the
form ∂th̃ = L̂(θ) h̃ with an operator̂L h̃ := L̂BH(θ) h̃ −
K∇4h̃. L̂BH includes the linear terms ofvn in Equ.(2),
and K∇4h̃ is the simplest description of surface diffu-
sion. We have considered two different beam profiles:
(A) flat distributions ofθ betweenθ0 − ∆θ andθ0 + ∆θ
and (B) Gaussian distributions centred atθ0. For homo-
geneous subbeam ensembles (case (i)), we can directly
average the solution for every Fourier modeh̃(kx, ky, t)
over the single variableθ, 〈h̃(k, t)〉 =

〈
eL̂(k,θ)t

〉
h(k,0),

whereas for the cases (ii) and (iii), further approxi-
mations are necessary to compute〈h̃〉. If we restrict
ourselves to the tractable case of small fluctuationsδθ
aroundθ0, we may linearizeL̂ with respect toδθ, i.e.
L̂(θ0 + δθ) ≈ L̂0 + δθ L̂1, with L̂1 = ∂L̂0/∂θ depending
upon primed quantitiesw′,a′x,a

′
y, which are the deriva-

tives of the coefficients in eq. (2) with respect toθ atθ0.
Then the beam fluctuations become multiplicative noise
terms in the evolution equation forh̃ and can be treated
by standard techniques (see Ref. [6] for a comprehen-
sive overview). To illustrate the differences emerging
from different models of the beam profile, we study the
evolution of〈h̃〉 for small Gaussian fluctuations in cases

(i), (ii) and (iii). For the latter two cases we assume that
correlation times ofθ are small, so that the white noise
limit can be applied with respect to temporal fluctua-
tions, i.e. 〈δθ(r , t)δθ(r ′, t′)〉 = 2C(|r − r ′|)δ(t − t′) (for
case (ii),C is just a positive constant).

For case (i), averaging exp(δθL1(k)t) over Gaussian
fluctuations leads to a drastic change of the growth law,
〈h̃(k, t)〉 ∝ exp(〈δθ2〉L1(k)2 t2/2), which quickly leaves
the range of validity of the linear approximations in-
volved. If, however, the Gaussian is replaced by the
flat distribution (A), the growth law takes on the form
∝ t−1 exp(rt) after a transient time. Even if the fluctua-
tions are not considered small, the average can be per-
formed by simple numerical integration and an effec-
tive rate can be extracted (not shown). For small fluc-
tuations, this rate increases slightly above its value at
∆θ = 0, but for∆θ > 12.5◦ it decreases and falls well
below the∆θ = 0 value beyond∆θ ≈ 20◦.

For cases(ii) and (iii) we can transform the aver-
aged evolution equation∂t〈 h̃〉 = L̂0〈h̃〉 + 〈δθL̂1 h̃〉 into
a closed equation for〈h̃〉 making use of Novikov’s
theorem [6, 7]). For case (ii) it takes on the form
∂t 〈h̃〉 = (L̂0 + CL̂2

1) 〈h̃〉 and for case (iii) we obtain
∂t 〈h̃〉 = [L̂0 + L̂1(r ′)(C(r − r ′) L̂(r ))|r=r ′ ] 〈h̃〉. The terms
arising from the Gaussian noise can be interpreted as
renormalizations of the coefficients inL̂0, i.e. the aver-
aged evolution equation becomes

〈∂th〉 = 〈[L̂0 + δθL1] h̃〉 = L̂0(wR,aR
x ,a

R
y )〈h̃〉 (3)

with the following renormalized coefficients: wR = w
in both cases (ii) and (iii),aR

x = ax + C w′2, aR
y = ay

for case (ii) andaR
x = ax + a′x(ax + ay)(∂2

xC)r=0, ar
y =

ay + a′y(ax + ay)(∂2
yC)r=0 for case (iii). Explicit expres-

sions forw(θ),ax/y(θ) can be taken from Ref. [5]. Note
that for case (ii), there also appear third and (destabi-
lizing) fourth order derivative terms, which will be dis-
cussed elsewhere. The renormalization due to homoge-
neousθ noise always contributes to a stabilization of
the kx modes, especially for largerθ0. On the other
hand, Fig. (3) illustrates, that for case (iii), beam pro-
file noise can completely change the kinetic phase dia-
gram of pattern formation. For simplicity, we have put
σ = µ. The typical Bradley-Harper scenario (upper pan-
els: σ = 2d) with preferential growth of perpendicular
ripples (crests parallel to the y-axis) at small incidence
angles is depicted in the left upper panel. It is changed
into a more complex scenario (right upper panel), which
implies parallel ripples growing faster at small angles
and an additional crossover region between 200 · · · 300

to perpendicular ripples due to a nontrivial beam pro-
file. This scenario is very susceptible to other beam pa-
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rameters, as depicted in the lower panels of Fig. (3),
where we changed the extension of the collision cas-
cade fromσ = 2d to σ = d. Here, the Bradley-Harper
theory would only lead to faster growing parallel ripples
whereas the beam divergence noise leads back to an ex-
tended region with dominant growth of perpendicular
ripples.

3. Monte Carlo Simulations

Given the nontrivial nature of the averaging proce-
dure inherent in the analytic continuum approach it
seems also promising to study effects of beam profiles
via Monte Carlo simulations. Within this method, re-
alistic distribution functions of beam parameters and
material specific diffusion models can be handled eas-
ily . Our simulation method has been described several
times, more details can be found in Refs. [8, 9, 10, 11].
We use a lattice gas, solid-on-solid model. The discrete
height profileh(x, y, t) is updated via erosion steps and
diffusion steps. An erosion step is initiated by choos-
ing an ion, starting from a random position above the
surface, then calculates the deposited energy at surface
points (using Sigmund’s formula[12, 4]E(x′, y′, z′) ∝
exp[−(x′2+y′2)/(2µ2)] exp[−(z′+d)2/(2σ2)] with an ion
trajectory parallel toz′ axis and the origin corresponds
to the point of penetration) and sputters off a surface
particle with a probability proportional to this energy.
Diffusion steps consist of thermally activated hops of
surface particles to unoccupied nearest neighbor sites.
The kinetic barriers of this hopping consist of a constant
term ES due to the binding of the surface atom to the
substrate, a bond-breaking term, which depends upon
the numbers of in-plane neighbors of the initial and fi-
nal site and an Ehrlich-Schwoebel barrier, which hin-
ders the approach towards a downhill step of a terrace
[13] and which may lead to anisotropic instabilities of a
flat surface. In the following, we present results for case
(iii), first using a flat distribution of incidence anglesθ
(B, see above) and then more realistic distributions from
ref. [3]. Case (iii) is simulated by randomly choosing a
position and an incidence angle for every ion. A most
important parameter for pattern formation is the ratio
of timescalesτi/τd, whereτi is the time between two
incoming ions andτd is the time between two random
hops. For typical fluxes of∼ 1015 s−1 cm−2, there is∼ 1
ion per atom per second, soτi ∼ 1/L2 for a system with
a flatL × L surface. Forτd we take the waiting time for
a hop over a substrate barrierτd = τ0 exp(−ES/(kT)),
which is∼ 0.01s for 350K,ES = 0.75 eV and a typical
τ0 ∼ 10−13 s. In our simulations we have increased this
typical ratioτi/τd = 100/L2 by factors of∼ 103, which

enhances diffusion by slight changes inES or tempera-
ture.

First, let us discuss some generic results for situa-
tions, where patterns are formed mainly by erosion. In
these runs, we exclusively used the flat distribution of
incidence angles. Fig. 3 illustrates a generic slowing
down of the pattern formation at average incidence an-
gle θ0 = 50◦ with increasing width of a flat distribu-
tion. But there are also some salient, qualitative effects
of beam divergence on pattern formation, which can be
observed. Forθ0 = 0, i.e. sputtering at average nor-
mal incidence angle, we consider a parameter region,
where neither ripples nor dots appear in case of an ideal,
divergence-free beam. Fig. 3 depicts the structure func-
tion S = 〈|h(k, t)|2〉 vs. kx. Without beam divergence,
there is no sign of a preferred wavelength. A beam di-
vergence inθ leads to a maximum ofS at a nonzerokx,
this maximum increases, if the beam is also widened in
φ, thus a preferred wavelelngth of the surface patterns
develops. To illustrate this effect, we show the limiting
case of a flat distribution ofφ over the entire interval
[0,2π].

In Fig (3) a further generic effect of beam divergence
is shown, which we expect to appear near the critical
angleθc, which seperates the regimes of ripples perpen-
dicular and parallel to the ion beam direction inx − y
plane. In this regime, the patterns depend very sensi-
tively upon deteails of the beam properties and sudden
qualitative changes of patterns under slight changes of
incidence angle or beam profile may appear.

In a second series of simulations, we have tried to get
closer to realistic conditions. We have used beam pro-
files, which resemble those of Ref. [3] and we have
increased the ratioτi/τd by a factor of 1000, which
would lead to surface structures emerging from Ehrlich-
Schwoebel diffusion in the absence of erosion. In the
right panel of Fig. (3) the ripple pattern is shown,
which emerges after 3 monolayers of erosion without
any beam divergence (beam direction parallel to the x-
axis). With the beam profile corresponding to ref [3],
the pattern shown in the right panel of Fig (3) results,
which is composed of ripple patterns along (1,1,0) di-
rections. This same type of pattern is found for the ideal
beam, if the ratioτi/τd is reduced by a factor of≈ 103.
Thus it seems that a beam divergence enhances diffusion
effects of Ehrlich-Schwoebel currents (which lead to is-
lands with 45◦ edges). The presented example clearly
illustrates that the type of pattern depends sensitively
upon the beam profile and that there may be subtle in-
terplays between effects from such secondary ion beam
parameters and surface diffusion.

In conclusion, we have set up and studied a contin-
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uum theory and a Monte Carlo model of IBS including
ion beam profiles. In both approaches we have found
clear indications of a rather strong dependence of sur-
face patterns upon the special type of noise, which is
produced by nontrivial ion beam profiles, as has been
observed in experiments [1, 3, 2]. Whereas the con-
tinuum approach is most effective for small, Gaussian
fluctuations, where it leads to a renormalization of co-
efficients of the local evolution equation of the average
height profile, the Monte Carlo model is able to treat
generic as well as more realistic and material specific
situations. As the pattern forming scenarios depend sen-
sitively on beam parameters and diffusion, such a mod-
eling is neccessary, if one wishes to compare theoreti-
cal and experimental results in more detail. Our analy-
sis also revealed that a comparison between continuum
and MC results requires (i) the inclusion of non-linear
effects in the continuum theory and (ii) simulations on
longer time scales in MC modeling for small Gaussian
fluctuations. These studies are currently under way.
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Figure captions;

Fig.(1): Renormalization of both the parameter
ax(θ0) and ay(θ0) from equ.(2) due to case (iii) beam
profile noise are shown. The left upper and lower panel
depict the behaviour for an ideal beam, (which already
appeared in Ref. [4, 5]) (upper panel:d/σ = d/µ = 1,
lower panel:d/σ = d/µ = 2, the right panels show
the renormalization effects, if∂2

xC(0) = ∂2
yC(0) = 0.2.

solid lines: ax, dashed lines: ay. The lower curve
corresponds to faster growth within linear theory. Note
that the dependence of the dominant ripple orientation
for ideal beams are changed completely due to the noise.

Fig.(2): Time evolution of the surfaces which are
sputtered by an ion-beam with flat distribution profile.
Horizontal axis is time (ion/lateral atom) and vertical
axis is the value of width∆θ in degrees. θ0=50◦,
L = 256 and ion energy is 1.0keV

Fig.(3): The modulus of structure factor of surfaces
obtained from sputtering with non-zero ion beam
divergence (limiting cases with∆φ = 0 and∆φ = π)
compared to the case of sputtering by an ideal beam.

Fig.(4): Simulation results forθ0 = 65◦(≈ θc),
∆θ = 0◦ (left panel) and 20◦ (right panel) at t=2
ions/atom. Narrow bars indicate the azimuthal align-
ment of ion-beam.

Fig.(5): Simulation results of sputtering by an ion
beam directed along the x-axis at an average angle of
θ0 = 50◦ for t = 3 ions/atom (d/σ = 2,d/µ = 4,d = 6
lattice constants).Left panel: ideal beam,Right panel:
Beam profile corresponding to [3]. Diffusion is deter-
mined by an Ehrlich-Schwoebel barrier ofEES = 0.15
eV and an energy per bond ofEb = 0.18eV

Figure 1: Renormalization of parameters ....

Figure 2: Time evolution of the surfaces ....
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Figure 3: The modulus of structure ....

Figure 4: Simulation results for ....

Figure 5: Simulation results of sputtering ....

6


