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Abstract. We study the distribution of the area and perimeter of the convex hull of the “true”
self-avoiding random walk in a plane. Using a Markov chain Monte Carlo sampling method, we
obtain the distributions also in their far tails, down to probabilities like 1078°°. This enables
us to test previous conjectures regarding the scaling of the distribution and the large-deviation
rate function ®. In previous studies, e.g., for standard random walks, the whole distribution
was governed by the Flory exponent v. We confirm this in the present study by considering
expected logarithmic corrections. On the other hand, the behavior of the rate function deviates
from the expected form. For this exception we give a qualitative reasoning.

1. Introduction

The random walk is a very simple model for diffusive processes with Brownian motion [1] as
the prime example. Though its applications range from financial models [2] over online search
engines [3] to the very sampling algorithm used in this study [4]. Its simplest variation lives on
a lattice and takes steps on random adjacent sites at each timestep, which is exceptionally well
researched [5]. With the further constraint that no site may be visited twice, such that the walk
is self-avoiding, it becomes a simple model for polymers [6]. Interestingly, depending on the
exact protocol how the self-avoidance is achieved, they can also be used to study the perimeter
of, e.g., critical percolation clusters [7] or spanning trees [8, 9]

The distance of a random walk from its starting point is the most prominent and simple
measurable quantity. Nevertheless, here we go beyond this by considering the convex hull of
all T sites visited by the random walk, i.e., the smallest convex polygon containing all these
sites. It can be seen as a measure of the general shape of the random walk, without exposing
all details of the walk. Thus, the area A or perimeter L of the convex hull can then be used to
characterize the random walk in a very simple way. This method is also used, for example, to
describe the home ranges of animals [10, 11, 12], spread of animal epidemics [13] or classification
of different phases using the trajectory of intermittent stochastic processes [14]. For standard
random walks its mean perimeter [15] and mean area [16] in the large 7" limit are known exactly
since a long time. More recently different approaches generalized these results to multiple
random walks [17, 18] and arbitrary dimensions [19]. Even more recently the mean perimeter
and area for finite (but large) walk lengths 7" were computed explicitly [20] if the random walk is
discrete-time with jumps from an arbitrary distribution. If the distribution of the jump length
is Gaussian, even an exact combinatorial formula for the mean volume in arbitrary dimensions
is known [21]. For higher moments however, there is only one analytic result for the special
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case of Brownian bridges [22], i.e., closed walks with Gaussian jumps. When asking for more,
i.e., for the full distributions, no exact analytical results are available. This motivated the
numerical study of the full distributions—or at least large parts of the support—using large-
deviation sampling techniques to sample even far into the tails of standard random walks [23]
and multiple random walks [24], also in higher dimensions [25]. These numerical studies are
rather expensive, since they usually require Markov chain Monte Carlo simulations, allowing
one to measure the distribution in regions where the probabilities are as small as 107199,

Since self-avoiding walks are considerably more difficult to treat analytically than standard
random walks, there are no analytical results about the properties of their convex hulls
yet. Therefore, the authors of this contribution very recently published a numerical study
of the full distribution of perimeter and area of three different types of self-avoiding random
walks [26], notably the classical self-avoiding walk (SAW) and the smart kinetic self-avoiding
walk (SKSAW). While the SAW is combinatorial in nature and describes the set of all self-
avoiding configurations with equal probability, the SKSAW is a growth process, which assigns
more weight to some configurations. In [26] we also give an estimate for the functional form of
the rate function ® describing the far right tail behavior of the distribution, i.e., P(S) ~ e T2(9),
It was found to depend only on the dimension d and the scaling exponent v. For two-dimensional
random walks these scaling exponents are often known exactly through Schramm-Loewner
evolution [27, 28, 29, 30].

In this study we test this prediction for the “true” self-avoiding walk (TSAW), which has
a free parameter S governing how strictly self-avoiding the walk is. Introduced in [31] the
TSAW was a counter model to the SAW, especially it should demonstrate that the behavior of
the combinatorial SAW is very different from more natural growing random walks which avoid
themselves. Indeed, in two dimensions, where the end-to-end distance r of a T step SAW scales
as r o« TV with v = 3/4, the TSAW will scale as

roc T (InT)” (1)

with v = 1/2 [32] and a correction «, which is not known rigorously, but estimated as
a = 1/4 [33]. Here we show, for large-enough values of /3, that in contrast to previous work [26]
the rate function ® is not simply determined by the value of v, since the growth process of the
TSAW in the large-area region of the tail is indistinguishable from the SKSAW growth process,
although they have different values of the scaling exponent v determined by the behavior of the
high-probability part of their distributions.

2. Models and Methods

This section will introduce the TSAW model and the sampling method in enough detail to
reproduce the results of this study. For more fundamental methods, like the construction of the
convex hull, we will sketch the main ideas.

2.1. Large Deviation Sampling Scheme

To obtain good statistic in the far tail, it is not sufficient to perform naive simple sampling, since
configurations of probability P would need about 1/P samples to occur at all. It is therefore
not feasible to explore the distributions down to the tails of P < 10719 with simple sampling.
Instead we use an importance sampling scheme to generate more samples in the low probability
tails. Thus, we generate Markov chains consisting of sequences of TSAWs and use the well
known Metropolis algorithm [34] with a Boltzmann sampling weight. For this purpose, we
identify the quantity S we are interested in—here the area A but it could be any measurable
quantity in principle—with the energy occurring in the Boltzmann factor and introduce an
artificial “temperature” ©. Since the TSAW is a growth process, it is not trivial to come up
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with a local change move within the Markov chain, i.e., it is difficult to change a configuration
by a small amount while preserving the correct statistics. Therefore our Markov chain is not
directly a chain of configurations of TSAW but rather a chain of random number vectors &;.
Each vector &; determines a configuration of a TSAW by performing the growth process and
using for each of the T" decisions a random number from &;. This approach is sketched in Fig. 1
and extremely general since it can be applied to any model [35]. A change move is a simple
change of one entry of §&;.

change change change change
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Figure 1. Sketch of the Markov chain of random number vectors &;. The change move is
performed on the & and a new TSAW is generated from scratch, its energy difference to the
previous configuration is used to accept or reject the change.

Following the Metropolis algorithm, we propose a new &' by replacing a random entry
with a new random number ¢ € U|0,1), generate a new TSAW configuration from scratch
using the random numbers &' and calculating its energy S’, i.e., its area. The proposed
configuration is then accepted, i.e., &1 = &', or rejected, i.e., &1 = &;, depending on the
temperature and energy difference with respect to the previous configuration with probability
Pace = €299 where AS = S’ — S; is the energy difference caused by the change. Replacing a
random entry by a new entry is clearly ergodic, since any possible &; can be generated this
way. Since we use the classical Metropolis acceptance probability, detailed balance is also
given. This Markov process will therefore yield configurations £ according to their equilibrium
distribution Qg (&) = ﬁ@(ﬁ) e 30/9 where Q(&) is the natural, unbiased distribution of
configurations and Z(0©) the corresponding partition function. For small temperatures this
will lead to small energies, i.e., smaller than typical perimeters or areas. For large temperatures
typical configurations will be generated and for negative temperatures larger than usual energies
dominate. Since this Metropolis algorithm will generate instances following a Boltzmann
distribution we can easily undo this bias, i.e., we can derive the actual distribution P(S) from
the biased, temperature dependent distributions Pg(S) as

Po(S)= Y. Qo€ (2)

{&l5(&)=5}

- > emelow Q
{&15(&)=5}

_ exp(=5/0)

- =) P(S). (4)

The unknown Z(©) can be numerically determined by enforcing the continuity of the
distribution. Therefore we need to simulate the system at many different temperatures O, such
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that all histograms Pg(S) overlap with adjacent temperatures. Z(0) can now be calculated in
overlapping regions, which should coincide for continuity, i.e.,

/91 7(0,) Pe, (S) = ¢%/9+1 Z(0,11) Po,., (S) 5)
Z(Qi) P@i+1 (S>
o) S NOR (6)

This relation fixes all ratios of consecutive Z(©). The absolute value can be fixed by the
normalization of the whole distribution.

This method is applicable to a wide range of models, and already successfully applied to
obtain, e.g., the distributions over a large range for the score of sequence alignments [36, 37,
38|, work distributions for non-equilibrium systems [35], properties of Erdés Rényi random
graphs [39, 40, 41], and in particular to obtain statistics of the convex hulls of a wide range of
types of random walks [23, 24, 26].

=exp (5/0it1 — 5/6;)

2.2. “True” Self-Avoiding Walk
The “true” self-avoiding Walk (TSAW) is a random walk model, in which the walker tries to
avoid itself, but self-avoidance is not strictly imposed. To construct a TSAW realization one

454

11 y
(a) B=0 (b) B=1 (c) B = 100

Figure 2. Examples of typical TSAW realizations at different values of the avoidance parameter
B with their convex hulls. Each walk has T" = 200 steps. Larger values of g lead to larger
extended walks characterized by larger areas of their convex hulls.

grows a standard random walk on a lattice and records the number of visits n; to each site i.
For each step the probability to step on a neighboring site i is weighted with the number of
times that site was already visited

pi = exp (—fn;) ’ )
> jen exp (=fBny)

where the sum over all current neighbors A is for normalization. The free parameter 3 governs
the strength of the avoidance. Large values of 5 lead to stronger avoidance, negative values of
B lead to attraction and 8 = 0 is the special case of the standard random walk. For a selection
of B values typical examples are visualized in Fig. 2. The TSAW is not to be confused with
the classical self-avoiding walk (SAW), which describes the ensemble of all configurations which
do not intersect themselves each weighted the same. In Fig. 3 two partial decision trees are
displayed which visualize the fundamental differences in the weights of the configurations. Even
in the 8 — oo limit (Z; = 3, Zo = 2) the weights differ. In particular its upper critical dimension
is d = 2 [31], which means that the exponent v, which characterizes the scaling of the end-to-end
distance r o< TV, is v = 1/2 with logarithmic corrections, i.e., r oc T" (InT)“, where o = 1/4 [33]
is conjectured.
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(a) SAW (b) TSAW

Figure 3. Partial decision trees for SAW and TSAW of walks up to length 7"= 5. On the right
side of each tree the weight of the configuration is displayed. While the weights for the SAW are
by definition uniform for every valid configuration, the TSAW not only allows self-intersection,
but also has different weights depending on the history of the walk. Note that Z; = 3+exp(—03)
and Zo = 2+ 2exp(—p).

2.3. Convex Hulls
The convex hull of a set of points P in the plane is the smallest convex polygon enclosing every
point p € P and hence also every line between any pair of points. Some examples of convex
hulls are visualized in Fig. 2. The construction of a convex hull of a planar point set is a solved
problem, in the sense that an optimal algorithm exists [42, 43] with result-dependent run time
O(Tlogh), where T is the number of points |P| and h is the number of vertices of the resulting
convex hull. In practice, however, suboptimal but simpler and for point sets as small as in this
study (T =~ 10) faster algorithms are used. Especially for planar point sets one can exploit the
fact that a polygon can be defined by the order of its vertices, instead by a list of its facets. The
Graham scan [44] algorithm is based on this fact. After shifting the coordinate origin into the
center of the point set, it sorts the points according to their polar coordinate. Then starting at
an arbitrary point all points are filtered out which are oriented clockwise with respect to the the
previous and next (not-filtered out) points. Iterating this over a full revolution, leaves only the
points which constitute the vertices of the convex hull. This algorithm is dominated by the time
to sort the points, which can be done in O(T'logT). Here, we use Andrew’s monotone chain
algorithm [45], which is a variation of the Graham scan sorting the points lexicographically,
which is slightly faster, instead of by polar angle. Note that this type of algorithm does not
generalize to 3 or higher dimensions. For those cases a different algorithm, like quickhull [46] has
to be used. Before applying the exact algorithm, we reduce the size of the point set with Akl’s
elimination heuristic [47], which removes all points inside, in our implementation, a octagon
of extreme points. Of a few tested polygons the octagon showed the best performance in the
instances we typically encounter in this study.

To calculate the area A of a convex polygon, where the coordinates are sorted
counterclockwise, one can sum the areas of the trapezoids extending perpendicular to the x-
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axis

h—1

A= % > Wi+ yir1) (@i — wiga). (8)
1=0

The perimeter L is the sum of the line segments of consecutive points of the hull

h—1
L= Z V(@i — 2i41)? + (yi + yit1)?, (9)
i=0

with z;, = zg and y, = yo.

3. Results

We simulated the TSAW at two values of 5. The limit case of a TSAW, which only steps on
itself, if it has no other choice, was simulated at § = 100. Since the probability to step on already
visited sites is exponential in 3, this corresponds to the 5 — oo case. Further, we simulated at
B =1, to capture also the case, which does sometimes voluntarily step on itself.

First, we will look at the behavior of the mean of the perimeter and area. Here, we used
simple sampling for walk lengths in the range T € {2¥|10 < k < 23}. Each value is averaged
over 105 TSAWSs. Naturally, the mean of geometric volumes scale with their intrinsic dimension
d; and a typical length scale r, e.g., the end-to-end distance, as r%. Using the scaling of 7 from
Eq. (1), we expect the mean values of the perimeter (L) (d; = 1 in d = 2) and the area (A)
(d; = 2) to scale as

S oc T4 In(T) %™ (10)

for large values of T. We can even calculate the asymptotic prefactors u* by extrapolating
the scaled values for finite sizes pu, = (L)T~Y/21In(T)~* and py = (A) T In(T) "2 to their
asymptotic values p$° and pS°. For the extrapolation, which is shown in Fig. 4(a), we use a
simple power law with offset 1 = > —aT~?, which were already used for this purpose in [23, 24].
The asymptotic values are listed in table 1. As expected the values for the TSAW are larger for
larger 8. To our knowledge, there are no analytical calculations for these asymptotic values to
which we could compare to. The given error estimates are only statistical and do not include
the systematic error introduced by the ad-hoc fit function. Nevertheless the convergence of the
values is very well visible, confirming v = 1/2 and « = 1/4 to be very good estimates.

Direct fits of the form Eq. (10) yield values in good agreement with the expected exponents
for the end-to-end distance r at 8 = 1, but most other data sets lead to fits overestimating «
and slightly underestimating . A possible, at least partial, explanation for this is be that the
relation L(r) is not perfectly linear for the sizes we obtained data for.

We now focus on the main result, on the distribution P(A) of the convex-hull area. These
results were obtained using the large-deviation Markov-chain simulations. We had to perform
simulations for different “temperatures” ranges for each system size and parameter 5. For
example 7' = 128 at § = 1 needed seven temperatures for the right tail 6 € [-40, —9] and three
more for the left 6 € [7,40]. For larger system sizes more temperatures are usually needed. For
the § = 1 case at T" = 2048 we used 32 temperatures § € [—3200,—105] to obtain the right
tail. For the 8 = 100 cases we could use similar values for the temperatures. Equilibration
was ensured as described in [26]. In Figure 4(b) we compare distributions of different random
walk types with the result for the TSAW at different values of 5. By using the large-deviation
algorithm, we were able to obtain this distribution over hundreds of decades in probability, down
to values as small as P(A) ~ 1078% for the largest value of 7. Notice that while SKSAW and
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(a) Asymptotic mean values (b) Comparison of different types of random walks

Figure 4. (a) Extrapolation of the asymptotic mean values of the perimeter and area of the
convex hull. (b) Distribution of all scrutinized walk types with 7' = 1024 steps. The inset shows
the peak region. Note that the standard random walk (RW) and the § = 0 TSAW coincide.
Also the far right tail of the 8 = 100 TSAW and SKSAW coincide, but not the main region. The
vertical line shows the maximum area constructable with 1024 steps, which has an area Apmax
about 5122/2 ~ 1.3 x 10°. The distributions are thus not sampled over their whole support, but
a large region.

HE HE
TSAW 5 =0 (exact) 3.5449... 0.7854...
TSAW 5 = 1 3.636(2) 0.820(1)
TSAW § = 100 4.641(3) 1.339(3)

Table 1. Asymptotic mean values of the area and perimeter scaled by Eq. (10). The values are
obtained by the fit shown in Fig. 4(a). The given error estimates are only statistical and do not
include the systematic error introduced by the ad-hoc fit function. The exact values are from
[19] and converted to a square lattice as described in [26].

TSAW with high values of 8 show the same behavior in the far tail, where the walks are so
stretched out such that trapping does not play a role anymore. In the main region however,
they are clearly distinct, as is expected due to their different scaling exponent v. Further,
the parameter § can apparently be used to interpolate the tail behavior between the standard
random walk case and the SKSAW case.

Since we have obtained large parts of the distribution, it would be interesting if the whole
distribution scales the same as the mean values (cf. Eq. (10)). For other types of walks, the
distribution of perimeter and area could indeed be scaled [23, 24, 25, 26] across their full support
only knowing v, as

P(S)=T"%P (ST*d”) . (11)

For the TSAW, this collapse, when considering the logarithmic corrections as visualized in Fig. 5,
exhibits an apparent drift towards a limiting shape. Nevertheless, severe finite size effects are
visible, especially in the tails but also in the main region. Despite far larger system sizes T
considered, here the main region collapse is worse than for other kinds of self-avoiding walks as
shown in [26]. The stronger finite size effect may be caused by the fact that all walks start on an
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empty lattice. This means for our case that the first steps of the walk behave differently from
the last steps of the walk, when many sites are occupied. Although for the limit of large system
sizes T, the latter should determine the behavior. A possible improvement to simulate TSAWs
is suggested in [33], which is to simulate a much longer walk with ¢ > T steps and look at the
last T steps.

10° 10° =
—100 256 0 256
10 i 512 ++ — 10-00 | 512
T 107 b 1024 = 1024
QQ( 10-3% | 2048 §~ 10-200 | 2048
= 10-400 | 3
2 —300 | 2
E 10-300 | E 10
< 107600 | = 1000 |
Il —700 Il
10770 | B
A 10-800 | 0 R 1075 Ly
1o-0 | 00 05 10 1520 gooo |00 05 10 15 20
10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
A/T(nT)'/? A/T(InT)'/?
(a) =1 (b) B =100

Figure 5. Distributions of the area of the “true” self-avoiding random walk scaled according
to Eq. (11) plus logarithmic corrections for different values of 5 and lengths T'. The insets show
the main region for 14 values of T' € {2¥]10 < k < 23} obtained by simple sampling.

The rate function @ is defined if the distribution obeys the large deviation principle. This
means that the distribution, for large values of T', should decay exponentially in the length T°
scaled by the rate function as

Pr(s) ~ e T®06) (12)
Usually the parameter s is between 0 and 1. We achieve this by dividing our measured
area by the maximum area, i.e., by measuring s = n’:x In two dimensions the walk
configuration with maximum area is L-shaped with arms of equal length (for odd T") and therefore
1 (T+1\2 __ T2

~ 5.

Amax )
Similar to [26] we assume the rate function to be a power law

D(s) ox s7, (13)
which seems to agree reasonably well with our data, since the double logarithmic plot Fig. 6
shows that the rate function appears as a straight line in the intermediate tail. The far tail is
dominated by finite-size effects caused by the lattice structure, which leads to a “bending up”
of the rate function. For small values of s, in the high-probability region, the rate function does
not have any relevance. Assuming that the rate function is a power law Eq. (13) and scaling of
the form Eq. (11) is possible, with d; being the intrinsic dimension of the observable, e.g., d; = 2
for the area, we can derive a value for the power law exponent of the rate function . Using the
definition of the rate function Eq. (12)

e—T‘I)(Sdei) ~ T—diyﬁ (ST—dill) (14)
should hold in the right tail. The T-%" term can be ignored next to the exponential, also the
logarithmic correction is subdominant and would not allow to add any insight. Apparently the
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right hand side is a function of ST~%" such that the left hand side also has to be a function of
ST—%. This is the case for [26]

K= —"-7. 15
di(l — V) ( )
10° 10° —
107 L 107!
© 256 © 256
9 512 9 512
1077 ¢ 1024 1077 1024
2048 2048
Asymptotic ¢ re+ Asymptotic ¢ re+
103 d = as“,lf-c = 1.166(8) — 103 o= as"‘,rf =1.179(15) —
1072 107t 10° 1072 107t 10°
S = A/Amax s = A/Amax

(a) (b)

Figure 6. Rate function ® for the area with fits to the assumed power-law form. The fit is
performed over a range, where the finite-size influence of the lattice should be small, but the
large T' behavior can be extrapolated. Finite-size effects seem more pronounced for larger values

of 5.

To test whether the results for the rate function in case of the TSAW obeys this relation, we
estimate the value of k from our data. Since we have data for various values of the walk length
T, we first extrapolate our data point-wise to large T'. For this purpose we fit a power law with
offset, where the parameters depend on the value of s:

(s, T) = a(s)T"®) + doo(s). (16)

This results in the value of interest ®(s) = ®(s), the parameters a(s) and b(s) are only auxiliary
quantities. We perform this extrapolation in a region which is far away from the finite-size effects
of the far tail. In this range of medium values of s the extrapolation according to Eq. (16) works
robustly. Since the bins of the logarithmic histograms we use do not have the same borders for
every system size T', we have a-priory not access to the same value of s for different values of
T. Thus, we use cubic splines to interpolate such that we obtain results for the same value of
s for all walk lengths. We found cubic splines to be sufficient since the bins are rather dense
such that systematic errors introduced by the interpolation should be small. The final values
®(s) obtained from the extrapolated values to the assumed form Eq. (13) are shown in Fig. 6 as
symbols. Next, we fit power laws to this data. The values for x obtained are within errorbars
consistent with x = 7/6 which is the expected value for the SKSAW (v = 4/7) and incompatible
with the expected value kK = 1 of v = 1/2 walks. This behavior is nevertheless plausible since
in the tail (large-area) region, structures, which enable self trapping, i.e., loops, are rare since
they do lead to smaller areas of the convex hull than straight regions. Therefore the influence of
trappings should diminish in the large area tail, which is the main difference in the behavior of
SKSAW and TSAW. Without trappings the TSAW in the 8 — oo limit is functionally identical
to the SKSAW. Apparently already 8 = 1 is large enough to produce this behavior. Therefore
it is natural that the large-area tail behaves the same as the SKSAW. On the other hand, to
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possibly see a range where the rate function behaves like a power law with k = 1 according
to v = 1/2, one would have to go to much larger system sizes, because one would have to
obtain data to the right of the peak, but for very small values of s = A/Apa < 1072, where
trappings still do play a role. In particular the analysis might be hampered by the presence of
the logarithmic correction to the mean end-to-end distance.

This means that the TSAW is more complex in comparison to some other types of self-
avoiding walks for which it was possible to predict the tail behavior from the same exponent v
which predicts the mean behavior. The other types of random walk were under scrutiny in [26],
namely the self-avoiding walk, the loop-erased random walk and the smart kinetic self-avoiding
walk (SKSAW). Instead for TSAW in the large deviation region a different scaling exponent
seems to hold, which is very close to the scaling exponent of the SKSAW.

4. Conclusions

We studied the behavior of the distribution of the area of the convex hull of the “true” self-
avoiding walk, especially in the large deviation regime of larger than typical areas. With a
sophisticated large-deviation sampling algorithm, we obtained the distribution over a large part
of its support down to probabilities smaller than 1073% for a typical avoidance parameter of
B =1 and a large avoidance 5 = 100. The distributions seem to approach a limiting scaling
form when rescaled by the behavior of the mean, but with much stronger finite-size effects as
compared to other types of random walks, which were previously studied.

Using this data we calculated the rate functions. The rate function seem also to behave
qualitatively similar in comparison to other types of self-avoiding walks studied earlier [26] in
that they seem to be well defined and well approximated by a power law. In contrast to other
types of random walks, this power law can apparently not be derived from the scaling exponent
of the mean values v. Instead it seems that a second exponent governs the scaling behavior of the
tail for the TSAW, which is close to 4/7, the scaling exponent of the smart kinetic self-avoiding
walk. This is plausible since the large-area region should be dominated by configurations in
which no trappings are possible, which is the major difference between these types.

Finally, we also provided estimates for the relevant scale factors of the mean of area and
perimeter of the convex hulls of TSAWs. They might be accessible to analytic calculations in
the future.

For future numerical work it would be interesting to look for further types of random walks,
which show similar effects of distinct scaling exponents for different parts of the distribution
but do not show the strong logarithmic corrections to scaling, and would therefore be easier to
analyze. On the other hand, it would be very exciting if one was able to obtain data in the
range where the rate function exhibits the exponent k(v = 1/2) = 1, with the need to simulate
really large system sizes, but closer to the typical behavior.

Acknowledgments
This work was supported by the German Science Foundation (DFG) through the grant HA
3169/8-1. We also thank the GWDG (Gottingen) for providing computational resources.

References

[1] Einstein A 1906 Annalen der Physik 324 371-381 ISSN 1521-3889

[2] Fama E F 1965 Financial Analysts Journal 21 55-59

[3] Page L, Brin S, Motwani R and Winograd T 1999 The pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66 Stanford InfoLab

[4] Newman M and Barkema G 1999 Monte Carlo Methods in Statistical Physics (Clarendon Press) ISBN
9780198517979

[5] Hughes B D 1996 Random walks and random environments (Clarendon Press Oxford)

10



XXX IUPAP Conference on Computational Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1290 (2019) 012029  doi:10.1088/1742-6596/1290/1/012029

Madras N and Slade G 2013 The Self-Avoiding Walk (New York, NY: Springer New York) ISBN 978-1-4614-
6025-1

Weinrib A and Trugman S A 1985 Phys. Rev. B 31(5) 2993-2997

Manna S S, Dhar D and Majumdar S N 1992 Phys. Rev. A 46(8) R4471-R4474

Majumdar S N 1992 Phys. Rev. Lett. 68(15) 2329-2331

Mohr C O 1947 American Midland Naturalist 37 pp. 223-249

Worton B J 1987 Ecol. Model. 38 277-298 ISSN 0304-3800

Boyle S A, Lourenco W C, da Silva L R and Smith A T 2009 Folia Primatol. 80 33—42

Dumonteil E, Majumdar S N, Rosso A and Zoia A 2013 Proceedings of the National Academy of Sciences
110 4239-4244

Lanoiselée Y and Grebenkov D S 2017 Phys. Rev. E 96(2) 022144

Letac G and Takédcs L 1980 The American Mathematical Monthly 87 142-142 ISSN 00029890, 19300972

Letac G 1993 Journal of Theoretical Probability 6 385-387 ISSN 1572-9230

Randon-Furling J, Majumdar S N and Comtet A 2009 Phys. Rev. Lett. 103(14) 140602

Majumdar S N, Comtet A and Randon-Furling J 2010 Journal of Statistical Physics 138 955-1009 ISSN
1572-9613

Eldan R 2014 Electron. J. Probab. 19 no. 45, 1-34 ISSN 1083-6489

Grebenkov D S, Lanoiselée Y and Majumdar S N 2017 Journal of Statistical Mechanics: Theory and
Ezperiment 2017 103203

Kabluchko Z and Zaporozhets D 2016 Transactions of the American Mathematical Society 368 8873—8899

Goldman A 1996 Probability Theory and Related Fields 105 57-83 ISSN 1432-2064

Claussen G, Hartmann A K and Majumdar S N 2015 Phys. Rev. E 91(5) 052104

Dewenter T, Claussen G, Hartmann A K and Majumdar S N 2016 Phys. Rev. E 94(5) 052120

Schawe H, Hartmann A K and Majumdar S N 2017 Phys. Rev. E 96(6) 062101

Schawe H, Hartmann A K and Majumdar S N 2018 Phys. Rev. E 97(6) 062159

Cardy J 2005 Annals of Physics 318 81 — 118 ISSN 0003-4916 special Issue

Lawler G F, Schramm O and Werner W 2002 arXiv preprint math/0204277

Lawler G F, Schramm O and Werner W 2011 Conformal Invariance Of Planar Loop-Erased Random Walks
and Uniform Spanning Trees (New York, NY: Springer New York) pp 931-987 ISBN 978-1-4419-9675-6

Kennedy T 2015 Journal of Statistical Physics 160 302-320 ISSN 1572-9613

Amit D J, Parisi G and Peliti L 1983 Phys. Rev. B 27(3) 1635-1645

Pietronero L 1983 Phys. Rev. B 27(9) 5887-5889

Grassberger P 2017 Phys. Rev. Lett. 119(14) 140601

Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 The Journal of Chemical
Physics 21 1087-1092

Hartmann A K 2014 Phys. Rev. E 89(5) 052103

Hartmann A K 2002 Phys. Rev. E 65(5) 056102

Wolfsheimer S, Burghardt B and Hartmann A K 2007 Algorithms for Molecular Biology 2 9 ISSN 1748-7188

Fieth P and Hartmann A K 2016 Phys. Rev. E 94(2) 022127

Engel A, Monasson R and Hartmann A K 2004 Journal of Statistical Physics 117 387-426 ISSN 1572-9613

Hartmann A K 2011 The European Physical Journal B 84 627-634 ISSN 1434-6036

Hartmann A K and Mézard M 2018 Phys. Rev. E 97(3) 032128

Kirkpatrick D and Seidel R 1986 SIAM Journal on Computing 15 287-299

Chan T M 1996 Discrete & Computational Geometry 16 361-368 ISSN 1432-0444

Graham R 1972 Information Processing Letters 1 132-133

Andrew A 1979 Information Processing Letters 9 216 — 219 ISSN 0020-0190

Barber C B, Dobkin D P and Huhdanpaa H 1996 ACM Trans. Math. Softw. 22 469-483 URL
http://www.qghull.org

Akl S G and Toussaint G T 1978 Information Processing Letters 7 219 — 222 ISSN 0020-0190

11



