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Convex hulls of random walks in higher dimensions: A large-deviation study
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The distribution of the hypervolume V and surface ∂V of convex hulls of (multiple) random walks in higher
dimensions are determined numerically, especially containing probabilities far smaller than P = 10−1000 to
estimate large deviation properties. For arbitrary dimensions and large walk lengths T , we suggest a scaling
behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of
the distributions in the tails. We underpin both with numerical data in d = 3 and d = 4 dimensions. Further, we
confirm the analytically known means of those distributions and calculate their variances for large T .
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I. INTRODUCTION

The random walk (RW) is first mentioned [1] with this
name in 1905 by Pearson [2] as a model, where at discrete
times, steps of a fixed length are taken by a single walker in a
random direction, e.g., with a random angle on a plane in two
dimensions. This was later generalized to random flights in
three dimensions [3] and RWs on a lattice in d dimensions [4].
A few decades later even more generalized models appeared,
e.g., introducing correlation [5–7] or interaction with its
past trajectory [8–10], its environment [11–15], or other
walkers [16,17]. Despite the plethora of models developed for
different applications, still simple isotropic RWs are used as
an easy model for Brownian motion and diffusion processes
[11,15,18], motion of bacteria [19,20], financial economics
[21], detecting community structures in (social) networks
[22,23], epidemics [24], polymers in solution [25–27], and
home ranges of animals [28,29].

The most important quantity that characterizes RWs is the
end-to-end distance and how it scales with the number of
steps, giving rise to an exponent ν, i.e., the inverse fractal
dimension. To describe the nature of different RW models
more thoroughly, other quantities can be used. Here, we are
interested in analyzing the “volume” and the “surface” of the
RW, which can be conveniently defined by the corresponding
quantities of the convex hulls of each given RW. These
quantities are used, usually in two dimensions, to describe
home ranges of animals [30,31]. But also, very recently, to
detect different phases in intermittent stochastic trajectories,
like the run and tumble phases in the movement of bacteria
[32]. The convex hull of a RW is the smallest convex polytope
containing the whole trace of the RW, i.e., it is a nonlocal
characteristic that depends on the full history of the walker,
namely all visited points.

The most natural statistical observables associated to the
convex hull of a random trajectory are its (hyper-) volume
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and its (hyper-) surface. The full statistics of these two
random variables are nontrivial to compute even for a single
Brownian motion in two or higher dimensions. Even less is
known on the statistics of these two random variables for a
discrete-time random walk with a symmetric and continuous
jump distributions. In fact, most publications concentrate on
the area and perimeter of convex hulls for two-dimensional
RWs. The mean perimeter and the mean area of a single
random walk in a plane, as a function of the number of steps
(in the limit of large number of steps with finite variance of
step lengths where it converges to a Brownian motion), are
known exactly since more than 20 years [33,34]. These results
for the convex hull of a single Brownian motion in a plane have
recently been generalized in several directions in a number of
studies. These include the exact results for the mean perimeter
and mean area of the convex hull for multiple independent
Brownian motions and Brownian bridges in a plane [35,36],
for the mean perimeter of the convex hull of a single Brownian
motion confined to a half plane [37], and for the mean volume
and surface of the convex polytopes in arbitrary dimensions d

for a single Brownian motion and Brownian bridge [38–40].
Much less is known for discrete-time random walks with
arbitrary jump length distributions. Very recently the mean
perimeter of the convex hull for planar walks for finite (but
large) walk lengths and arbitrary jump distributions were
computed explicitly [41]. For the special case of Gaussian
jump lengths, an exact combinatorial formula for the mean
volume of the convex hull in d-dimensions was recently
derived [39]. In d = 2, the asymptotic (for large number of
steps) behavior of the mean area for Gaussian jump lengths
was derived independently in Ref. [41]. Also the convex hulls
of other stochastic processes like Lévy flights [42,43], random
acceleration processes [44], or branching Brownian motion
with absorption [24] were under scrutiny recently.

Analytical calculations of the variance or higher moments
turned out to be much more difficult [45,46]. In absence
of any analytical result for the full distribution of the
volume and surface of the convex hull of a random walk, a
sophisticated large-deviation algorithm was recently used to
compute numerically the full distribution of the perimeter and
the area of the convex hull of a single [47] and multiple [48]

2470-0045/2017/96(6)/062101(9) 062101-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.062101


SCHAWE, HARTMANN, AND MAJUMDAR PHYSICAL REVIEW E 96, 062101 (2017)

random walks in two dimensions. Amazingly, this numerical
technique was able to resolve the probability distribution down
to probabilities as small as, e.g., 10−300 [47,48]. In this work,
we will use simulations to obtain the distribution of the volume
V and surface ∂V of the convex hull of a single random
walk with Gaussian jump length distribution in dimensions
d ∈ {3,4} over a large range of its support. In particular, this
range is large enough to include large deviations, here down to
probability densities far smaller than P (V ) = 10−1000. While
previous work [47,48] suggested that the area and perimeter
distribution obeys the large deviation principle in d = 2, which
was later proven for the perimeter [49], our results suggest that
the same holds for higher dimensions. Regarding the scaling
behavior of the mean and of the variance, we also study higher
dimensions up to d = 6. Also we generalize scaling arguments
to higher dimensions which were previously used to estimate
the properties of these distributions for d = 2 [47].

The remainder of the paper is organized as follows. We
will first introduce the RW model, give an overview for the
calculation of convex hulls in higher dimensions, and describe
the sampling technique used to reach the regions of sufficiently
small probabilities in Sec. II. The presentation of our results is
split into two parts. Section III A compares our numerically
obtained means with the analytically derived values from
Refs. [38,39] to check that our results are consistent with
the literature. Also values for the variances for single and
multiple RWs are presented. The behavior of the distributions,
especially in their tails, is presented in Sec. III B. Section IV
concludes and gives a small outlook to still open questions.

II. MODELS AND METHODS

A. Random walks

A random walk [2,4] in d dimensions consists of T step
vectors δi such that its position at time τ is given as

x(τ ) = x0 +
τ∑

i=1

δi ,

where x0 is the starting position and chosen in the following
always as the origin of the coordinate system. Thus, a
realization of a walk can be characterized as a tuple of the
displacements (δ1, . . . ,δT ). We will denote the set of visited
points as P = {x(0), . . . ,x(T )}. We draw the steps δi from
an uncorrelated multivariate Gaussian distribution with zero
mean and unit width G(0,1), i.e., d independent random
numbers per step. Two examples for dimensions d = 2 and
d = 3 are visualized in Fig. 1. While walks on a lattice show
finite-size effects of the lattice structure [47], especially in the
region of low probabilities, the Gaussian displacements lead to
smooth distributions. Note that in the limit T → ∞ Gaussian
and lattice RWs do not behave differently. Both converge to
the continuous-time Brownian motion [36].

The RW is very well investigated [1], especially it is
known that the end-to-end distance r , and in fact every
one-dimensional observable, scales as r ∝ T ν with ν = 1/2.
This exponent ν is the same in any dimension and characteristic
for diffusion processes.

(a) (b)

FIG. 1. Examples for Gaussian random walks in d = 2 and d = 3.
Their convex hull is visualized in red. (a) d = 2, T = 2048 and
(b) d = 3, T = 2048.

B. Convex hulls

For a given point set P its convex hull C = conv(P) is the
smallest convex polytope enclosing all points Pi ∈ P , i.e., all
points Pi lie inside the polytope and all straight line segments
(Pi,Pj ) lie inside the polytope. In Fig. 1 two examples for
d = 2 and d = 3 are shown.

Convex hulls are a well-studied problem with appli-
cations from pattern recognition [50] to ecology studies
[51]. They are especially important in the context of com-
putational geometry, where next to a wide range of di-
rect applications [52,53] the construction of Voronoi dia-
grams and Delaunay triangulations [54] stand out, which
in turn are useful in a wide range of disciplines [55].
Note that a lower bound for the worst-case time complexity
of an exact convex hull algorithm for T = |P| points is
�(T �d/2�) [56–58], which is the order of possible facets,
i.e., exponential in the dimension. Although, there are approx-
imate algorithms [59,60] that probably would make the exami-
nation of higher-dimensional convex hulls feasible, we are only
examining the convex hulls up to d = 6 using exact algorithms.

We measure the (hyper-) volume V , e.g., in d = 3 the
volume, and the (hyper-) surface ∂V , e.g., in d = 3 the surface
area. Determining surface and volume of a high-dimensional
convex polytope is trivial given its facets fi , which are (d − 1)-
dimensional simplexes. Choosing an arbitrary fixed point p

inside the convex polygon, one can create a d-dimensional
simplex from each facet fi , such that their union fills the entire
convex hull (cf. Fig. 2(a) for a d = 2 example). Therefore, the
volume can be obtained by calculating

V =
∑

i

dist(fi,p)ai/d,

where dist(f,p) is the perpendicular distance from the facet fi

to the point p and ai is the surface of the facet. The surface
of a (d − 1)-dimensional facet is its (d − 2)-dimensional
volume, which can be calculated with the same method
recursively, until the trivial case of one dimensional facets,
i.e., lines. Determining the surface uses the same recursion, by
calculating ∂V = ∑

i ai .

To foster intuition, this method is pictured for d = 2 in
Fig. 2(a). Here, the facets are lines and the volume of the
simplex is the area of the triangle. The perpendicular distances
are visualized as dashed lines.
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FIG. 2. Visualization of (a) the idea to calculate the volume of a
convex polygon given its facets and an interior point, perpendicular
distances are shown with dashed lines. In (b) and (c) examples of two
consecutive recursive steps of the quickhull algorithm are shown. The
point d is left of and farthest away from (a,c). Parts of the convex
hull are black, discarded points are light gray.

In the scope of this study, we use the quickhull algorithm
[61–63], and its excellent implementation in the Qhull library
[64]. Quickhull is a divide-and-conquer algorithm applicable
in arbitrary dimensions. For clarity, the algorithm will be
explained for d = 2, since it makes the central idea clear. The
technical details and the generalization to higher dimensions
are well explained in Ref. [64].

Start with two points a,b on the convex hull, e.g., the points
with minimum and maximum x-coordinate. Determine the
point c left (when “looking” a → b) of and farthest away
from the edge (a,b) and discard all points inside the polygon
(a,b,c). Repeat this step recursively with the edges (a,c) and
(c,b) until there are no points on the left side of the current
edge. All edges created in this way on the bottom level of
the recursion are part of the convex hull. Two steps of this
recursion are pictured in Figs. 2(b) and 2(c). The same process
is repeated recursively with the point c′ left of and farthest
away from the inverse edge (b,a).

C. Sampling

We performed Markov chain Monte Carlo simulations to
examine the distributions of the volume V and the surface ∂V

of the convex hull of RWs in dimensions d ∈ {3,4}. To collect
large-deviation statistics, i.e., obtain not only the peak, but
also the tails of the distribution, we use both the classic Wang-
Landau (WL) sampling [65,66] and a modified Wang-Landau
sampling [67–69] with a subsequent entropic sampling [70,71]
run. In contrast to similar studies [47,48] no temperature-based
sampling scheme was used, since the difficulties to find
suitable temperatures and regarding equilibration mentioned
in Ref. [47] are even worse in higher dimensions.

Both sampling techniques generate Markov chains of
configurations, where here configurations are realizations,
each given by the tuple of RW displacements (δ1,..,δT ). One
only needs a function yielding an “energy” of a configuration
and a way to change a configuration to a similar configuration.
As energy we simply use the observable of interest S, i.e., either
the volume V or the surface ∂V . To change a configuration,
we replace a randomly chosen step δi of the RW with a
new randomly drawn step. Because all points x(τ ) for τ � i

change, this is a global change of the walk. Though, this does
not lead to a severe computational overhead, because after the

update the convex hull has to be calculated again from scratch
in any case.

For both WL versions at first a lower and upper bound of
the observable S needs to be defined and the range in between
is subdivided in overlapping windows, depending on system
size T . While the windows can introduce errors in the results,
which can lead to neighboring windows that overlap does
not match, this phenomenon was not observed in this study.
Also, small systems in low dimensions were sampled using
the temperature-based method from Ref. [47], which does
not use windows, and showed no noteworthy deviations from
either of the WL variations. Also, for the present work it was
sufficient to sample each window independently in parallel.
Therefore, it was not necessary to apply a replica-exchange
enhancement [72].

In the beginning, we start with an arbitrary configuration
ci of the walk. Afterwards we repeatedly propose random
changes each leading to a new configuration ci+1 and accept
each with the Metropolis acceptance probability,

pacc[S(ci) → S(ci+1)] = min

(
g[S(ci)]

g[S(ci+1)]
,1

)
, (1)

where g is an estimate for the density of states—basically the
wanted distribution. If g equals the true density of states this
will result in every S being visited with the same probability,
i.e., a flat histogram of S. Since we do not know the true
density of states in advance, WL iteratively improves the
estimate g. Therefore, every time a value of S is visited, g(S)
is increased. The original article suggests to multiply g(S)
with a fixed factor f to perform the increase, i.e., g(S) 	→
g(S)f , and after an auxiliary histogram fulfills some flatness
criterion reduce this factor f 	→ √

f . This is repeated until f

falls below some beforehand defined threshold ffinal (here,
ffinal = 10−8). Since the acceptance ratio changes during
the simulation, detailed balance does not hold, such that
systematic errors are introduced. To mitigate this, a better
schedule to modify g is introduced in [68], which reduces the
systematic errors. Basically, the flatness criterion is removed
and the factor by which to increase g(S) when visiting S is
a function of the Monte Carlo time t of the simulation, i.e.,
ln[g(S)] 	→ ln[g(S)] + t−1. The sampling terminates as soon
as as t−1 � ffinal (here, ffinal = 10−5). This has the added
benefit that the simulation time does not depend on some
flatness criterion, which is hard to predict, but is at most 1/ffinal

Monte Carlo sweeps.
To remove the systematic error completely, one can use en-

tropic sampling [70,71], i.e., fix the so far obtained estimate g

and sample the system using the same acceptance as before
from Eq. (1). The entropic sampling pass, which due to the
fixed g obeys detailed balance and is thus not subject to the
systematic error of the WL sampling, will calculate corrections
for the initial estimate g. If the estimate g is close enough to
the density of states, it should be able to mitigate the (small)
systematic error. Finally, one creates a histogram H of the
visited S to arrive at a corrected g̃(S) = g(S)H (S)/〈H 〉 [71],
where 〈H 〉 is the average number of counts of the histogram.

During this simulation, the value S of the configuration
may not leave its window, thus changes to configurations
outside of the window are rejected. This also means that
the first configuration must be within the window and is
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therefore obtained via a greedy heuristic. The final distribution
is obtained as follows: For mutually overlapping windows, the
corresponding densities are multiplied by factors such that
in the overlapping regions the densities agree as much as
possible. Finally, the density obtained in this way is normalized
yielding the whole distribution. To estimate the errors of the
distribution, this simulation is done a couple of times and the
standard error of the single bins is used as an error estimate.

For the results, which we will present in the following
section, we used data from both sampling techniques and in
some cases merged them. Comparisons of both techniques
showed that the errors introduced by WL have no considerable
influence on our results (not shown).

For the determination of mean and variances of convex hull
volume and surface the contribution of the tails are negligible,
thus we used simple sampling, which enables the simulation
of longer walks, i.e., larger values of T , in a larger range of
dimensions d = 2, . . . ,6,

III. RESULTS

A. Mean and variance

At first, we will verify our simulations by comparing with
some analytically known results [33,38] for the mean volume
V and surface ∂V scaled appropriately as μV = 〈V 〉/T dν

and μ∂V = 〈∂V 〉/T (d−1)ν . The scaling comes from the r ∝
T ν scaling of the RW end-to-end, distance, with ν = 1

2 , in
combination with the typical scaling V ∝ rd and ∂V ∝ rd−1.
For large T it is known [38] that

μ∞
V =

(
π

2

)d/2

�

(
d

2
+ 1

)−2

, (2)

μ∞
∂V = 2(2π )(d−1)/2

�(d)
. (3)

This simulation uses simple sampling to sample 106 (fewer for
d = 6 resulting in larger uncertainties) sufficiently long walks
from Tmin = 128 up to Tmax = 262 144.

There is an exact result for the mean Volume of the convex
hull for finite T [39]:

〈V 〉 = 2−d/2

�(d/2 + 1)

∑
n1,...,nd

1√
n1 . . . nd

I (n1, . . . ,nd ), (4)

where 1 � ni � T are integers and

I (n1, . . . ,nd ) =
{

1 if n1 + . . . + nd � T

0 else .

For example, for d = 2 and d = 3 this results in

〈V2〉 = 1

2

T∑
i=1

T −i∑
j=1

1√
ij

, (5)

〈V3〉 = 23/2 × 4

3
√

π

T∑
i=1

T −i∑
j=1

T −i−j∑
k=1

1√
ijk

, (6)

respectively. The number of elements in the sums grows with
O(T d ) in the number of steps T and the dimension d, such that
a numerical evaluation is only feasible for rather small T and
d. We calculated some exact values to ensure the quality of
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6

102 103 104 105

μ

T

μ∂V

μV

exact
fit
d = 2
d = 3
d = 4
d = 5
d = 6

FIG. 3. Scaled mean of the surface μ∂V = 〈∂V 〉/T (d−1)ν (open
symbols) and volume μV = 〈V 〉/T dν (solid symbols) for different
dimensions (different shapes) and walk lengths T obtained by 106

samples each. Lines are fits [cf. Eq. (8)] to extrapolate for T → ∞.
Crosses are exact values [cf. Eq. (4)] and show very good agreement
with the extrapolation. The asymptotic values are shown in Table I.
Fits disregard small walk lengths for higher dimensions, since the
expansion is valid for large T . To be precise, the fit ranges are
d � 5: T � 256 for the surface and d � 5: T � 512 for the volume.
They are chosen such that χ 2

red reaches a plateau, i.e., does not
change significantly if even larger T are ignored (same ranges for
the variances). The goodness of fit χ 2

red is between 0.3 and 1.2 for all
fits. Error bars are smaller than the line of the fit.

our simulations and the extrapolation. These are marked with
crosses in Fig. 3.

To estimate the T → ∞ limit asymptotic value μ∞
V , it is

necessary to extrapolate measurements for different lengths
T of the walk. Recently in Ref. [41], the asymptotic large T

expansion of the mean area of the convex hull of a 2D Gaussian
random walk was worked out explicitly. For Gaussian jump
distribution with zero mean and unit variance, it was found
that the mean area 〈A〉 of the convex hull of a walk of T steps
has the asymptotic expansion for large T ,

〈A〉
T

= π

2
+ γ

√
8π T −1/2 + π (1/4 + γ 2) T −1 + o(T −1),

(7)

where the constant γ = ζ (1/2)/
√

2π = −0.58259 . . . . This
exact result in 2D leads to a natural guess in higher dimensions
for the asymptotic large T expansion of the mean volume of
the convex hull, namely,

〈V 〉
T dν

= μV + C1 T −1/2 + C2 T −1 + o(T −1) . (8)

This guess produces very good fits, shown in Fig. 3, with
values in very good agreement with the expectations. We use
the same function for the surface and the variances. Though
small values of T need to be excluded from the fits, especially
for high dimensions. The precise fit ranges are listed in the
caption of Fig. 3.

The obtained asymptotic values are listed in Table I. Mind,
that the error estimates are purely statistical and do not take
into account higher order terms than those present in Eq. (8).
To make matters worse, not the same large system sizes could
be reached for higher dimensions due to the exponentially
increasing time complexity [56].
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TABLE I. Analytically expected (top, rounded to four decimal
places) and from measurements extrapolated (bottom) asymptotic
mean and variance of volume, respectively, surface. Analytical values
for the variances are unknown (except for Brownian bridges [46]).
Though for the perimeter (d = 2) rigorous bounds [73] are known
σ∞

∂V
2 ∈ [2.65 × 10−3,9.87]. Error estimates for the last column are

obtained by Gaussian error propagation.

d μ∞
V μ∞

∂V σ∞
V

2 σ∞
∂V

2 σ∞
V

μ∞
V

2 1.5708 5.0132
3 1.1140 6.2832
4 0.6168 5.2499
5 0.2800 3.2899
6 0.1077 1.6493
2 1.5705(3) 5.0127(5) 0.3078(3) 1.077(1) 0.3532(2)
3 1.1139(2) 6.2832(9) 0.1778(2) 3.093(3) 0.3785(2)
4 0.6164(1) 5.2473(10) 0.05882(7) 2.808(3) 0.3932(2)
5 0.2801(1) 3.2909(9) 0.01274(2) 1.279(2) 0.4032(3)
6 0.1077(1) 1.6492(6) 0.00193(1) 0.351(1) 0.4080(5)

Also, we looked at the average volume μV = 〈V 〉/T dν and
surface μ∂V = 〈∂V 〉/T (d−1)ν of the convex hulls of multiple
RWers with n ∈ {2,3,10,100} independent RWs in d = 3
dimensions, which are tabulated in Table II. We determined
the listed values in the same way as before with a fit to Eq. (8)
(no figure shown) within the same ranges as single walks.

Since the single steps δi are independent, two walkers,
i.e., the n = 2 case, can be joined at the origin to one walk
with twice the number of steps [74], thus μ∞

V2
= 2dνμ∞

V and
μ∞

∂V2
= 2(d−1)νμ∞

∂V are the exact mean values for this case. The
numerical data is within statistical errors compatible with this
expectation. Though, for n > 2 this is not as easy anymore. We
are not aware of any other published expectations for d � 3.

We have performed the same analysis (no figure
shown) for the variances σ 2

V = Var (V )/T 2dν and σ 2
∂V =

Var (∂V )/T 2(d−1)ν and the same remarks apply.
For the ratio between standard deviation and mean,

lim
d→∞

σ∞
V

μ∞
V

= 0

is conjectured [38]. Our data shows no downward trend for
this ratio as shown in the last column of Table I.

The argument of Ref. [38] is that the expectation of the
second moment factorizes to the square of the first moment,

TABLE II. Analytically expected (top) and from measurements
extrapolated (bottom) mean and variance of the volume, respectively,
surface of the convex hull of n independent RWs in d = 3 dimensions.
Analytical values for the variances are unknown. The quality of fit
χ 2

red for all fits is between 0.4 and 1.7.

n μ∞
V μ∞

∂V σ∞
V

2 σ∞
∂V

2

2 3.151 12.566
2 3.153(1) 12.572(2) 1.427(1) 12.40(1)
3 5.332(1) 17.644(2) 3.796(4) 21.66(2)
10 17.695(2) 37.528(3) 22.54(3) 48.65(4)
100 66.233(7) 85.563(5) 68.65(10) 56.44(7)
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0 4×105

P
(V

)

V

T = 1024
T = 512
T = 256

FIG. 4. Distribution of the volume of a d = 4 RW for different
system sizes T . The inset shows the peak region in linear scale.

if all facets are orthogonal to each other. Since in high
dimensions random vectors are with very high probability
almost orthogonal, this suggests that the difference of these
quantities, which is the variance, should be far smaller than
each of them, i.e., the squared mean. Though, in the dimensions
under scrutiny, i.e., d � 6 this effect seems not to dominate,
because the facets have nonnegligible parallel components.

It is, of course, hard to estimate for which dimension the
orthogonality starts to dominate. As a crude non-rigorous
argument we take the scalar product of two random normalized
vectors, which approximate the normal vectors of the facets.
While its mean value is zero, its variance is v = 1/d. This
variance is a measure for how parallel the two vectors are.
Intuitively, it is clear that in d = 2 (v = 1/2) and d = 3
(v = 1/3) most facets have quite large and certainly not
negligible parallel components. Then, for d = 6 the variance
of v = 1/6 is not significantly smaller. We would assume that
the factorization could dominate the other effects if the parallel
component is far smaller—say, 1/20 or 1/100.

Therefore, to draw any conclusions, one should gather
results for d 
 6, which may be possible using some fast
approximation scheme for convex hulls in high dimensions,
though this is beyond the scope of this study.

B. Distributions

In addition to the first moments shown in the previous
section, here we look at the actual distribution over a large part
of the support. Since the Gaussian distribution, from which the
steps are drawn, is not bounded, V and ∂V of a walk consisting
of such steps are not bounded, either. Therefore, not the whole
support, but a reasonably large part is sampled. Especially, it
is large enough to investigate the large-deviation properties of
the distribution. As an example, a part of the distribution for
the volume of a convex hull of RWs in d = 4 dimensions is
shown in Fig. 4.
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FIG. 5. Distributions of the surface (top) and volume (bottom) for d ∈ {3,4} scaled according to Eq. (9). Statistical errors are smaller
than the symbols. The scaling indeed collapses the distributions on one scaling function P̃ . Fits are shown for the largest system size.
The inset shows the peak region in linear scale. For larger values of T the collapse works better. (Only a small fraction of all data points are
visualized.) (a) d = 3, S̃ > 500, br = 1.56, χ 2

red = 2.5, (b) d = 4, S̃ > 200, br = 6.33, χ 2
red = 1.2, (c) d = 3, S̃ > 500, br = 10.61, χ 2

red = 0.8,
and (d) d = 4, S̃ > 2500, br = 26.60, χ 2

red = 1.1.

As we mentioned in the previous section, 〈V 〉 and
〈∂V 〉 scale for large values of T as T deν where de is the
effective dimension of the observable, i.e., de = d for the
volume and de = d − 1 for the surface. A natural question is, if
the whole distribution does scale according to T deν . Reference
[47] already shows that this is true for d = 2. For higher
dimension we arrive analogously at the scaling assumption
for the distribution of the observable S,

P (S) = T −deνP̃ (ST −deν). (9)

Figure 5 shows the distributions of the volume and surface
of the convex hulls of RWs in d ∈ {3,4} dimensions scaled
according to Eq. (9). Apparently the scaling works very well
in the right tail of larger than typical V . The inset shows
that in the peak region there are major corrections to the
assumed scaling for small values of T , but it also shows that
those corrections rapidly get smaller for larger values of T .
A power-law fit with offset to the position of the maxima of
the distributions (no figure) with increasing walk length T ,
confirms convergence for large values of T , i.e., the peaks do
collapse on one universal curve for T → ∞.

In fact, the scaling for the distribution of the span s, which
is the distance between the leftmost and rightmost point, of a

one dimensional Brownian motion is known [1,75] to be

P (s,T ) = (4DT )−νf

(
s

(4DT )ν

)
,

with some diffusion constant D and

f (x) = 8√
π

∞∑
m=1

(−1)m+1m2 e−m2x2
,

which has the following asymptotic behavior [47]:

f (x) = 2π2x−5 e−π/4x2
, for x → 0,

f (x) = 8√
π

e−x2
, for x → ∞.

With this known d = 1 result for the span s, we can construct a
guess for the higher dimensional observables, like the volume.
Since the one-dimensional projection of a high dimensional
RW has the same properties as a one dimensional RW (for
this Gaussian model), we use the naive approach S ∝ sde , e.g.,
V ≈ sd . Substituting this into the known result leads to a guess
for the expected behavior of the tails with

P̃ (S̃) ∝ S̃−(de+4)/de e−blS̃
−2/de

, for S̃ → 0, (10)

P̃ (S̃) ∝ S̃−(de−1)/de e−brS̃
2/de

, for S̃ → ∞, (11)
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FIG. 6. Fit of the exponential Eq. (10) to the left tail. Note, that
the prefactor is constant in this case (for clarity, only every tenths
data point is plotted).

where a rescaled S̃ = ST −νde is introduced for clarity and
with free parameters bl and br. The ds

dS
∝ S−(de−1)/de factors

are introduced by the substitution.
For all values of T , the expected distribution for the left

tail Eq. (10) fits well to the sampled data, shown for the
example of the volume in d = 4 in Fig. 6. We extrapolated the
curve point-wise to T → ∞ assuming a power-law scaling,
resulting in the limit curve in Fig. 6. Similar to the main
region of the distribution (shown in Fig. 5), smaller values of
T show larger deviations from the limit curve. Note that also
the limiting curve fits Eq. (10) (with a suitable values for bl

and the prefactor).
The same analysis for the right tails is shown in Fig. 5,

where Eq. (11) is fitted to the right tail of the distributions
of the volume and surface in d ∈ {3,4}. The good χ2

red values
suggest that this is a good estimate of the asymptotic behavior
indeed.

To determine whether a distribution P satisfies the large
deviation principle [76], i.e., whether it scales as

PT ≈ e−T � (12)

for some large parameter T , we look if the rate function �

does exist in the T → ∞ limit [76]. Comparing Eq. (12) to
the behavior of the right tail [cf. Fig. 5 and Eq. (11)], the rate
function seems to be a power law with an exponent κ = 2/de,
i.e.,

�(S) ∝ Sκ = S2/de . (13)

Since we have numerical results for the distribution P ,
we can determine an empirical rate function � of the
volume/surface S by extrapolation, (cf. Fig. 7) of

�(S/Smax) = − 1

T
ln P (S/Smax) (14)

to the large T limit. While � is usually normalized to � ∈
[0,1], here S and thus � is not bounded. To get a rate function
� comparable to other publications, we assume Smax = T de

like Ref. [47]. For the extrapolation we take values of different
walk lengths T at multiple values of S/Smax, e.g., V/T d in
Fig. 7. These can be thought of as vertical slices through the
plot shown in Fig. 8. We use the measured values of � to
extrapolate it point-wise to T → ∞ using a power law with

0.8

0.9

1

1.1

1.2

1.3

1.4

100 1000

Φ

T

V/T d = 0.0026

FIG. 7. Point-wise extrapolation of the value of the rate function
at a fixed value V/T d to T → ∞ with a power law, here for a d =
4-dimensional volume. The power-law fit seems to be a reasonable
approximation.

offset as shown in Fig. 7. Note that since for different walk
lengths T we used different histogram bins, we obtain the
intermediate values between the discrete bins by cubic spline
interpolation. The extrapolation leads to an asymptotic rate
function estimate. This shows that the rate function exists and
this distributions satisfies the large-deviation principle. This
holds for d = 3 and d = 4, for both volume and surface.

Fitting the power law Eq. (13) through the extrapolated
points, as shown in Fig. 8 for the distribution of the volume
in d = 4, confirms the expectation of κ = 2/de. This holds
also for the other cases we considered (not shown as a figure).
All measured values of κ are tabulated in Table III and are
in reasonable agreement with the expectations. Further, the
good quality of the fit χ2

red and the good agreement of the
exponents with the expectations, suggests that the power law
is a reasonable ansatz and systematic errors due to deviations
from this power law or finite-size effects are minor. Hence the
given statistical errors should be reasonable. Since the same
arguments are applicable for multiple walks, this procedure is

0.001
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0.1

1

10

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

12825651210242048

V −2/d

Φ

V/T d

Asymptotic Φ
Φ = asκ, κ = 0.497(1)

FIG. 8. Rate function of the distribution of the d = 4-dimensional
volume of the convex hull of RWs for different walk lengths T .
Crosses mark the T → ∞ extrapolated values of the asymptotic rate
function as shown in Fig. 7. To those a power law is fitted yielding
an estimate for the rate function consistent with the guess in Eq. (13).
Further, the expected power law behavior of the left tail is approached.
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TABLE III. Comparison of expected and measured rate function
exponent κ .

Volume V Surface ∂V
d Expected κ Measured κ Expected κ Measured κ

2 1 0.994(4) 2 1.996(2)
3 2/3 0.665(1) 1 0.994(2)
4 1/2 0.497(1) 2/3 0.647(5)

tested for the distributions of m = 3 multiple walkers in d = 3
dimensions, which does also yield within errorbars the same
exponent κ = 0.642(17) as for the single walker (no figure).

Also note that the power-law relation for the left tail
becomes visible, in the far left tail. The expected slope of
the left tail � ∝ s−2/d [cf. Eq. (10)] is visualized in the far left
tail in Fig. 8 and seems to be a reasonable approximation.

IV. CONCLUSIONS

We studied the volume and surface of convex hulls of
RWs in up to d = 6 dimensions for which we confirmed the
analytically known asymptotic means and we estimated the
asymptotic variances.

Further, using sophisticated large-deviation sampling tech-
niques we obtained large parts of the distributions P in up
to d = 4 dimensions down to probability densities far smaller
than P = 10−1000. The distributions collapse over large ranges
of the support (right tail) onto a single curve when being

rescaled with the asymptotic behavior of the means. For the
left tail, we observe a convergence to a limiting function. Even
more, we used our results to confirm the expected functional
shapes of the distributions in the left and the right tails, for
finite and extrapolated values of T , respectively.

We used simple arguments and numerical simulations to
determine the scaling behavior, as well as the asymptotic
behavior also for both tails of the rate function �r (S) ∝ S2/de

for d ∈ {3,4} and are confident that it is valid in arbitrary
dimensions.

For future studies, it would be interesting to investigate the
properties of the convex hulls of other types of random walks,
exhibiting non-trivial values of ν, like self-avoiding walks or
loop-erased RWs.
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