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We study the convex hull of the set of points visited by a two-dimensional random walker of T
discrete time steps. Two natural observables that characterize the convex hull in two dimensions
are its perimeter L and area A. While the mean perimeter 〈L〉 and the mean area 〈A〉 have been
studied before, analytically and numerically, and exact results are known for large T (Brownian
motion limit), little is known about the full distributions P (A) and P (L). In this paper, we provide
numerical results for these distributions. We use a sophisticated large-deviation approach that
allows us to study the distributions over a larger range of the support, where the probabilities P (A)
and P (L) are as small as 10−300. We analyse (open) random walks as well as (closed) Brownian
bridges on the two-dimensional discrete grid as well as in the two-dimensional plane. The resulting
distributions exhibit, for large T , a universal scaling behavior (independent of the details of the

jump distributions) as a function of A/T and L/
√
T , respecively. We are also able to obtain the

rate function, describing rare events at the tails of these distributions, via a numerical extrapolation
scheme and find a linear and square dependence as a function of the rescaled perimeter and the
rescaled area, respectively.
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I. INTRODUCTION

Random walks, originally introduced in 1921 by G.
Pólya [1], have since been a vital field of research. They
are ubiquitous models for physical, biological and so-
cial processes [2–4]. Example applications from biology
include self-propelled motion of bacteria and the diffu-
sion of nutrients [3], as well as animal motion in general
[5, 6] or during the marking of territories or description of
home ranges [7–9]. For the latter case a strong increase
of the amount of experimentally available data ocurred
after the introduction of automated radio/GPS tagging
of animals [10, 11]. The usage of minimum convex poly-
gons, called convex hulls, bordering the trace of an ani-
mal [7, 12] is a simple yet versatile [13] way to describe
the home range and can be used for any type of (random-
walk) data. In two dimensions, the convex hull of a point
set is the minimum subset whose elements form a convex
polygon in such a way that (a) all points of the set and
(b) the connecting lines between all possible pairs lie in-
side the polygon. The convex hull is a suitable measure
for time-discretized random walks because it can easily
be attributed with geometrical quantities, i.e., hull area
A and perimeter L. Also, for numerical calculations, sim-
ple and already quite fast algorithms with running times
O(N logN) exist [14–16].
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On the analytical side, much progress have been made
for asymptotic results at long times, when a random walk
(with a finite variance for step sizes) converges to the
continuous-time Brownian motion (for a recent review
see Ref. [17]). For a single Brownian motion of length T
in two dimensions, the mean perimeter [18, 19] and the
mean area [20] were computed long back.

Recently, adapting Cauchy’s formula [21] for convex
curves in two dimensions to random curves, it was
shown [17, 24] that the problem of computing the mean
perimeter and the mean area of the convex hull of an arbi-
trary two dimensional stochastic process can be mapped
to computing the extremal statistics of the one dimen-
sional component of the process. This procedure was suc-
cessfully applied recently to compute the mean perimeter
and the mean area of several two dimensional stochas-
tic processes such as N independent Brownian motions
in 2-d [17, 24], random acceleration process in 2-d [25],
2-d branching Brownian motions with absorption with
applications to edpidemic outbreak [26] and 2-d anoma-
lous diffusion processes [27]. Very recently, this method
was also successfully used to compute the exact mean
perimeter of the convex hull of a planar Brownian mo-
tion confined to a half-space [28]. Finally, using different
methods, the mean perimeter and the mean area of the
convex hull of a single Brownian motion, but in arbitrary
dimensions, have been computed recently in the mathe-
matics literature [29, 30].

The question naturally arises regarding the higher mo-
ments or even the full distribution of the perimeter and
the area of the convex hulls of two dimensional random
walks. Computing analytically even the second moment
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(and hence the variance), for the perimeter and the area
of the convex hull of a single two dimensional Brownian
motion, turns out to be highly difficult [22, 23]. Since
so far no analytical results are available concerning the
full distributions, performing numerical studies is a nat-
ural approach. Within a straightforward implementa-
tion (“simple sampling”), one generates many times in-
dependently a random walk of T steps and constructss
the hull polygon and, subsequently computes its area A
and perimeter L. Then one records histograms of these
quantities. Nevertheless, this approach only gives insight
into a small portion of the actual distributions P (A) and
P (L), i.e., configurations with P ∝ K−1, the inverse of
the number K of samples. This demands for specific cal-
culations with respect to the large-deviation properties
of this model. So, we use a particular large-deviation
approach [31, 32] which randomly alters steps of the ran-
dom walk, compares the effected change in terms of either
of the quantities and accepts the alteration according a
Metropolis criterion involving an artifical Monte Carlo
“temperature” Θ. This is performed for various values
of Θ, giving access to different ranges of the distribu-
tion under scrutiny. Afterwards, the resulting distribu-
tions PΘ(A) or PΘ(L) can be merged according to a given
scheme. In the end, we are able to obtain distributions
P (A) and P (L) which cover a range in principle only
limited by the numerical precision of our computers.

The rest of the paper is organized as follows: Sec. II
will introduce the used random walk model, the associ-
ated convex hull and then will shortly allude to the algo-
rithms and some heuristics. Following this, in Sec. III we
will introduce the large-deviation method. Our results
are presented in Sec. IV, and we will finally conclude in
Sec. V, giving an outlook to possible future work.

II. RANDOM WALKS, CONVEX HULLS AND
ALGORITHMS

A time-discretized random walk consists of T step vec-
tors ~δi, and the position ~x(τ) at timestep τ < T is the
sum of all steps up to τ , i.e.:

~x(τ) = ~x0 +
τ∑
i=1

~δi (1)

The walk configuration itself is then the set W =
{~δ1, ~δ1, ..., ~δT } of steps [33]. The step ~δi = (δx,i, δy,i)
itself denotes a displacement of the particle by δx,i in
x-direction and δy,i in y-direction. We consider two dif-
ferent types of steps:

1. A time-discrete approximation to a Brownian walk,
i.e., both δx,i and δy,i are, for each i, drawn ran-
domly from a Gaussian distribution with zero mean
and variance one.

2. A walk with discrete steps corresponding to mo-
tion on a square lattice of spacing J . This

corresponds to the four possible steps ~x ∈
{(0, J), (0,−J), (−J, 0), (J, 0)}, with each of these
possible up/down/left/right steps having probabil-
ity 1

4 .

Note that in the limit of long walks T →∞ Gaussian
walks and discrete lattice walks should statisically agree
when setting J =

√
2. We also consider closed random

walks which return to the origin, i.e., ~x(T ) = ~x(0):

1. For the lattice case, we generate only the first half
of the walk randomly. The second half is filled up
with inverse steps ~δi+T

2
= −~δi. Finally the order

of the steps is randomized via swapping randomly
selected pairs of steps.

2. For the Gaussian case, we consider Brownian
bridges [34], i.e., from the walk ~x(τ) we construct

~xb(τ) = ~x(τ)− τ

T
~x(T ) (2)

which fulfill ~xb(T ) = ~x(0)

The walks generated in both cases have all necessary
statistical properties of random walks, i.e., they agree
with an imaginary (yet completely inefficient) approach
where one generates all random walks and picks out the
closed ones.

The convex hull C = conv(P̃) of a two-dimensional
point set P̃ = {P̃i}, P̃i ∈ R2 is described through a con-
vex set over P̃. The points P within C are given by
all possible combinations P =

∑
αiP̃i with P̃i ∈ P̃ and∑

i αi = 1 and αi ∈ R+
0 (definition given according to

[35]). This means:

1. All points Pi ∈ P lie within C.

2. All lines PiPj ;Pi, Pj ∈ P also lie within C.

The boundary of the convex set is a polygon which
connects a subset P ⊂ P̃ of H points from the point
set, i.e., P = {P0, P1, . . . , PH−1}, with Pi = (xi, yi) (i =
0, . . . ,H − 1). The hull is attributed with area A and
perimeter L according to (identifying i = H with i = 0):

A(C) =
1
2

H−1∑
i=0

(yi + yi+1)(xi − xi+1) (3)

L(C) =
H−1∑
i=0

√
(xi − xi+1)2 + (yi − yi+1)2 (4)

For our work, we determined the polygons bordering
convex hulls (for which one uses shortly the term “con-
vex hull”) numerically Note that all convex hulls are rep-
resented in a computer, thus we can use dimensionless
quantities subsequently. The most common convex hull
algorithms operate in O(N logN). We used Andrew’s
variant [16] of the “Graham Scan” algorithm [14], which
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constructs the convex hull by first drawing a dividing line
through the point set and then by sorting out those points
which don’t form monotone chain of clockwise/counter-
clockwise turns on each side of the line. In usual cases,
the application of convex hull algorithms can be accel-
erated by usage of pre-selection heuristics, such as the
one introduced by Akl and Toussaint [36]. This heuristic
looks up extreme points of the set (i.e., those of maxi-
mum and minimum x- and y-coordinates) and discards
all points which lie inside the quadrilateral formed by
these points. We use a custom refinement of this heuris-
tic, which is based on iterating the heuristic under rota-
tion of the coordinate origin, which eliminates another
fraction of inert points per each iteration.

III. LARGE-DEVATION SCHEME

For simple-sampling results, walk configurationsW are
generated randomly, and the according convex hulls C
are calculated through the algorithm, resulting in a mul-
titude values of A and L. As mentioned above, obtaining
histograms of these values only gives access to the high
probability regime, where the convex- hull-properties of
typical random walks are measured. However, in order
to obtain values of these quantities with especially low
probabilities, allowing us the measure the distributions
P (A) and P (L) over a large range of the supoort, a cer-
tain Markov-Chain Monte Carlo (MCMC) scheme can be
used [31, 32].

The MCMC consist of an evolution of random walks
W(t), t being another discrete “time” parameter, not to
be confused with the time parameter τ of the random
walks. For the walks, we measure the property S(t),
i.e., the area (S = A) or perimeter (S = L), depend-
ing on which distribution we are aiming at. The initial
configurationW(0) is any walk configuration, e.g., a ran-
domly chosen one. At each Monte Carlo step t, the walk
W(t) is altered to W∗ by replacing a randomly selected
step ~δi (i ∈ {1, 2, . . . , T}) with a newly generated step
~δ′i. The new step is generated according the same dis-
tribution as all random walks steps of the corresponding
type, e.g., Gaussian. The convex hull ofW∗ is calculated,
leading to quantitiy S∗. The alteration W∗ is accepted
(W(t+1) =W∗) according to the Metropolis probability:

pMet = min
[
1, e−(S∗−S(t))/Θ

]
. (5)

Here, Θ is the (artificial) Monte Carlo “temperature”,
which is just a parameter used to set the range of the
sampled values. If the alteration is not accepted, it is
rejected, i.e., W(t + 1) = W(t). Now, over the course of
the MC steps, A or L develops according to the effected
changes and Θ. Examples are shown in Fig. 1. As usual,
the MCMC time is measured in terms of sweeps, i.e.,
number of steps per system size, which is here the walk
length T .

Θ = -50
Θ = -5
Θ = -1

(a)

Θ = -50
Θ = -5
Θ = -1

(b)

Θ = -10
Θ = -9.5

Θ = -9

(c)

Θ = -9
Θ = -8
Θ = -7

(d)

FIG. 1: (color online) Different renditions of closed walks
of length T = 30 after TMC = 3 × 105 Monte Carlo steps,
i.e., Ts = 104 sweeps, at the given temperatures. The top
row features lattice steps, while the bottom row shows Gaus-
sian steps, plus the according convex hulls (indicated by the
dashed lines). The walks to the left are open and those to the
right closed. Higher temperatures inhibit the acceptance of
step alterations which lower the hull area A, thus the walks
and their hulls experience drastic growth.

Like in any MCMC simulation one must equilibrate the
simulation, i.e., discart the initial part of the measured
quantities until “typical” values are found. Equilibra-
tion was found to be difficult but possible for simulations
regarding hull area A. This was in particular difficult
for Gaussian-distributed ~δi components, probably due to
the fact that there exists no upper limit for A and L, in
contrast to the discrete case. As demonstrated in Fig. 2
Θ = −16.25 it still took several ts ∝ 105 MC sweeps un-
til equilibration. Opposed to this, simulations regarding
perimeter L equilibrated rather quickly, typically within
less than ts ≈ 103 sweeps. This differing behavior seems
to result from the fact that the replacement of one single
step ~δi may affect much larger changes in A than in L,
thereby making the whole model much more sensitive,
especially for small value of T .

For a given walk type (discrete/Gaussian,
open/closed), a given walk length T and a given
quanity (A or L) we performed simulations for different
values of Θ = {Θ1, . . . ,ΘK}. The numer K of tem-
peratures and the actual values, posive and negatives
ones, depend heavily on the model, the walk length and
the measured quantity, see below how the temperatures



4

0

500

1000

1500

2000

2500

3000

0 4000 8000 12000 16000 20000

A
(t

s)

ts = tMC / T

Point
Half-Circle

Random

0

1000

2000

3000

101 102 103

FIG. 2: Equilibration of the hull area A of open Gaussian
walks over the number of Monte Carlo steps, normalized to
ts by walk length T = 50. For Θ = −16.25, the model is fully
equilibrated after ca. ts = 5 × 104 sweeps, and heedless of
the differing initial configurations (see inset), i.e., A behaves
similarly within the range of fluctuations.

are chosen. Thus, we got different distributions PΘ(S)
which are related with the actual distribution P (S)
according to the following relation [31]

P (S) = eS/ΘZ(Θ)PΘ(S) (6)

Note that “distribution” here either means “probabil-
ity” or “density”, depending on whether the possible val-
ues of S are discrete or continuous. For different val-
ues of Θ, different ranges of the measured value S were
obtained. This allows for a picewise reconstruction of
P (S). It only requires knowledge of the normalization
constants Z(Θ). They can be calculated through inver-
sion of this formula whenever for two values Θ1 and Θ2

the ranges of the sampled values of S overlap. Thus,
the temperatures were chosen such that for neighbouring
temperatures the measured histograms sufficiently over-
lap. In principle, for each value of S where the mea-
sured values PΘ1(S) > 0 and PΘ2(S) > 0 one estimate
of Z(Θ1)/Z(Θ2) is obtained. Note that in case of equli-
bration, this ratio is more or less constant for all values
of S where the two histograms overlap. One the other
hand, for non-equilibrated cases a systematic dependence
on S is seen. In this way we have another convenient
criterion to verify equilibration. Via these pairwise com-
parisons, all ratios Z(Θk)/Z(Θk+1) can be determined.
Finally, the overall determination of the normalization
constants is obtained from the global normalization con-
straint

∑
S P (S) = 1 (or

∫
P (S) dS = 1 for the continu-

ous case).

IV. RESULTS

A. Independent Points

To verify our simulations, we first simulated convex
hulls of n independently distributed points in the unit
square [0, 1]2. For this case some mathematical results
are known [37–39]. In particular the remaining area
Ãn = 1 − A(n) outside the convex hull is considered.
The distribution of the rescaled remaining area

(Ãn − 4bn)/2cn , (7)

where bn = 2
3

logn
n and cn =

√
28
27

logn
n2 , should converge

for n→∞ in distribution to the standard normal distri-
bution N (0, 1).
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FIG. 3: Average µ and variance σ2 (inset) of the remaining

area Ãn of a unit square in presence of a convex hull of n ran-
domly distributed points. The symbols show the numerical
results while the lines show 4bn and 2cn, respectively.

Thus, for the unscaled data A(n), the mean µ and the
standard deviation σ should follow 4bn and 2cn, respec-
tively. This is the case for our simulations, as visible in
Fig. 3, where we indeed find a 4bn behavior for the mean
and for larger sizes a 2cn behavior for the variance.

In a similar way, we attempted to visualize the pre-
dicted convergence of the distributions towards N (0, 1)
by plotting P (Ãn)σ over (Ãn − µ)/σ, cf. Fig. 4. As
visible, the measured density is very close to N(0, 1) but
no clear convergence is visible. Probably this would be
visible only for much larger number n of points, thus
the convergence is very slow. Note that these deviations
become more pronounced in the small-probability tails,
which we also obtained wihthin the MCMC approach for
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selected numbers n (not shown here). Anyway, for the
purpose of verifying our simulations, the agreement with
the predicitions is sufficient.
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P
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σ n
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n = 215

n = 216
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n = 218

n = 219

N(0,1)

FIG. 4: As predicted by Cabo & Groeneboom [37], the distri-
butions P (An) of the remaining area not covered by the con-
vex hull over n random points inside the unit square should
converge towards N (0, 1) when being rescaled according to
Eq. 7.

B. Random Walks

For each type of walk and either of the two quantities
A and L, we considered walks lengths T ∈ [30, 2000] with
ca. K = 106 samples per temperature Θ. Through sam-
pling multiple values of A or L per MC run (i.e., each
ts = 10 sweeps), it was possible to obtain the results for
each case within several days of CPU time on a average-
size multi-core cluster (using up to few dozens of cores
per case, corresponding to the number of temperatures
Θ).

An example of the resulting distributions, P (A) for the
case of Gaussian open walks of various lengths, is shown
in Fig. 5. Evidently, we were able to obtain the distribu-
tions over a large range of the support, with probability
densities as small as 10−300.

As the systematic behavior of the distributions P (A)
for different walk lengths T hints a common origin at
a distribution P̃ (A) (cf. Fig. 5), the first property we
put under scrutiny is the scaling behavior. The scaling
behavior [17] of the mean 〈A〉 ∼ T suggests that distri-
butions P (A), which in fact depends on the walk length
T , scales according to the following relation:

P (A) =
1
T
P̃

(
A

T

)
, (8)
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FIG. 5: Distributions P (A) of area A of the convex hull over
Gaussian walks of different lengths T . (Top) “original” dis-
tribution P (A) for selected small values of the walk length
T . Main: plot log scale, inset: peak region in linear scale.
(Bottom) rescaling of P (A) according to Eq. (8). Main plot:
log scale; inset: peak region in linear scale

where P̃ is a T -independent distribution. The applica-
tion of the scaling assumption leads to a reliable collapse
of the distributions P (A) towards P̃

(
A
T

)
with the excep-

tion of finite-size effects within the tail, as shown in the
bottom of Fig. 5.

For perimeter distributions, we use a similar scaling
assumption, which is based upon 〈L〉 ∝

√
T [17]:

P (L) =
1√
T
P̃

(
L√
T

)
(9)
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FIG. 6: Distributions P (L) of perimeter L of the convex hull
over Gaussian walks of different lengths T : Rescaling of P (A)
according to Eq. (9). Main plot: log scale; inset: peak region
in linear scale.

The application of this relation to open walks, shown in
Fig. 6, reveals an almost perfect collapse even for large
values of T and the latter parts of the rare-event tail.
We found similar scaling (not shown) for the discrete
cases. Opposed to this, closed walks seem to be more
strongly affected by finite-size effects, i.e., to tend to-
wards P̃

(
L√
T

)
rather slowly. Nevertheless, in summary

for all 8 cases the corresponding scaling is supported by
our data.

Next, to extrapolate the leading behavior of the distri-
bution in the large-deviation tail, we calculate the empir-
ical rate function Φ(s) [40] and guard its behavior over
walk length T . Under the assumtition that away from
the maximum the the leading behavior of the probabil-
ity is exponentially small in T , i.e., the rate function is
defined as:

Φ(s) ≡ − 1
T

logP (s) . (10)

Distributions where the rate function is well defined, i.e.,
follow Eq. (10) are said to obey a “large-deviation prin-
ciple”. To allow a comparison and extrapolation of the
rate function, s is usually a quantity normalized with the
maximum possible value, such that s ∈ [0, 1]. Thus, one
would define sA = A

Amax
and sL = L

Lmax
, accordingly.

For the lattice walk model with J =
√

2, these maxi-
mum possible values were found to be Amax = T 2

4 and
Lmax = 2

√
2T for open walks as well as Amax = T 2

8 and
Lmax =

√
2T for closed walks. But for Gaussian walks no

actual “maximum” values of A and L exist, so in remem-
brance of the lattice cases to obtain the same scaling, we
choose sA = A

T 2 or sL = L
T , respectively.

10-3
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T = 400
T = 800

T = 1400
Asymptotic Φ∞ 0.0

0.3

0.6

0.9

1.2

0.0 1.0 2.0 3.0

FIG. 7: The rate functions Φ(sL) of open Gaussian walks for
different walk lengths (lines). The symbols show the extrap-
olated values (Φ∞(s) see text and Fig. 8). The inset shows
the same on normal scale.

An example of the resulting rate functions, for the case
of the perimeter of the hull of open Gaussian walks, is
shown in Fig. 7. Apparently, for large values of sL, the
rate functions for different walks lengths agree very well,
while for small values of sL strong finite length effects are
visible. Thus, for small values of L/T the convergence
to the limiting rate function is slower. Anyway, from the
visual impression, the rate function seems to converge for
T →∞ pointwise to a limiting function, which starts at
the origin. Thus, its seems that the distribution obey the
large-deviation principle. To quantify this, we performed
fits of the form

Φ(s, T ) = Φ∞(s)− ξT−γ (11)

for many values of s, as it is demonstrated in Fig. 8.
We obtained similar results for all other walk types and
measured quantities. We found that Φ∞(s) appears to
grow according to power laws sκ. (The parameters ξ and
γ are not of interest and show no systematic behavior
with s). The results are listed in Tab. I. The values for
the area are very close to κ = 1 and for the perimeter
very close to κ = 2, in particular for the Gaussian walks.

Model κA, P (A) κL, P (L)

Gaussian, open 0.999(1) 2.03(2)
Gaussian, closed 1.06(2) 2.06(1)

lattice, open 1.18(1) 2.13(1)
lattice, closed 1.12(2) 2.12(1)

TABLE I: Resulting exponents κ which deterine the power-
law growth of the asymptotic value Φ∞(s) of the rate function
Φ(s) with sA or sL, respectively.

This can be already seen when one combines the rate
function for the scaled variables with the scaling forms
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FIG. 8: Dependence of rate function Φ(sL) (for open Gaussian
walks) on walk length T at selected values s = 1.2 and s = 0.5
(inset). A power law was used to determined the T → ∞
convergence towards an asymptotic value Φ∞, indicated by
horizontal lines.

Eqs. (8) and (9). By equating the two expressions for
the distribution of the area we obtain

e−Φ(A/T 2)T ∼ 1
T
P̃ (A/T ) .

To make the argument of the exponential a function of
A/T (the factor 1/T is of lower order and can be ignored)
Φ(s) ∼ s must hold, i.e., κA = 1. Correspondingly for
the perimeter we get

e−Φ(L/T )T ∼ 1√
T
P̃ (L/

√
T ) ,

which results in φ(s) ∼ x2, i.e., indeed P̃ (L/
√
T ) ∼

e−(L2/T 2)T = e−(L/
√
T )2 , and κL = 2.

The fact that for Gaussian walks, the exponents κ
agree very well with κA = 1 and κL = 2 but not quite
for the lattice walks is probably due to the discrete struc-
ture of the lattice and due to the limited accessible area.
These have a strong influence for the given limited length
T of the walks and influence the rate function in partic-
ular for small and large values of s. In fact the rate
functions for the lattice case are continuously bending
up in a log-log plot (not shown), such that one easily
can find a short interval where the expected exponent κ
appears. Thus, to conclude this part, the data is well de-
scribed by the rate function, i.e., the distribution obeys
the above large-deviation principle. Hence, in connection
with the fulfilled scaling forms Eqs. (8) and (9), we see
that to leading order and asymtotically the distributions
are given by P (A) ∼ e−A/T and P (L) ∼ e−L2/T .

The Gaussian and the exponential tails, respectively
for the distributions of the perimeter and the area, may

be guessed using very simple heuristic arguments. In-
deed, the perimeter L of the convex hull of a two di-
mensional stochastic process morally scales as s, where
s represents the span of the one dimensional component
process. For the 2-d Brownian motion, s is simply the
span of a one dimensional Brownian motion of duration
T . The probability distribution P (s, T ) of the 1-d Brow-
nian motion of duration T and diffusion constant D is
well known[4, 41] and has a scaling form

P (s, T ) =
1√

4DT
f

(
s√

4DT

)
(12)

where the scaling function f(x) is given exactly by

f(x) =
8√
π

∞∑
m=1

(−1)m+1m2 e−m
2 x2

. (13)

The scaling function has the following asymptotic behav-
ior

f(x)→


2π2 x−5 e−π

2/4 x2
x→ 0

8√
π
e−x

2
x→∞

(14)

and is plotted in Fig.9.

0 1 2 3

x
0

0.1

0.2

0.3

0.4

f(
x
)

FIG. 9: The scaling function f(x) in Eq. (13) for the span
distribution for a 1-d Brownian motion, plotted as a function
of x.

Thus, for large s, P (s, T ) ∼ exp
[
−s2/4DT

]
has a

Gaussian tail. Consequently since L ∼ s, one would ex-
pect a Gaussian tail for the distribution P (L). Note that
for small S (and hence for small L), one would expect an
essential singular behavior P (L) ∼ exp[−b/L2] from Eq.
(14), where a is some constant. The scaling function f(x)
in Eq. (13), and hence P (L) is almost flat near L = 0,
and falls off as a Gaussian for large L with a peak in
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between, around which is has an approximate Gaussian
shape (see Fig. 9)

P (L) =
1√

2πσ2
e−

(L−µ)2

2σ2 (15)

Subsequently, for the area we can approximately as-
sume A ∝ L2, and thus the distribution of

√
A should

also be Gaussian, including a factor 1/
√
A originating

from dL/dA ∼ 1/
√
A :

P (A) =
1√

2πσ2
AA

e
− (
√
A−µA)2

2σ2
A (16)

Had the assumption of a Gaussian distribution for the
perimeter been entirely correct, it would be sufficient to
take the average and the variance and plot the resulting
Gaussian together with the data. First, we concentrate
on the case of the hull perimeter for closed planar Brown-
ian motions, where mean and variance are available ana-
lytically [23]. The mean scaled perimeter is given by [23]

µ ≡ E
(
L√
T

)
=

√
π3T

2
1√
T

=

√
π3

2
≈ 3.937 (17)

where E stands for the expectation value. For the
variance, we use Goldman’s result for the second mo-
ment [23],

E((L/
√
T )2) =

π2

3

(
π

∫ π

0

sinu
u

du− 1
)

(18)

The value of the integral of
∫ π

0
du sin(u)/u is approxi-

mately 1.852, known as the Wilbraham-Gibbs constant.
This then leads to the variance:

σ2 = E((L/
√
T )2)− E(L/

√
T )2

=
π3

3
(1.852π − 1)− π3

2
≈ 0.348

Before comparing the actual distribution, we compare
average and variance obtained from our numerical re-
sults. By fitting power laws plus a constant, similar
to (11), we found µ to converge asymptotically towards
µ∞ = 3.937(1), while σ2 fluctuated slightly around an
average of σ2

∞ = 0.347(1), see Fig. 10. Both values agree
with the aforementioned predictions. The results of the
extrapolations for all considered cases of the different
walk models are listed in Tab. II, and it can be seen
that the asymptotic values of the parameters of the dis-
tributions agree rather well between lattice and Gaussian
walks, as expected. Note that for the fitting the results
the stated error bars are only of statistical nature, thus
do not include systematic contributions due to the un-
kown scaling behavior. Hence, the real error bars should
be considerably larger. Thus the results for the averages
µ∞ can be considered to match well the corresponding
calculations in Refs.[17, 24] which read:

〈Aop〉 =
πT

2
⇔ µ∞ =

π

2
≈ 1.571 (19)

〈Acl〉 =
πT

3
⇔ µ∞ =

π

3
≈ 1.047 (20)

〈Lop〉 =
√

8πT ⇔ µ∞ =
√

8π ≈ 5.013 (21)

Model Gaussian Gaussian lattice lattice
open closed open closed

Area distributions P (A)

µ∞ 1.585(1) 1.049(1) 1.577(1) 1.049(1)
σ2
∞ 0.312(1) 0.088(1) 0.309(1) 0.089(1)

Perimeter distributions P (L)

µ∞ 5.023(2) 3.937(1) 5.015(1) 3.938(1)
σ2
∞ 1.075(1) 0.347(1) 1.075(1) 0.348(1)

TABLE II: Resulting asymptotic values of average µ and
variance σ2 of rescaled hull area A or perimeter L of the
mentioned walk models. These values have been obtained
by fitting to the results of µ(T ) and σ2(T ) with growing
walk length, hereby extrapolating the T → ∞ case. For
equal walk topologies (open/closed walks) and quantities
(area/perimeter), the asymptotic values agree heedless of the
actual step type, i.e., the walk geometry.

However, when actually plotting the numerical data
together with a Gaussian parametrized by the analytic
values, one sees that distribution only matches the nu-
merics in the main region of the measured distributions
P (L), while the tail exhibits a different behaviour. On
the other hand it is indeed possible to fit Eq. (15) to the
tail of P (L) with good precision. This means the shape of
the distribution is Gaussian there. Nevertheless, the re-
sulting value of σ2 ≈ 1.35 is considerably larger than the
aforementioned, and the corresponding value of µ ≈ 0.1
for these fits seems useless. In the same way, for the
other cases of perimeter distributions (not shown), one
can fit Gaussians well either to the main region of the
data or to the tails. But it is not possible to fit the data
using one single Gaussian over the full support. Thus,
the approximations which lead to the assumption of a
Gaussian distribution were a bit too strong and the true
distributions seem to be very Gaussian-like, but slightly
different.

Regarding the area distribution P (A), the mentioned
propierties are demonstrated in Fig. 12. Given the pre-
vious results for the perimeter, we here just performed
fits in a similar way. A Gaussian of the form of Eq. (16)
can indeed be employed to fit the area distribution either
in the high-probability region or everywhere away from
the central region of the distribution, but again not over
the full support. Thus, the same concusion as for the
perimeter distribution holds.

Although the focus of our simulations was on the right
tails of the distributions, i.e., the large range of sup-
port for larger than typical values, we have also per-
formed some simulations to study very small values of
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T

FIG. 10: Average (rescaled) perimeter µ and variance σ2 for
closed Gaussian as a function of the walk length T . A conver-
gence to the analytical expectations µ ≈ 3.937 and σ2 ≈ 0.348
is visible.
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0.5
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FIG. 11: Scaled distributions of the perimeter L. While the
scaling assumption collapses the distributions P̃ (L) onto simi-
lar behavior within the tail as well as in the main region (large
inset), the Gaussian distribution according to Eq. (15) (small
inset) with the values of µ and σ2 taken from the analytics
suits only in the main region.

the perimeter, to verify scaling function (14) leading to
an expected ∼ e−b/(L2/T ) behavior.

The main plot of Fig. 13 shows, as example, the re-
sulting rescaled distribution for open Gaussian walks of
length T = 800 together with a fit to this functional form.
Apparently, the data follows the predicted form very well
in the range of small perimeters. We have furthermore
studied the asymptotic behavior of the factor b in the ex-
ponent and found (see inset of Fig. 13) that the behavior
is compatible with a convergence to a limiting value.

10-140

10-120

10-100

10-80

10-60

10-40

10-20

100

 0  20  40  60  80  100

T
⋅P

(A
)

A / T

Brownian walk, T = 1000
Gaussian, µ=1.115(1), σ=0.219(1)
Gaussian, µ=0.250(3), σ=0.396(1)

0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4

FIG. 12: Fit of a Gaussian according to Eq. (16) to P (A) with
a focus on either the tail (large plot) or the region around the
average (inset). It was not possible to fit one single Gaussian
over the full support.

10-80

10-60

10-40

10-20

100

0.5 1.0 1.5 2.0

P
(L

)⋅T
1/

2

l=L/T1/2

T = 800, open
a⋅exp(-b/l2)

0

20

40

60

80

0 500 1000 1500
b

T

open
closed

FIG. 13: (color online) Main plot: rescaled distribution (sym-
bols) of the perimeter for the open Gaussian walks for small
values of the perimeter, length T = 800 together with a fit

to the function ae−b/(L
2/T ). Inset: Scaling behavior of the

parameter b as function of walk length, for open and closed
Gaussian walks, respectively. The lines represent fits to func-
tions of the form b∞ + cbη, resulting in b∞ = 129(9) (open)
and b∞ = 250(50) (closed), with a very slow convergence
(η = −0.21(3) and η = −0.09(2)).

V. CONCLUSIONS

We succeeded with the application of the above ex-
plained large-deviation scheme to the study of properties
of convex hulls of random walk models. We could obtain
the corresponding distributions over broad ranges of con-
vex hull area A and perimeter L, down to densities and
probabilitiues as small as 10−300.

The scaling behavior of these distributions turned out
to be linked to walk length T in the same way as the
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averages 〈A〉 ∼ T and 〈L〉 ∼
√
T . Also, the examination

of the empirical rate functions resulted in simple power
laws, which are compatible with the scaling behavior.
This leads to the natural assumtion that the perimeter
L and the square root

√
A of the area are Gaussian dis-

tributed. Indeed either peak region of the data or the
tails region fit this form very well, but it is not possible
to fit over the full range of the support one single func-
tion. Nevertheless, for almost all our results we found
asymptotic agreement between the Gaussian and the lat-
tice walk case, as expected. For further studies, it could
be interesting to obtain analytical estimates for the dis-
tributions for finite walk lengths T and measure the speed
of convergence towards the limiting distribution.

Since the application of large-deviation simulation ap-
proaches for this problem turned out to be very useful, it
should be applied for similar problems. For future work,
besides obvious extensions like considering higher dimen-
sions, we want to consider other random walk models,

particularly multiple interacting walkers [42, 43], in sim-
ple self-avoiding walks as well as in loop-erased random
walks[44, 45] and, most importantly, for applications to
biology like the formation of animal territories[9].
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