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Distribution of diameters for Erdős-Rényi random graphs
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We study the distribution of diameters d of Erdős-Rényi random graphs with average connectivity c. The
diameter d is the maximum among all the shortest distances between pairs of nodes in a graph and an important
quantity for all dynamic processes taking place on graphs. Here we study the distribution P (d) numerically for
various values of c, in the nonpercolating and percolating regimes. Using large-deviation techniques, we are able
to reach small probabilities like 10−100 which allow us to obtain the distribution over basically the full range
of the support, for graphs up to N = 1000 nodes. For values c < 1, our results are in good agreement with
analytical results, proving the reliability of our numerical approach. For c > 1 the distribution is more complex
and no complete analytical results are available. For this parameter range, P (d) exhibits an inflection point,
which we found to be related to a structural change of the graphs. For all values of c, we determined the finite-size
rate function �(d/N ) and were able to extrapolate numerically to N → ∞, indicating that the large-deviation
principle holds.
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I. INTRODUCTION

For each connected component κ of a network or a graph
G = (V,E) [1–3], the diameter d(κ) is the maximum over
all pairs of the component’s vertices i,j of the shortest-
path distance i ↔ j . The diameter d(G) of the graph is the
maximum of d(κ) over all components κ . The diameter is an
important measure of the network. It has a strong influence on,
e.g., dynamical processes taking place on these networks, since
it characterizes a typical long length scale for the transport of
information. Examples where the diameter plays an important
role are rumor spreading [4], energy transport in electric grids
[5], or oscillations in neural circuits [6]. Furthermore, for
networks changing over time, the temporal evolution of the
diameter can give important insights into the structure of the
dynamics [7].

Not much is known about the behavior of the diameter
of random network ensembles. At least it is known that the
average diameter for many ensembles grows logarithmically
with the number of nodes [8]. Nevertheless, a full description,
i.e., the probability distribution of network diameters over the
instances of an random graph ensemble, has been obtained
only in very limited cases, to the knowledge of the authors.

Here, we deal with the most fundamental and least-
structured graph ensemble, Erdős-Rényi (ER) random graphs
[9]. Let N = |V | denote the number of vertices. Each re-
alization of an ER random graph is generated by iterating
over the N (N − 1)/2 pairs i,j of nodes and adding the edge
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{i,j} ∈ V (2) with probability p. Here we concentrate on the
sparse case p = c/N , c being the average connectivity.

In the nonpercolating phase c < 1, close to the percolation
threshold c ↗ 1, the distribution of diameters is described in
theorem 11(iii) of Ref. [10]. The distribution is asymptotically
(N → ∞,c → 1) given by a Gumbel (extreme-value) distri-
bution

PG(d) = λe−λ(d−d0) e−e−λ(d−d0)
. (1)

Here, d0 is the maximum of the distribution, which scales
logarithmically with the number N of nodes. λ is the Gumbel
parameter describing the exponential behavior PG ∼ e−λd for
large values. It describes the variance, which is proportional to
1/λ2. In this c → 1 limit, the Gumbel parameter λ as a function
of the connectivity c is given by

λ(c) = − ln(c) . (2)

The fact that P (d) takes the form of an extreme-value distribu-
tion is intuitively clear: Below the percolation threshold, each
graph consists of a large number of trees, hence the diameter
is obtained by maximizing over these trees.

Note that Ref. [10] also contains results for general values of
c < 1. Although they are given in a more complex and partially
implicit form, they indicate that the asymptotic distribution is
also the Gumbel distribution, Eq. (1), with a parameter λ also
given by Eq. (2).

Due to finite-size corrections, the distribution of diameters
in finite-size graphs does not follow the Gumbel distribution.
In earlier numerical studies of another problem, sequence
alignments [11–13], the data were well fitted by “modifying”
the Gumbel distribution by a Gaussian factor:

PmG(d) = λ′PG(d)e−a(d−d0)2
, (3)
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where λ′ is given through the normalization
∫

PmG(δ) dδ = 1.
This distribution will be used in our analysis.

The probabilities P (d) for values of d which deviate from
the typical size are often exponentially small in N . Hence, one
uses the concept of the large-deviation rate function [14,15]
by writing

P (d) = e−N�(d/N)+o(N) (N → ∞) . (4)

Note that the normalization is part of the eo(N) factor. One says
that the large-deviation principle holds if, loosely speaking,
the empirical rate function

�N (d/N) ≡ − 1

N
ln P (d) (5)

converges to �(d/N) for N → ∞. Due to the logarithm the
normalization and the subleading term of P (s) become an
additive contribution to �, which go to zero for N → ∞.

In the present work, we study numerically the distribution
P (d) of diameters of ER random graphs in the sparse regime
p = c/N by using Markov-chain Monte Carlo simulations.
Using a large-deviation technique which is based on studying
a biased ensemble characterized by a finite temperature-like
parameter, see Sec. II, we are able to obtain the distributions
over almost the full range of the support, down to very small
probabilities like 10−100. For the nonpercolating regime c < 1,
we compare our numerical results to the available analytical
results and find a good agreement. In particular we find that
the asymptotic c ↗ 1 result of a suitably scaled Gumbel
distribution, modified by a Gaussian finite-size correction, is
compatible with our results for all values c < 1. Also, we find
the dependence Eq. (2) of the Gumbel parameter λ as a function
of c, for N → ∞. This confirms the validity of our approach.

We are also able to obtain P (d) numerically for c > 1. Here
we find that the distributions exhibit an inflection point. This
leads to a first-order transition in our finite-temperature ensem-
ble and makes the numerical determination of the distribution
much harder.

Nevertheless, for all values of c we determined the rate
functions for various numbers N of nodes and obtained, where
necessary, the limiting rate function via extrapolation. In all
cases we observed a good convergence, indicating that the
large-deviation principle holds.

II. SIMULATION AND REWEIGHTING METHOD

We are interested in determining the distribution P (d) of the
diameter in an ensemble of random graphs. The distribution can
be obtained in principle for any graph ensemble, here we apply
it to ER random graphs. Simple sampling is straightforward:
One generates a certain numberK of graph samples and obtains
the diameter d(G) for each sample G. This means each graph
G will appear with its natural ensemble probability Q(G). The
probability that the graph has diameter d is given by

P (d) =
∑

G

Q(G)δd(G),d . (6)

Therefore, by calculating a histogram of the values for
d, an estimation for P (d) is obtained. Nevertheless, with
this simple sampling, P (d) can only be measured in a
regime where P (d) is relatively large, about P (d) > 1/K .

Unfortunately, the distribution usually decreases very quickly,
e.g., exponentially in the system size N when moving away
from its typical (peak) value, like in Eq. (4). This means
that, even for moderate system sizes N , the distribution will
be inaccessible through this method on almost its complete
support.

A. Markov-chain Monte Carlo approach

To estimate P (d) for a much larger range of diameters,
we use a different importance sampling approach [11,16]. For
self-containedness, the method is outlined subsequently. The
basic idea is to generate random graphs with a probability
that includes an additional Boltzmann factor exp(−d(G)/T ),
T being a “temperature” parameter, in the following manner:
A standard Markov-chain Monte Carlo simulation [17,18] is
performed, where the current state at “time” t is given by
an instance of a graph G(t). The procedure is similar to the
standard use of Monte Carlo (MC) simulations for sampling
configuration of spin systems by sequentially generating spin
configurations. In the present case we generate a sequence of
graphs. We use the Metropolis algorithm [19] as follows: At
each step t a candidate graph G∗ is created from the current
graph G(t). One then computes the diameter of the candidate
graph, d(G∗). To complete a step of the Metropolis algorithm,
the candidate graph is accepted [G(t + 1) = G∗] with the
Metropolis probability

pMet = min{1,e−[d(G∗)−d(G(t))]/T } . (7)

Otherwise (with probability 1 − pMet) the current graph is
kept [G(t + 1) = G(t)]. The temperature parameter T allows
us to bias the sampling toward graphs of larger or smaller
diameters. Using an infinite temperature leads to acceptance
of all configurations; this gives access to the typical graph
diameter. With positive T temperature, one samples graphs
with diameters smaller than the typical diameter. The use of
negative T allows us to sample graphs with diameters larger
than the typical one.

Here, the generation of G∗ is done using the following local
update rule: A node i ∈ V of the current graph is selected
randomly, with uniform weight 1/N , and all incident edges
are deleted. Next, the node i is reconnected again; for all other
nodes j ∈ V the corresponding edge {i,j} is added with a
probability c/N (and not added with probability 1 − c/N ),
which corresponds to its contribution to the natural weight
Q(G) of an ER graph.

By construction, the algorithm fulfills detailed balance.
Clearly the algorithm is also ergodic, since within N steps,
each possible graph may be constructed. Thus, in the limit of
infinitely long Markov chains, the distribution of graphs will
follow the probability

qT (G) = 1

Z(T )
Q(G)e−d(G)/T , (8)

where Z(T ) is the a priori unknown normalization factor. Note
that for T → ∞ all candidate graphs will be accepted and the
distribution of graphs will follow the original ER weights.
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B. Obtaining the distribution

The probability to measure d at any temperature T is given
by

PT (d) =
∑

G

qT (G)δd(G),d

(8)= 1

Z(T )

∑

G

Q(G)e−d(G)/T δd(G),d

= e−d/T

Z(T )

∑

G

Q(G)δd(G),d

(6)= e−d/T

Z(T )
P (d)

⇒ P (d) = ed/T Z(T )PT (d) . (9)

Hence, the target distribution P (d) can be estimated, up
to a normalization constant Z(T ), from sampling at finite
temperatures T . For each temperature, a specific range of the
distribution P (d) will be sampled, with a bias toward smaller
d when positive temperatures are used, and a bias toward
larger d when negative temperatures are used. In both cases,
temperatures of large absolute value will cause a sampling of
the distribution close to its typical value, while temperatures
of small absolute value are used to access the tails of the
distribution. Hence one chooses a suitable set of temperatures
{T−Nn

,T−Nn+1, . . . ,TNp−1,TNp
} with Nn and Np being the

number of negative and positive temperatures, respectively.
A good choice of the temperatures is such that the resulting
histograms of neighboring temperatures overlap sufficiently.
This allows us to “glue” the histograms together, see next
paragraph. By obtaining the distributions PT−Nn

(d), ..., PTNp
(d),

such that P (d) is “covered” as much as possible, one can
measure P (d) over a large range, possibly on its full support.
The range where the distribution can be obtained may be
limited, e.g., when the MC simulations at certain temperatures
Tk do not equilibrate. This happens usually for small absolute
values |Tk|, where the system might also have a glassy behavior.
Another difficult case is when P (d) is not concave: Since PT (d)
is proportional to the product of P (d) and the exponential
e−d/T , this product will always have one maximum if log P (d)
is concave. If log P (d) has an inflection point, PT (d) exhibits
two local maxima, and the global maximum depends on the
value of T . In this case a first-order transition will appear [16]
as a function of T , which might prevent one from obtaining
P (d) in some regions of the support for large systems.

The normalization constants Z(T ) can easily be computed,
e.g., by including a histogram generated from simple sampling,
which corresponds to the temperature T = ±∞. Using suit-
ably chosen temperatures T+1, T−1, one measures histograms
which overlap with the simple-sampling histogram on its
left and right border, respectively. Then the corresponding
relative normalization constants Zr(T±1) can be obtained by
the requirement that, after rescaling the histograms according
to Eq. (9), they must agree in the overlapping regions with
the simple-sampling histogram within error bars. This means,
the histograms are “glued” together. Here, we achieve this
by minimizing the mean-squared difference between the two

rescaled histograms of, e.g., temperatures Ti and Ti+1:

′∑

d

[ed/Ti Z(Ti)PTi
(d) − ed/Ti+1Z(Ti+1)PTi+1 (d)]2 ,

where the sum
∑′

d runs over the histogram entries d in the over-
lapping region. The minimization constraint is equivalent to the
requirement that, after dividing the above expression byZ(Ti )2,
its derivative with respect to Zr (Ti+1) ≡ Z(Ti+1)/Z(Ti) is
equal to zero. This leads to

Zr (Ti+1) =
∑′

d ed/Ti PTi
(d)

∑′
d ed/Ti+1PTi+1 (d)

. (10)

In practice, in this computation we exclude data points at
boundaries of the histograms, where the statistics is bad. One
could also include weights which are inverse to the statistical
errors of the data points.

In this manner, the range of covered d values can be
extended iteratively to the left and to the right by choosing
additional suitable temperatures T±2,T±3, . . ., and gluing the
resulting histograms one to the other. The histogram obtained
in the end can be normalized (with constant Z), such that the
probabilities sum up to unity. This also yields the actual nor-
malization constants Z(T ) = Zr(T )/Z from Eq. (9). Note that
one could also not only glue together neighboring histograms,
but also use for each bin value d all available data, as is done,
e.g., within the multihistogram approach by Ferrenberg and
Swendsen [20]. For the present case, it was sufficient to use
the histograms just pairwise. A pedagogical explanation of the
gluing process and examples of this procedure can be found in
Ref. [21].

C. Equilibration

To obtain the correct result, the MC simulations generating
Markov chains of different graphs must be equilibrated. In our
case, there is an easy test that can indicate when equilibration
has not been reached. One can run two simulations starting
with two different initial graphs G(tMCS = 0):

(1) A graph which is arranged in a line, i.e., it has a linear
structure with N nodes and N − 1 edges. The diameter of this
graph is N − 1.

(2) A complete graph, which contains all N (N − 1)/2
possible edges. For this graph the diameter is unity.

For each of these two different initial conditions, the
evolution of d(tMCS) will approach the equilibrium range of
values from two different extremes, which allows a simple
equilibration test: If the measured values of d disagree within
the range of fluctuation, equilibration is not achieved. We shall
assume that, conversely, if the measured values of d agree, then
equilibration has been obtained.

Note that one can also use generalized ensemble methods
like the Multicanonical method [22] or the Wang-Landau
approach [23], in particular when a first-order transition as
function of T appears, to obtain the distribution P (d). While
these methods in principle do not require to perform inde-
pendent simulations at different values for the temperatures,
it turns out that for larger system sizes, one still has to
perform multiple simulations. The reason is that the interval of
interest must be split into smaller overlapping subintervals in
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order to make the simulation feasible. Here, the Wang-Landau
algorithm was used only for the case of c = 3, where the
temperature-based approach did not work well, see below. For
other values of c, it turned out to be much easier to guide
the simulations toward the regions of interest, e.g., where data
are missing using the so-far-obtained data, and to monitor the
equilibration process.

III. RESULTS

We have numerically determined the distribution of diam-
eters for ER random graphs for different connectivities below,
above, and at the percolation threshold cc = 1.

To set up the simulations, one first has to choose suitable
temperatures to address different ranges of the support. For
the present study, for connectivities smaller than 1, only a
few different values were sufficient. For example, for c = 0.6
and N = 1000, the temperature set {−1.5,−1.2,−1} was suf-
ficient. For c = 0.9 and N = 1000 the set {−3,−2,−1.5,−1}
was used. Above the percolation threshold, more temperatures
were needed. For c = 2.0, N = 1000 a larger set of 13
different temperatures in the range [−10,1] was necessary.
Equilibration, in the cases where it was achieved, was rather
fast. The longest equilibration time scales were observed for
c = 0.9,N = 1000 and c = 2,N = 500, which were about
1000 MC sweeps. One sweep means N trials for isolating
and randomly reconnecting a randomly chosen node. In these
two cases, another 7000 sweeps where used for sampling. On
a standard PC such a simulation (per temperature one Intel
Core i3, 3GHz) takes about one day, i.e., about five sweeps
per minute. Note that most computational effort goes into the
calculation of the pairwise shortest paths. Here we used the all-
pairs-shortest-path algorithm provided by the LEDA library
[24]. This implementation has a running time which scales
like O(N2 ln N ) for diluted graphs. For the case c = 3, see
below, we also performed Wang-Landau simulations, because
the Boltzmann-biased MC simulations did not equilibrate. For
the Wang-Landau case nevertheless the numerical effort was
larger, but convergence was achieved in a large range of the
support. For the largest size N = 1000, 119 independent MC
simulations had to be performed.

A. Connectivity c < 1

We start with the nonpercolating regime, where we can
compare with exact asymptotic results [10]. In Fig. 1 P (d)
is shown at c = 0.6 for three different graph sizes. Using the
approach explained in the previous section, probabilities as
small as 10−100 are easily accessible. In the linear-log plot,
clearly a curvature in the data is visible for large values of
the diameter, which could be partially due to strong finite-size
corrections. We have fitted the data to a modified Gumbel
distribution, Eq. (3), and obtained good fit qualities. We
studied the strength a of the Gaussian correction, see inset
of Fig. 1. One observes a clear power-law behavior. Hence,
the numerical data support that asymptotically the full distri-
bution becomes Gumbel or Gumbel-like below the percolation
threshold.

We have studied the behavior in the nonpercolating phase
for various values of the connectivity c and different system
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FIG. 1. Distribution of diameters for Erdős-Rényi random graphs
with average connectivity c = 0.6 for three different graph sizes
N = 100, 200, and 1000. The lines show fits to the modified Gumbel
distribution according to Eq. (3). The inset shows the dependence of
the parameter a of Eq. (3) on the system size N . The line displays the
power law a ∼ 1.51N−1.06.

sizes, see Fig. 2 for c = 0.9. Each time we observe qualitatively
the same convergence to a Gumbel distribution. From the fits,
for each value of the connectivity c and each system size N , a
value of λ(c,N ) is obtained. To extrapolate the dependence of
the Gumbel parameter λ(c) to large graph sizes, the following
heuristic dependence was applied:

λ(c,N ) = λ(c) + bN−α . (11)
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FIG. 2. Distribution of diameters for Erdős-Rényi random graphs
with average connectivity c = 0.9 for four different graphs sizes N =
100, 200, 1000, and 5000. The lines show fits to the modified Gumbel
distribution according to Eq. (3). The inset displays the dependence
of the Gumbel parameter λ as a function of graph size N . The inset
shows the result of a fit to the function Eq. (11).
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FIG. 3. Dependence of the Gumbel parameter λ as a function
of the connectivity c. The symbols show the extrapolation of the
numerical results using Eq. (11). The error bars are of order of symbol
size. The solid line represents the mathematical result Eq. (2) of
Ref. [10].

Note that we have no justification for such a relation from
analytical arguments concerning the Gumbel distribution. The
relation is purely heuristic and based on the fact that such a
behavior is often observed in standard finite-size scaling theory
[25,26] used for the analysis of phase transitions.

The inset of Fig. 2 shows the behavior of λ(c = 0.9,N )
together with the fit as a function of graph size N . Here,
we found the values λ = 0.16(2) and α = 0.4(1). For smaller
values of c the convergence is even faster, for c � 0.5 basically
the same value of λ is obtained for all sizes within fluctuations.
The resulting values for λ as a function of the connectivity
c are shown in Fig. 3 together with the asymptotic result of
Eq. (2), yielding a nice agreement. This shows that indeed the
numerical approach allows us to reliably study the distribu-
tion of diameters for finite sizes and to extrapolate to large
graphs.

Nevertheless, the scaling of the Gaussian correction param-
eter is close to a ∼ 1/N , hence when looking at the data for
the rescaled diameter d̃ = d/N , the size dependence exactly
drops out. Hence, the rate function of Eq. (5) as a function of
d̂ is studied next, as displayed in Fig. 4. The data collapse is
good, which means that even for small system sizes the rate
function is well converged. This indicates that the distribution
of diameters can indeed be described well by a rate function,
hence the large-deviation principle [14,27] holds. It is thus
likely that this model is accessible to the mathematical tool
of large-deviation theory. Note that due to the curvature of
the rate function, the Gumbel distribution is not visible when
inspecting the result on the d/N scale, which makes the most
important finite-size contribution drop out. Only when one
looks at the data at fixed values d is the convergence to a
Gumbel a meaningful statement. A similar result has been
observed previously for the distribution of scores of sequence
alignments [13].
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FIG. 4. Large-deviation rate function � as a function of the
rescaled diameter d/N for c = 0.6 and different system sizes. The
inset shows the large-deviation rate function for the percolation
threshold c = 1.

B. Connectivity c = 1

The results for the nonpercolating phase gave us confidence
in the numerical method. We now use it to study cases where
no exact results for the full distribution are available. In
Fig. 5, the distribution of diameters is shown right at the
percolation transition c = 1. Here, the random graph consists
of a large extensive tree plus small components and no Gumbel
distribution is expected, since λ = 0.

Nevertheless, it is still possible to fit the finite-size data to the
modified Gumbel distribution, see Fig. 5, since any finite-size
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FIG. 5. Distribution of diameters for Erdős-Rényi random graphs
with average connectivity c = 1.0 for different graph sizes. The lines
show fits according to Eq. (3). The inset shows the dependence of
the fitting parameter λ as a function of graph size using a double-
logarithmic axis. The lines shows the power-law ∼ N−α with α =
−0.3 obtained from fitting the λ(N ) data for N � 200.
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FIG. 6. Top: Time series for the diameter d as a function of
the number tMCS of MC sweeps, for c = 2, graph size N = 500 at
artificial temperature T = −2.2. Bottom: for the same run, the size
S of the largest component and the size Sb of the largest biconnected
component as a function of tMCS.

graph for c = 1 cannot be distinguished from the case c close
to 1. For example, fitting the case N = 1000 to Eq. (3) resulted
in

λ = 0.151(1), d0 = 22.9(1), a = 1.304(6) × 10−3 .

The fit matches the data well, also for other systems sizes.
Nevertheless, when studying the dependence ofλon the system
size, a convergence toward zero seems most likely, see inset
of Fig. 5. In the double-logarithmic plot the data appear to be
compatible with a straight line, meaning a power-law decrease
and maybe even a faster decrease. We verified this by fitting
λ(N ) according to Eq. (11), where we obtained a negative
value for λ for N → ∞ with an error bar of almost the same
size, showing that indeed the distribution P (d) differs from the
Gumbel distribution for c = 1.

This can also be seen from studying the large-deviation rate
function �(d/N ), see inset of Fig. 4 where also an upward-
bending function is seen, as for the case c = 0.6.

C. Connectivity c > 1

In the percolating phase c > 1, the numerical results show
that in the artificial finite-temperature ensemble there appears
to be a first-order phase transition as a function of the tem-
perature, similar to the distribution of the size of the largest
component [16]. To visualize this, we here show an example
of a MC time series for the diameter, see Fig. 6. Clearly the
diameter oscillates between two distinct regimes, showing the
coexistence of two “phases” with small and large diameters.
This corresponds at this temperature to a distribution of
diameters PT (d) with two peaks.

The data in Fig. 6 of the size S of the largest component and
the size Sb of the largest bi-connected component suggest that
the system oscillates between two states. When the diameter
is small, around 30 here, the largest biconnected component
is large, it contains about 200 nodes. On the other hand,

smalldd large

FIG. 7. Bimodal characteristics of the graphs at phase coexistence
(c > 1). There is a large linear structure plus a tightly connected
structure (plus a lot of small components which are not so important).
At criticality, the system oscillates between states where the strongly
connected structure is attached several times to the linear structure,
allowing for shortcuts, or only weakly connected (sometimes even
not at all).

when the diameter is large, about 130, the largest biconnected
component has a size of only about 30. Nevertheless, the size
of the largest components changes only a little bit. This we
interpret in the following way.

There is always one large line-like object present and a
tightly (bi)connected cluster, see Fig. 7. As we have verified
explicitly in our numerical data, the tightly connected cluster
typically has a small diameter while the line-like object has a
large diameter. In one state, the line-like object is connected
to the tightly connected cluster only at a few nodes or not
at all. Hence, the diameter path is basically along the line-
like object and the diameter is large. In the other state, the
line-like object is connected to the tightly connected cluster
at several distant points, such that the diameter path makes
a shortcut. Thus, the diameter is small and the biconnected
component relatively large. Our measurements showed that
although the diameters of the two states differ strongly, the
number of edges differ only slightly (not shown here). This
allows a quick transition between the two states. Note that in the
mathematical literature [28] for a logarithmically growing (but
not too large) connectivity for diluted ER random graphs, the
diameter is concentrated around a finite number of values. This
might be related to the observed oscillations of the diameter.

The existence of an inflection point in log P translates into
the existence of a first-order transition in the finite temperature
ensemble with some critical temperature Tc. This leads to a
bimodal structure of PTc

(d) exhibiting a very small probability
in the region between the two peaks. Hence, concerning the
numerical effort, obtaining the full distribution P (d) becomes
difficult, in particular for large graphs, because the intermediate
region for values of d between the two peaks of PT (d) is rarely
or even not at all sampled.

Therefore, for the case c = 2.0, only system sizes up to N =
500 could be equilibrated deep into the large-diameter regime
(corresponding to negative temperatures with small absolute
values). Larger sizes, in particular for even larger connectivities
c, cannot be addressed by the MC sampling with a Boltzmann
weight at temperature T . For this reason, we used the Wang-
Landau algorithm for larger connectivities, see below. The first-
order nature of the transition, i.e., the two-peak structure of
the distributions of the diameter at finite temperature close to
the transition temperature, becomes visible by a “dip” in the
distribution of diameters for N = 500, see Fig. 8.

The dip is more pronounced when going to larger connec-
tivities. This can be seen in Fig. 9, where the large-deviation
rate function is displayed for c = 3.0 for different system sizes.
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FIG. 8. Distribution of diameters for Erdős-Rényi random graphs
with average connectivity c = 2.0 for graph size N = 100, 200, and
500.

Here, the Wang-Landau approach was used, which allowed us
to sample the region of the dip much better.

In Fig. 9 the corresponding rate function is shown. Here, in
particular for small values of d/N , stronger finite size effects
are visible. Thus, we have considered the functions �N (d/N)
at various fixed ratios d̃ = d/N and performed an extrapolation
via fitting

�N (d̃) = �(d̃) + bN−β , (12)

where b and β are fitting parameters which are determined
for each considered value of d̃ separately, i.e., point-wise.
An example of the extrapolation is shown in Fig. 9, together
with the extrapolated values �(d/N). For large values of
d/N , above 0.5, the finite size effects are small, while for
small values of d/N the extrapolated function differs slightly
from the results for finite values of N . The change from a
concave to a convex function near d/N = 0.3 is well visible.
A similar qualitative behavior has been found previously for
the rate function � for the distribution of the size of the largest
component for ER random graphs [16].

IV. SUMMARY

We have studied the distribution of the diameter for dilute
ER random graphs with connectivities c. Using large-deviation
simulation techniques, we were able to obtain the distributions
over a large range of the support. In the nonpercolating
region of small connectivities c < 1, the distributions are
concave and can be well fitted to the Gumbel distributions
with a Gaussian correction. The extrapolated parameter of the
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FIG. 9. Large-deviation rate function � as a function of the
rescaled diameter d/N for c = 3.0 and different system sizes N =
100, 200, 500, and 1000 (symbols). The line shows the rate function
obtained from extrapolation N → ∞. Inset: extrapolation of rate
function as function of system size, for d/N = 0.1.

Gumbel distribution agrees well with mathematical results. In
the percolating regime c > 1 the distribution of the diameters
is not available analytically. Within the numerical result, we
observed a change of the rate function from concave to convex
behavior, thus a more complex distribution. Nevertheless, for
all values of c studied, we were able to obtain and extrapolate
the rate function. This means that the distribution of diameters
follows the large-deviation principle.

Since the diameter is of importance for many physical
processes taking place on networks, it would be interesting
to obtain the distribution over a large range of the support
for other graph ensembles, like scale free graphs. The results
obtained in the present work show that this should in principle
be possible.
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