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Abstract — Directed polymers on 1+1 dimensional lattices coupled to a heat bath at temperature 7" are studied
numerically for three ensembles of the site disorder. In particular correlations of the disorder as well as fractal
patterning are considered. Configurations are directly sampled in perfect thermal equilibrium for very large
system sizes with up to N = L? = 32768 x 32768 =~ 10 sites. The phase-space structure is studied via the
distribution of overlaps and hierarchical clustering of configurations. One ensemble shows a simple behavior
like a ferromagnet. The other two ensembles exhibit indications for complex behavior reminiscent of multiple
replica-symmetry breaking. Also results for the ultrametricity of the phase space and the phase transition
behavior of P(q) when varying the temperature 7 are studied. In total, the present model ensembles offer
convenient numerical accesses to comprehensively studying complex behavior.

Introduction. — Disordered systems like structural glasses
[1], spin glasses [2—7] or random optimization problems [8—10]
exhibit for some ensembles of disorder realizations complex
low-temperature phases, characterized by rough energy land-
scapes and diverging times scales. Most of such models can-
not be solved analytically, except few mean-field ensembles
like the Sherrington-Kirkpatrick (SK) spin-glass [11, 12]. By
solving the SK model, a particular signature of complex behav-
ior, replica-symmetry breaking (RSB), was introduced [13, 14].
Usually, and in the present work, the term RSB is used also
for other systems exhibiting multi-level hierarchical and rough
energy landscapes. On the numerical side [15] so far, the mod-
els, which show such complex behavior for ensembles with un-
correlated disorder, can be treated only with an exponentially
growing running time, let it be Monte Carlo simulations [16] or
ground-state calculations [17]. This prohibits a sophisticated
analysis. On the other hand, for models where fast algorithms
exist, e.g., random-field Ising systems [18], two-dimensional
spin glasses [19], or matching problems [20], the behavior of
uncorrelated or long-range power-law correlated disorder en-
sembles is simple [21-26], similar to a ferromagnet.

Her it is shown that by using more sophisticated disorder en-
sembles, in particular with suitable correlations, indeed a com-
plex behavior with broad overlap distribution and ultrametric-
ity might be observed, also for models where polynomial-time
and exact algorithms exist. Here, the directed polymer in a
random medium (DPRM) [27-29] on a two-dimensional dis-
ordered lattice is studied. It allows for exact equilibrium sam-
pling of configurations for huge lattices with, as here obtained,
even N = 107 sites. It is already known that directed polymers

on random trees, i.e., for mean-field systems, exhibit one-step
RSB [30-32]. For finite-dimensional lattices with uncorrelated
disorder in analytical approximations also signs for RSB were
found [33], but this seems to be weak [34, 35], which means
there are many pure states, but most of them have a small ther-
modynamic weight. This means that the distribution of over-
laps is trivial [35,36]. Still, an argument [37] exists that for
replica symmetry to hold, the growth exponent of the poly-
mer in the disorder-dominated regime should be dimension-
independent, which is apparently not the case [37-39]. Since
there are connections between directed polymers and systems
being described by the Kardar-Parising-Zhang equation [40],
also fluid fields described by the Burgers equation have been
considered. For the simulation of a system of particle tracing
in such a fluid, a signature of one-step RSB was reported [41].
But the numerical treatment of this system, as both dynamical
fluid and tracer particle have to be evolved in time, is rather in-
vloved such that only a limited range system sizes which span
less than a decade in size were studied. Thus, so far no con-
vincing example of results for large-scale systems concerning
the presence of complex behavior in finite-dimensional systems
exists.

Nevertheless, more general approaches to complexity exist
[42]. From this situation one could be lead to the question
whether for other suitable ensembles RSB may be observed.
Thus, in this work, lines or segments [43,44] of distinct dis-
order values will be employed in a novel way to the DPRM
problem on two-dimensional lattices. It is found, for data ob-
tained in exact equilibrium and for very large system sizes, that
indeed a complex low temperature phase exhibiting RSB feast-
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Fig. 1: Examples of disorder realizations (L = 128). White spaces
correspond to potential V' = 0, black blocks to V' = —1. Shown
are (left) Hash with 50 lines; (middle) Mondrian with 50 lines; (right)
Sierpinski triangles.

ures such as a broad distribution of overlaps and an ultrametric
organization of the phase space exists.

Model and Algorithm. — For the general two-dimensional
case, each realization of the model [27,28] is given by a lattice
with N = (L+1)x (L+1) sites, open boundary conditions and
local quenched energy potential values {V(z,y)} for x,y €
{0,1,..., L}. Directed polymers run from (0, 0) to (L, L) and
contain 2L+ 1 lattices sites P = {(z,y,)|7 =0,...,2L} and
are located on adjacent lattice sites always moving towards the
final point (L, L). Hence, for each “time” 7 = x + y, exactly
one site is present in P, and for (z,y) € P withz +y < 2L
either (x + 1,y) € Por (z,y + 1) € P. The energy of such a
configuration is given by the sum E(P) = >, cp V(z,y)
of the potentials of the visited sites. The system is considered
to be coupled to a heat bath at temperature T, such that each
valid polymer exhibits a probability e~#(")/T /7 with parti-
tion function Z = 3", e E()/T The model allows for each
disorder realization for a dynamic-programming, or transfer-
matrix, calculation [27,45,46] of the partition function via site-
dependent partition functions with

7(0,0) = o~ V(0,0)/T

Z(2,0) = Z(x—-1,0e V@Y (x=1... L)
Z2(00,y) = Z(0,y—1)eVOW/T (=1 . 1I)
Z(z,y) = (Z(x—1,y)+ Z(z,y—1))e”V@/T (1)

(z,y=1,...,L).

Note that Z = Z(L,L). Z can be calculated in time O(L?).
Furthermore, it is possible to sample polymer configurations
in exact equilibrium by always starting with P = Py =
{(L,L)}. Then one adds further sites towards smaller times
7 — 7 — 1 as follows: if the most recently added site is (x, y),
as next site either (x — 1,y) is added to P, with probability
Z(x —1,y)e”V@W/T | 7Z(x,v), else site (z,y — 1), thus with
probability Z(z,y — 1)e="V@¥)/T /Z(x,y). If only one of the
two sites is accessible, on the border of the lattice, this single
site is included in P. This process finishes when the origin
(0,0) is reached. Each sampling requires only O (L) steps.

Here two ensembles are considered where most lattice sites
have V' = 0 but along some segments or lines [43,44] the po-
tential exhibits V' = —1, favoring pinning of the polymer at low
temperatures [47]. Third, a system containing a single fractal
structure of potential values —1 and 0 is investigated.

Here lattice sizes with L = Lj;, = 2* are considered. Each
lattice exhibits at the border a potential V(x,y) = —1, i.e.,
forx =0,z = L,y = 0ory = L. There are more non-zero
energy values, which are chosen for three ensembles, see Fig. 1.
The ensembles Hash [43, 44], Mondrian, which is introduced
in this work, and Sierpinski, are defined as follows

e Hash: A number s of randomly chosen straight segments
of length L are added where V' = —1. This means, [
times a random point (xg,0) or (0,y0) is selected and
V(zo,y) = —1 or V(z,yo) = —1 is assigned for all
z,ye{l,...,L —1}.

e Mondrian: A set D of straight segments is maintained,
which contains initially the two segments (0,0) — (0, L)
and (0,0) — (L, 0). Then s times a segment is drawn with
uniform probability 1/|D| from the current set D, without
removing it. A site (g, o) is selected uniformly on this
segment. Then a new segment is added to D which starts
at the site (xg, yo) and runs, perpendicular to the selected
segment, until any other segment from D is hit. Finally,
all sites belonging to the segments in D obtain V = —1.

e Sierpinski: The discretized fractal Sierpinski structure
with, for lattice size L, k — 2 recursion levels is em-
bedded on the lattice. All sites belonging to Sierpinski
triangles obtain V' = —1.

Note that for the segment-based ensembles, always s distinct
segments are added, thus if an existing segment is selected, a
new one is drawn. For all ensembles, all other sites not hav-
ing V = —1, obtain V' = 0. Here, for lattice size L = Ly,
s = 10(k — 5) segments are inserted, respectively. Thus, the
minimum meaningful lattice size is Lg = 64 for this study.
Note that in Fig. 1 where L = 128 = 27 instead of 57 = 20 a
higher number of s = 50 segments is used, for better visibility.

Each polymer configuration P is characterized, first, by its
energy F/(P) as defined above. This allows one to measure
in equilibrium the average energy (F) and the specific heat
C(T) = ((E*) — (E)?)/(NT?), for which one can also
set up corresponding transfer-matrix equations [48]. For the
random-disorder ensembles a linear average of all quantities
over different realizations is performed, not indicated by sep-
arate brackets here. To characterize the model with respect
to its energy landscape, the overlap g between two polymers
Py, P> is used [49], which is the fraction of joint sites, i.e.,
qi12 = |P1 N Py|/(2L + 1) € [0,1]. By sampling many poly-
mers in equilibrium, evaluating all (or many) overlaps, an ap-
proximation of the distribution P(gq) of overlaps is obtained.

Results. — To analyze the configuration space of these
three ensembles, different disorder realization were studied first
at temperature 7' = 0.5. System sizes ranging from L = 64 to
L = 32768 were considered. A number of independent disor-
der realizations ranging from 2000 for the smallest size to 500
for the largest size were investigated. For each disorder con-
figuration M = 200 independent polymer configurations were
sampled in exact equilibrium.
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Fig. 2: Examples for clustered overlap matrices with dendrograms
showing the structures of the configurations space, each time 200 sam-
pled for one realization (L = 16384,T = 0.5). A black dot means
g = 1 while white corresponds to ¢ = 0. Shown are (top) Hash with
90 lines; (middle) Mondrian with 90 lines; (down) Sierpinski triangles.

The configuration space structure was analyzed by applying
the a agglomerative clustering approach of Ward [50,51]. The
approach operates on a set of M sampled configurations by
initializing a set of M clusters each containing one configura-
tion. One maintains pairwise distances between all clusters,
which are initially the distances between the configurations.
Then iteratively two clusters exhibiting the currently shortest
distance between them are selected and merged to one single
cluster, thereby reducing the cluster number by one. For this
new merged cluster, an updated distance to all other still exist-
ing clusters have to be obtained. Here the update is done with
the approach of Ward [50], which has been used previously
for the analysis of disordered systems [52-54]. The merging
process is iterated until only one cluster is left. This process
can be visualized by a tree, usually called dendrogram, where
each branching corresponds to a cluster merger, see Fig. 2. The
sequence of configurations as located in the leafs defines a par-
tial order. This order can be used to display the matrix of the
pair-wise overlaps where the order of the rows and columns is
exactly given by the leaf order, see also Fig. 2. For the Hash
ensemble, a rather gray uniform area is visible. This indicates
that the configuration space is rather uniform, like a param-
agnet. One the other hand, the matrices for the samples from
the Mondrian and Sierpinski display a block-diagonal structure,
which is recursively visible inside the blocks as well. This is an
indication for a complex configuration space, as it has been ob-
served, e.g., for mean-field spin glass models [53] or solution-
space landscapes of optimization problems [52,54]. Note that
the order of the configuration in the dendrogram is only par-
tial because one can always chose for a subtree to exchange is
left and right successors, but any of such an exchange will not
change the visual impression of the matrices.

In Fig. 3 the distributions of overlaps P(q) are shown. For
the Hash case, P(q) sees to convergen to the trivial P(q) =
0(q — qo). From a fit of the mean as function of L to a power-
law plus constant g, a value of go = 0.081(3) was obtained.
On the other hand, for the other two ensembles P(g) seems to
converge to a broad distribution for ¢ > 0 plus a delta-peak at
q = 0 with some weight wg, which accounts for polymers hav-
ing disjoint paths. For for the Sierpinski, wg = 0.5 holds. This
is compatible with the structure of the lattice, since at the start-
ing site the paths either go down or right and never meet again,
thus half of the pairs have zero overlap. For the Mondrian
ensemble, a much smaller limiting zero-overlap peak-weight
wo ~ 0.04 is found, i.e., most of the overlap distribution is
located in the non-trivial part. Also shown in Fig. 3 are the
variances 03 of the distributions of overlaps for the three en-
sembles. For the Mondrian and the Sierpinski ensembles, the
variance seems to converge to finite values in the L — oo limit.
This is confirmed by good fits for L > 100 of the data to func-
tions of the form o(N) = 0 + aL " which lead to clear non-
zero values 0o, = 0.1163(8) for the Sierpinski ensemble and
0o = 0.0785(7) for the Mondrian ensemble. Thus, for these
two ensembles the distribution of overlaps remains broad at low
temperature in the thermodynamic limit L — oo indicating a
complex phase space structure. The variance for the Hash en-
semble exhibits a positive curvature in the log-log plot, which
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Fig. 3: Distribution P(q) of overlaps at temperature 7" = 0.5 for four
different system sizes. The results are for (a) Hash, (b) Mondrian, and
(c) Sierpinski triangles. In (d) the variance 02 of these distributions
for the three ensembles is shown as function of the system size IV,
together with fits (see text).

could also be taken as indication for a complex structure. Nev-
ertheless, here each polymer path can be decomposed in many
sub paths with a high degree of independence, which speaks
in favor of a simple configuration-space structure. Indeed, a
limiting zero width is compatible: When fitting for L > 100 a
power-law with a correction term, 5(N) = aL (1 + eL~9),
a good fit is obtained as well, as shown in the figure.

A hierarchical configuration space, like for the SK model, is
characterized by an ultrametric structure [55], i.e., an underly-
ing tree. To characterize ultrametricity, one considers triples
of configurations P;, P», and P5; and their mutual overlaps
q12, 13, and go3 ordered such that g1o < g3 < ¢o3. For a true
ultrametric space, for an infinite system size, qg12 = ¢33 would
hold. To characterize the emergence of ultrametricity here, the
quantity K = (q13—q12)/04 is used [53], where o, is the width
of the overlap distribution P(g). For a non-trivial ultrametric
organization, the distribution P(K’) should converge to a delta-
function §(K), i.e., a variance U%( which converges to zero. In
the left of Fig. 4 samples for P(K) are shown for Mondrian
and Hash ensembles. The former one exhibits a slight change
towards smaller values of K when increasing the system size L.
For the latter one, the distribution is much broader, also for the
largest considered size. This is confirmed by the behavior of
the variance 0% of these distributions as function of the system
size. The data is compatible with a gentle power-law decreases,
shown as straight lines, for the Mondrian and the Sierpinski en-
sembles. This can be expected for the fractal Sierpinski ensem-
ble since it has an obvious hierarchical structure. Note that the
convergence even in this obvious ultrametric case is slow, as it
was also observed for long-range spin glasses exhibiting RSB

5 ‘ ‘
45| T=05 1 tosh ®
4 - Mondrian L=64 -= | Mon(}jlr?;l; x
| Mondrian L=32768 — | 0 ierpinski
35 10" t Sierpinski *
3 Hash L=32768 -=- | fits —
5 4 NbM 1 W
I
] D R NN
L] 10t ]
2 0t 102 10 10t
L

Fig. 4: (left) Sample distributions P(K) of the ultrametricity measure
for the Mondrian, and Hash ensembles. (Right) variance o2 of these
distributions for the three ensembles as function of the system size IV,
together with fits (see text).

[53]. Thus, the data indicates that also the Mondrian ensem-
ble exhibits ultrametricity as well. Also, the variance seems to
converge to a constant for the Hash ensemble, compatible with
the absence ultrametricity, and expected because of the simpler
distribution of overlaps.

In order to study the temperature dependence [48] of an en-
semble with complex behavior, for Mondrian, a large number
of simulations was performed. Note that similar simulations
for the Sierpinski model exhibited hard to analyze discotinu-
ities and are thus not presented here. Lattice sizes L < 16384
for many temperatures 7' € [0.1, 3|, plus for L = 32768 for few
temperatures near the estimated critical point were considered
with the number of disorder samples between 500 and 1000. In
the left of Fig. 5 examples for the specific heat C'(T) behavior
is shown. Clearly peaks are visible near T' ~ 1.4, growing and
narrowing with increasing system size, indicating a phase tran-
sition. For a second order phase transition [56—59] one would
expect that the specific heat scales as

C(T,L) = L*"&(T = T.) L"), ©)
with a size-independent function ¢() and critical exponents v,
describing the divergence of the correlation length, and o de-
scribing the divergence of the specific heat. Indeed, the height
of the peak follows clearly a power law Ciyax(L) ~ Lo/,
see inset of the left Fig. 5. A fit to this power law results in
a/v =0.69(2).

The position Ty, of the peak was estimated by fitting Gaus-
sians near the peak. The position as a function of the sys-
tem size is shown in the right of Fig. 5. Only a weak, third-
digit significant, but non-monotonous size dependence is visi-
ble. Equation (2) means that scaling of the peak position leads
to a leading behavior Tryax(N) — T ~ L=Y/7. Nevertheless,
fitting just a power law does not work well, even when restrict-
ing to larger sizes. On the other hand, Eq. (2) also concerns
the shape of the specific heat, i.e., the width of the peak re-
gion should also scale like L~1/¥_ The width, as obtained also
from the Gaussian fits, shows indeed a clear power law. A
fit to a power law, excluding the largest size where only few
points in the peak region are available, yielded v = —2.02(8).
When fixing v to this value, a fit to a power-law with correction
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Fig. 5: (left) Specific heat C'(T") as function of temperature for the
Mondrian ensemble and four different system sizes. The inset shows
the peak height Cr,ax as function of the system size. (right) Position
Tmax of the peak of C'(T) as function of system size L and in the inset
the width o¢ of the peak. The lines for C'(T") are guide to the eyes,
the other lines display fits (see text).

Tmax (V) = Tc—i—cL_l/”(l +dL~%) yields a reasonable fit, see
Fig. 5, with T, = 1.439(8). With this value of v, a rather large
value of o =~ 1.4 results, which could indicate that actually a
first-order phase transition is behind the seen data '. This is
compatible with the observed discontinities of the related Sier-
pinski lattice.

When also v was allowed to adjust, the resulting function
looked similar (not shown) and exactly the same value of T
was returned. But no reliable estimate for v could be obtained,
because the error bar was even a bit larger than the fit value
v=2T7.

The average overlap ¢(7T') is shown in the left of Fig. 6. At
low temperatures 7' > T, the average overlap is non-zero.
The curves for different system sizes cross near 7. and just be-
low T, the average overlap grows with the system size. This
is an unusual behavior when comparing, e.g., with a ferro-
magnet. A data collapse (not shown) leads to an unphysical
negative critical exponent. Note that also the average squared
overlap (not shown) exhibits this behavior. The average width
04(T') of the overlap distribution is shown in the right of Fig. 6.
The data can be rescaled reasonably well, see inset, according
to 0,(T,L) = L™/Y&((T — T.)L'/) when using the val-
ues T, = 1.439, v = 2.02 obtained already and estimating
v/v = 0.07(2). The smallest system sizes are excluded from
the collapse due to too large finite-size corrections. L = 32768
is not included here due to bad statistics, and the availability of
data for only few temperatures.

Summary and Discussion. — To conclude, it was shown
that some specific ensembles of the disorder for random poly-
mers on a two-dimensional lattice, at low temperatures exhibit
a complex hierarchical organization of the phase space, similar
to RSB. In contrast to other models exhibiting complex behav-
ior, the present models allows for fast and exact sampling at
arbitrary temperatures, i.e., to study large system in true equi-
librium. These results show that in general, by just using suit-
ably correlated disorder ensembles , in a convenient way com-

'In renormalization group studies on obtains for a d-dimensional system
o = 2 — d/y1. For a first-order phase transition y1 = d holds [60], which
leads to o« = 1 which is large compared to typically observed values
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Fig. 6: Mondrian ensemble and different system sizes in the (left) the
mean overlap ¢(7) as function of temperature. The inset shows the
data near the estimated transition point, indicated by a vertical dashed
line. (right) mean width o4 (T") of the overlap distribution, for three
sample system sizes The inset shows the rescaled data for system sizes
L > 1024.

plex behavior may be easily numerically accessible. This may
be also the case for other disorder ensembles, for other lattice
dimensions or even for other easily accessible models.
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