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Abstract. The random-field Ising model (RFIM), one of the basic models for quenched disorder, can be

studied numerically with the help of efficient ground-state algorithms. In this study, we extend these

algorithm by various methods in order to analyze low-energy excitations for the three-dimensional RFIM

with Gaussian distributed disorder that appear in the form of clusters of connected spins. We analyze

several properties of these clusters. Our results support the validity of the droplet-model description for

the RFIM.
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Numerical optimization

1 Introduction

The random-field Ising model (RFIM) [1] is one of the

most basic models with quenched disorder. Similar to the

more prominent spin glasses (SGs) [2–4], there are still

many open questions concerning the low-temperature prop-

erties of the RFIM. During the last few years, the RFIM

and the related diluted antiferromagnet in a field have

attracted growing attention [5–16], in particular within

simulation studies at finite [17–23], and zero temperature

[24–36].

There are few results [25,37] which give evidence that

the low-temperature behavior of the three-dimensional

RFIM is well described by the droplet theory [38–41],

which is one of the most important and most success-

ful theories to describe finite-dimensional systems exhibit-

ing quenched disorder. The droplet theory has already

turned out to be useful to describe the behavior of two-
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dimensional (2d) SGs [42–45]. For the 2d SG model, much

evidence supporting the validity of the droplet-model de-

scription has been accumulated over the years in partic-

ular by studying low-energy excitations. Nevertheless, for

the three-dimensional (3d) RFIM, low-energy excitations

have been investigated only in few cases [25,37] so far. In

particular, since the 3d RFIM exhibits a phase transition

at non-trivial disorder [46], in contrast to the 2d SG, it is

of high interest to study the excitations as a function of

the disorder strength. Thus, in this paper we study three

different types of “typical” low-energy excitations. Our

results show that the behavior in all three cases is com-

patible with the droplet theory, giving strong evidence for

the validity of this approach for the RFIM. In particu-

lar, the different excitations behave the same, for example

concerning their fractal properties. We also show that the

generated excitations exhibit the largest number of spins

close to the phase transition. Furthermore, the distribu-

tion of cluster radii is well described by a power-law R−θ

with θ ≈ −1.49 being the droplet scaling exponent [25].

The RFIM consists of N Ising spins si = ±1 on a reg-

ular lattice with nearest-neighbor interactions of strength

J . Additionally, site-dependent magnetic fields hi, which

are chosen according to some random distribution, act on

each lattice spin. Throughout this paper, a Gaussian dis-

tribution of width h is applied. Hence, the value of h mea-

sures the strength of the disorder. The Hamiltonian of the

RFIM given by

H = −J
∑

〈ij〉

sisj −

N
∑

i=1

hisi. (1)

The sum 〈ij〉 runs over nearest neighbors of spins. We

apply periodic boundary condistions in all directions.

The competition between the nearest neighbor inter-

action and the tendency for spin si to align with its hi is

responsible for the complexity of the model. In the RFIM

with a three-dimensional lattice, there is a 2nd order [25]

phase transition [46] that separates a ferromagnetically

ordered phase existing at low temperature and low dis-

order from a disordered phase with average zero mag-

netization m =
∑

i si. This transition is governed by a

zero-temperature fixed point. From renormalization group

arguments it follows that it is possible [47] to study the

properties of the RFIM also at T = 0, i.e. by calculating

ground states (GSs). It is convenient that the GS of the

RFIM of arbitrary dimension can be determined in a time

that scales polynomially with system size by effectively

algorithms (see next section). The equivalent task in spin

glasses is NP-hard [48] which implies that no algorithms

to solve it efficiently are know so far.

In this paper, we examine the phase transition in the

three-dimensional RFIM by analyzing low-energy excita-

tions from the GS via advanced ground-state methods.

We first explain the algorithms we used (Sec. 2) before we

present the results (Sec. 3). In the final section, we give a

summary.

2 Methods

We investigated the excitations in the RFIM via computer

simulations [49] by using sophisticated optimization algo-

rithms [50]. We applied three different methods of gener-
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ating low-energy excitations. In each of these methods, the

first step is to calculate the GS of a random RFIM real-

ization. In a second step, the system is perturbed slightly

such that the GS is made a bit unfavorable. How this is

done specifically differs for the three method. In any case,

in the last step, the GS of the perturbed system is de-

termined. The resulting configuration is a low-energy ex-

citation of the original, unperturbed system. The excited

state, which consists of one or more clusters of connected

spins, can then be compared with the GS.

First, to calculate the exact GSs at given randomness

h, algorithms [51–53,50] from graph theory [54,55] were

applied. To implement them, some algorithms from the

LEDA library [56] were utilized. Here the methods are

just outlined. More details can be found in the literature

cited below or in the pedagogical presentation in Ref. [50].

For each realization of the disorder, given by the values

{hi} of the random fields, the calculation works by trans-

forming the system into a network [57], calculating the

maximum flow in polynomial time [58–62] and finally ob-

taining the spin configuration {si} from the values of the

maximum flow in the network. The running time of the

latest maximum-flow methods has a peak near the phase

transition and diverges [63] there like O(Ld+1). The first

results of applying these algorithms to random-field sys-

tems can be found in Ref. [64]. In Ref. [65] these methods

were applied to obtain the exponents for the magnetiza-

tion, the disconnected susceptibility and the correlation

length from GS calculations up to size L = 80. The most

thorough study of the GSs of the 3d RFIM so far is pre-

sented in Ref. [25].

Since the algorithms work only with integer values for

all parameters, a value of J = 10000 was chosen here, and

all values were rounded to its nearest integer value. This

discreteness is sufficient, as shown in Ref. [25]. All results

are quoted relative to J (or assuming J ≡ 1).

Note that in cases where the GS is degenerate [66], it

is possible to calculate all the GSs in one sweep [67], see

also Refs. [68,69]. For the RFIM with a Gaussian distri-

bution of fields, the GS is non-degenerate, except for a

two-fold degeneracy at certain values of the randomness,

where there are zero-energy clusters of spins. Thus, it is

sufficient to calculate just one ground state here.

We are now going to sketch the different excitation

methods that we used. We assume that for a given realiza-

tion {hi} of the local fields a GS {s0
i } has been calculated.

I Single spin flip method : In this method, a “central”

spin si0 is picked randomly and frozen to an orienta-

tion opposite to its GS orientation s0
i0 . This is being

done by changing the local field hi to h′
i > 6J and

choosing the sign such that s′i is aligned opposite to

its GS orientation, e.g. h′
i0 = −7Js0

i0 After recalcu-

lating the GS of the perturbed system, s′i0 is always

different from its GS orientation, but adjacent spins

may have flipped as well if it is energetically favorable.

The set of flipped spins will consist always of exactly

one connected cluster of spins.

II Random-excitation method : The system is perturbed

by adding a set of additional fields {δhi} of strength
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δ on top of the original fields hi. Here it means that

each δhi is drawn from a uniform distribution [−δ, δ].

The method has been applied earlier by Alava and

Rieger to the two-dimensional RFIM [70], with a uni-

form distribution for the random fields as well as for

the perturbations.

III ε-coupling method : This method, which has been ap-

plied to spin glasses in [24], works in a very similar

way as the random-excitation method. The system is

perturbed by adding an additional field δhi of fixed

strength ε to each hi, however with a site-dependent

sign such that the field always acts against the GS ori-

entation, i.e. h′
i = hi − εs0

i , lowering the energy of GS

configuration.

For the second and third method, the calculated GS of

the modified system {h′
i} may yield the previous GS {s0

i },

in particular if the strengths δ and ε are small. If the

strength is large enough, the excited state will typically

exhibit for both methods several clusters of spins flipped

with respect to the original GS.

The size of the resulting excited clusters, i.e. the num-

ber Nf of spins exhibiting s′i 6= s0
i , can be analyzed in

more than one way. We determine the overlap

q =
1

N

N
∑

i=1

s0
i s

′
i (2)

which characterizes the size of the global excitation, also

if it consists of multiple connected clusters. It is related to

the total number of flipped spins Nf by

1 − q =
2Nf

N
. (3)

In order to analyze the geometry of the clusters of con-

nected spins, it is convenient to introduce the following

three quantities

– the volume V is given by the number of spins in a

single cluster of connected spins,

– the surface A for each cluster is given by the number of

bonds that connect a spin of the cluster with another

spin that does not belong to the cluster,

– the radius of a cluster we define as the root mean-

square distance between all spins of a cluster, also

sometimes called radius of gyration:

2R2 =
∑

i,j∈cluster

|ri − rj|
2

V 2
. (4)

This means that a single-spin cluster has radius 0.

3 Results

3.1 Sensitivity of the GS to perturbations

In spin glasses, very small variations of parameters such

as the strength of the bonds or an external field can cause

excitations that affect the entire system. This property

of disordered systems resembles chaos in systems where a

small deviation from initial conditions can lead to a totally

different state of the system at later times. However, some

people prefer to use the term “hypersensitivity” [25] for

this non-dynamical phenomenon.

Small perturbations of this kind have been analyzed

in detail in the context of spin glasses [71], [72]. In the

two-dimensional RFIM, it was found in [70] that a weak

form of chaos is present.
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We first applied the random-excitation method with

strength δ to the 3d RFIM to investigate how the method

is sensitive to the disorder parameter h.

Most of the resulting excitations consist of flipping

clusters at preexisting interfaces between spins of differ-

ent orientations, see Fig. 1. This is energetically favorable

since only a small number of unsatisfied bonds is created

by such an excitation. Excitations inside of domains with

ferromagnetic order in the GS are considerably less fre-

quent. This makes us expecting that close to (or maybe

even beyond) the phase transition, where many domain

walls exist, a high number of excitations is generated.

Fig. 1. Two-dimensional slice through a 3d RFIM. Spins point-

ing ↑ are marked in white, ↓-spins in black and spins that

change their orientation in the excitation in Grey.

To gather statistics, we performed simulations for sys-

tems with different h at system sizes ranging from L = 10

to L = 100. For special values h = 2.0, h = 2.270, h = 2.40

and h = 3.0, we simulated n = 5000 samples for each value

of L, for the remaining values of h the number of samples

is dependent on the system size (n = 1000 for the largest

systems and a higher number for smaller systems).

We measured the overlap q as defined in Eq. 2 where

s0
i is the GS orientation of the spin at site i and s′i its

orientation in the perturbed state. Note that q ∈ [−1, 1]

independent of the system size.

We first checked whether the response of the system to

the perturbation for small δ is linear. The overlap q(δ) is

shown in Fig. 2. It was averaged over 5000 samples of size

L = 40 for each (δ, h) pair. The errors are very small, due

to the effect of self averaging, i.e. the total overlap does

not vary strongly among different samples. For different

values of h, and δ ranging from δ = .01 to δ = 0.5, we

found that at least until δ = 0.2 the relation between

q and δ is linear, with a slope that depends on h. This

justified to use a fixed δ = 0.1J , as we did throughout our

simulations.
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Fig. 2. Overlap q of the random excitations (type II) vs. per-

turbation strength δ for various disorder strengths h.
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Fig. 3. Dependence of the overlap q(h) on the random field

strength h for random excitations (type II) of system sizes from

L = 20 to L = 100. The perturbation strength is δ = 0.1J . The

connecting lines are guides to the eyes.

In Fig. 3, the overlap q(h) is shown for different values

of the system size L. The error bars show the standard

error. For large disorder strength h, the value of q is in-

dependent of the system size and grows slowly towards

q = 1. In the limit h → ∞, each spin just follows its local

field independently of its neighbors, which explains this

behavior.

Furthermore, one observes that close to the phase tran-

sition point hc ≈ 2.27, the overlap is smallest and changes

drastically when starting from small value of h. The curves

appear to be smooth for small sizes L and significantly

steeper at L = 100. Another effect is that with growing

L, the minimum of the overlap moves to smaller values of

q and closer to the phase transition hc ≈ 2.27. Thus, in

the thermodynamic limit L → ∞, one can expect to see a

jump in q(h) when approaching the phase transition from

low values of the disorder h.

We can compare this behavior with former results of

Alava and Rieger [70] on the two-dimensional RFIM. For

any small fields h, the GS is paramagnetic for the two-

dimensional case, in contrast three-dimensional RFIM,

where the GS is ferromagneticaly ordered. Yet, the two-

dimensional equivalent of Fig. 3 has a shape similar to

the three-dimensional one with a “transition” to q = 1 for

small h. However, this apparent transition is in d = 2 not

an intrinsic property of the infinite system but a finite-size

effect that is caused by the breakup length scale Lc(h). The

GSs of finite two-dimensional systems with L < Lc are

ferromagnetic since no domains can exist typically where

their random-field energy exceeds their interface energy.

Order is broken only for the infinite system no matter

how small h is, as a consequence of the argument of Imry

and Ma [73]. Therefore, the two-dimensional transition to

q = 1 happens at some h > 0 only in finite systems. This

is reflected by the fact that for the 2d the apparent tran-

sition point shifts in two dimensions arbitrarily close to

h = 0 with growing L, thus it does not converge to a

certain hc > 0 as our d = 3-data suggests.

In the cited work of Alava and Rieger, the authors

also make predictions as to what they expect for three

dimensions. In the limits h → 0 and h → ∞, q = 1 is

expected. However, also for other h, in the thermodynamic

limit q → 1 is expected. These predictions are based on

scaling arguments that were developed for spin glasses [72]

and critical exponents from random-bond models [74] so
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that it is not clear to what extent these predictions apply

to the RFIM. Our simulations rule out that at criticality

and also at other values of h, q → 1, so that only the

predictions in the limit of infinite large and small h are

affirmed.
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Fig. 4. Histograms for the overlap distribution P (q) at h = 2.0

and h = 2.2 for random excitations (type II) with perturbation

strength δ = 0.1J . The distribution is sharply peaked very

close to q = 1. Therefore, a zoom to this region is shown in the

respective inset. Lines are guides to the eyes only, scales are

consistent with Fig. 5.
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Fig. 5. Histograms for the overlap distribution P (q) at h = 2.4

and h = 3.0. Lines are guides to the eyes only.

For four selected values in the vicinity of hc ∼ 2.270(4)

[24,25], namely h = 2.0, h = 2.270, h = 2.40 and h = 3.0,

we analyzed not only the average of the overlap between

ground state and excited state but also the distributions

of the overlaps. The results are shown in Figs. 4. and 5.

In the ferromagnetic phase, represented by h = 2.0, there

is a peak very close to q = 1. With increasing system size,

the peak becomes sharper, so that in the thermodynamic

limit, P (q) clearly approaches a δ-shaped peak which is

close to q = 0.9995. The overlap distribution in the para-

magnetic phase, represented by the h = 3.0 plot, shows a
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behavior that is in some way similar. For smaller systems,

there is a rather broad distribution with a maximum near

q = 0.975. The width of the distribution becomes smaller

with increasing system size, and the location of the peak

converges to q ≈ 0.975. At h = 2.4, slightly above hc,

there is a transition from the ferromagnetic peak to the

onset of a developing peak at a lower q that will proba-

bly become sharper for larger systems. (The maximum of

the L = 80 distribution is slightly smaller than the max-

imum of the L = 100 distribution.) At the critical point

with hc = 2.27, no clear statement can be made: There

is a peak at q ≈ 0.996 that resembles the ferromagnetic

case, but its width stays approximately constant for the

system sizes we could simulate. However, it is impossi-

ble to predict the shape of the overlap distribution in the

thermodynamic limit.
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Fig. 6. Dependence of the standard deviations δq of the

overlap probability distributions of Fig. 4 on L (h =

2.0, 2.27, 2.4, 3.0). For h = 2.0 and h = 3.0, the lines repre-

sent power laws, while for h = 2.27 and h = 2.4, the lines are

guides to the eyes only.

The standard deviations δq of the distributions that

are shown in Fig. 6 support this picture. While for h = 2.0

and h = 3.0, the width of the distribution decreases with

a power law δq ∼ L−α with α = 1.24(4) (h = 2.0) and

α = 1.54(3) (h = 3.0), no clear tendency can be seen at

the intermediate h. If there existed in the RFIM a com-

plex hierarchical phase-space organization resembling the

replica-symmetry broken phase of the mean-field SG, the

distribution of overlaps would not diverge to a δ-peak in

that phase. Instead, dependent on the type of replica sym-

metry breaking, one would would expect a distribution

that is double-peaked or even flat in the thermodynamic

limit. Although we could not make final predictions for

hc, our results and previous work on the sensitive of the

GS to changes of the boundary conditions [25] suggest

that for even larger systems for all values of h a δ-peaked

distribution should appear.

Note that the distributions we found can be compared

with overlap probability distributions of uncorrelated ther-

mal states of the RFIM in equilibrium, as performed in

[75]. In that work, the authors equilibrated samples by MC

simulations at a low temperature. After that, the overlap

distribution between the states in equilibrium was mea-

sured. The resulting P (q) distributions do resemble each

other strongly, which is in principle a property of a com-

plex phase space. Nevertheless, the system sizes that could

be equilibrated in Ref. [75] were too small (L < 11) to

draw solid conclusions from these results.
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3.2 Fractal dimension of clusters close to hc

Droplets that represent low-energy excitations in disor-

dered systems often exhibit a fractal structure. For the

RFIM, Middleton and Fisher [25] created domain walls

by comparing the GS configurations of different boundary

conditions in each sample. After calculating the GS where

the spins on the left and right border in x-direction are

fixed to ↑-orientation, the GS was recalculated with the

spins on the right border fixed to ↓-orientation while the

spins on the left border stay fixed in ↑-orientation. This

method guarantees that a domain wall is created.

The fractal surface dimension of these domain walls at

hc was determined to be dd
s = 2.30± 0.04. Middleton and

Fisher also analyzed the fractal properties of clusters as

areas of equal spin orientation in the simple pure GS with

the result dc
s = 2.27± 0.02.

We want to determine whether the fractal dimension of

low energy excitations is compatible to these results. The-

ory suggests that the fractal dimensions of excited clus-

ters and domain walls should be identical if the droplet

model applies. This is indeed the case for 2d Edwards-

Anderson spin glasses [24]. But for the RFIM, system-wide

non-domain-wall excitations that are uncommon because

θ > 0, i.e. the size of typical droplets is small and not

system-spanning. Note that the fact that typical droplets

are small prevents us from a direct determination of the

value of θ for the droplet excitations, see next section.

This is in contrast to the domain-wall excitations [25],

which are always of the order of the system size. This is

also in contrast to the 2d SG model, where θ < 0. In this

case, droplets tend to be large, hence the typical length

scale is also given by the system size L.

We return to the fractal dimension, which is deter-

mined via measuring the following three quantities, see

Sec. 2: We define the volume V of a droplet as the num-

ber of spins it contains. If there are “holes”, i.e. areas of

non-excited spins, inside of an excitation cluster they do

not contribute to V . The surface A is defined as the num-

ber of bonds that connect a spin of the cluster with a

spin that is not in the cluster. For measuring the spatial

extension of a cluster, we use the radius (of gyration).
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Fig. 7. Volume as a function of the radius for single spin exci-

tation clusters at L = 80. Each data point corresponds to one

cluster. A fit to the function f(x) = axb yields a = 0.59(2) and

b = 2.99(1), confirming V ∼ R3, as shown by the line.

As first result we obtained that the clusters are com-

pact, i.e. the volume V is non-fractal: By plotting the vol-

ume V as a function of the radius of gyration R for the

one-spin flip method (type I) for L = 80 (h = hc), see

Fig. 7, we find a power law with an exponent of 2.99(1),
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so that d = 3 fits the data well. Therefore, holes inside

of excited clusters are so rare and small that they do not

play an important role in the excitations of the RFIM.

The clusters of the other methods that were applied to

calculate ds are compact as well (no plots shown here).

The surface scales like A ∼ Rds with the surface di-

mension ds that is possibly fractal. Combined with the

compactness of the clusters, which means V ∼ Rd, it fol-

lows that

A ∼ V ds/d . (5)

In Fig. 8, A(V ) is shown for the three different methods

described above. In the double-logarithmic plot, the data

of the random spin method and the ε-coupling method is

shifted by multiplying it with a factor of 10 resp. 100 in

order to make all three curves visible in one diagram. For

the pure data, the curves overlap of course. The exponent

ds/d can be extracted from the numerical data by fitting

a power law to A(V ).

From Fig. 8, it can be seen that for the three different

methods, the clusters have approximately the same fractal

properties. We fitted a power law of the form A = cV ds/d

to the data of each method. The resulting fractal dimen-

sions for each method are

ds = 2.34(2) single spin flip

ds = 2.37(1) random excitations

ds = 2.36(1) ε-coupling

(6)

This means the three different types of excitations be-

have similar within error bars. Compared with the fractal

dimensions calculated in [25] (dc
s = 2.27±0.02 for clusters

and dd
s = 2.3 ± 0.04 for domain walls), our fractal dimen-

 1
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 1e+06

 1e+07

 1  10  100  1000  10000  100000

A

V

single spin
randomspin 10xA 
ε-coupling, 100xA

Fig. 8. Excitation-cluster surface as a function of the clus-

ter volume. for the ε-coupling method (top), the random-

excitation method (middle), and the single-spin flip method

(bottom). In all three cases we observe a A ∼ V ds/d behavior

(shown as lines) with ds being the fractal dimension, as shown

in (6).

sion of small excitations is compatible with the exponent

for domain walls dd
s . The value for the clusters is a bit

off, but this can be expected since these objects are not

covered by the droplet theory. This agreement, together

with the compactness of all excitation types, verifies one of

the main assumptions of the droplet theory, namely that

all types of physically significant excitations behave the

same.

3.3 Size distributions of clusters at hc

Another main assumption of the droplet theory [41] is that

the energy ∆E of minimum (free-) energy droplets with

a fixed center and a given scale l follows a probability

distribution

Pl(∆E) =
1

lθ
P (∆E/lθ) , (7)
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where θ is the droplet-scaling exponent and P (.) is an uni-

versal function. Within the droplet theory, as already in-

dicated above, it is assumed that the droplet exponent θ

describes universally also other types of excitations, such

as system-spanning domain-walls, which can be obtained

numerically, as described in the previous section. Using

such an approach, recently the value of θ = 1.49(3) has

been determined for domain walls [25].

Nevertheless, for the RFIM, we are not aware of a di-

rect determination of the value of θ via droplet-like excita-

tions. This is in contrast to the spin-glass case, where for

the two-dimensional (2d) systems numerical simulations

[42,76,77,43,44] indicate that domain-wall and droplet-

like excitations are described by one single droplet expo-

nent. For the 2d spin-glass case, the droplets were gener-

ated by a variant of the single-spin-flip method used in

this work. Note that for 2d spin-glasses, the value of θ is

negative, such that the excitations automatically tend to

be as large as possible, such as to obtain an excitation

energy as small as possible. Thus, in this case, the droplet

scale l is on average automatically given by the system

size L.

In case the value of θ is positive, it is more difficult to

determine its value via the calculation of droplet-like ex-

citations. The reason is that size of the excitations tends

to be small, as mentioned above. This means, the scale of

the excitations is not given by the system size L, in par-

ticular each excitation will have its own scale, compatible

with the minimum-energy requirement. One could use in

principle a different approach to generate true droplet-like

excitations, as required by the droplet theory, by optimiz-

ing only among all clusters of a given scale l, i.e. within a

range of sizes. Nevertheless, there are no efficient optimiza-

tion algorithms available, which can perform this task, in

particular maximum-flow algorithms cannot be applied.

It is quite likely that the problem of miniming the energy

of an excitation under a size-constraint belongs even for

the RFIM to the class of NP-hard problems. This means

that only algorithms are known, where the running time

increases in the worst case like an exponential with the

system size, limiting drastically the size of tractable sam-

ples.

Therefore, we follow a different approach here: We

want to use the assumption (7) to calculate the proper-

ties of the presently obtained excitations. As a first step,

we want to calculate the joint probability P (R, ∆E; L)

that, for a system size L, an minimum-energy excitation

with fixed center exhibits the energy ∆E and has scale R,

here as given by the radius of the excitation cluster (see

Sec. 2). Since the energy of the excitation is minimum, it

means that P (R, ∆E; L) is given by the probability that

on (imaginary fixed) scale R the minimum excitations en-

ergy is given by ∆E and by the probabilities that for all

other scales l ≤ L with l 6= R, the excitation energy is

higher. If we assume that for a fixed scale l ≤ L the prob-

abilities are independent of the system size L, we obtain:

P (R, ∆E; L) = PR(∆E)
∏

l6=R;l≤L

Probl(Ẽ > ∆E) (8)

where Probl(Ẽ > ∆E) is the probability to obtain, for a

fixed center and a fixed scale l a minimum-energy droplet
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excitation larger that ∆E:

Probl(Ẽ > ∆E) = 1 − Probl(Ẽ ≤ ∆E)

= 1 −

∫ ∆E

0

dE′Pl(E
′)

(7)
= 1 −

∫ ∆E

0

dE′ 1

lθ
P (E′/lθ)

= 1 −

∫ ∆E/lθ

0

dxP (x)

=: 1 − Q(∆E/lθ) , (9)

Eq. (8) can be rewritten as

P (R, ∆E; L) =
1

Rθ

P
(

∆E
Rθ

)

1 − Q
(

∆E
Rθ

)

∏

l≤L

[

1 − Q

(

∆E

lθ

)]

=
1

Rθ

P
(

∆E
Rθ

)

1 − Q
(

∆E
Rθ

)e
P

?

l≤L
ln[1−Q( ∆E

lθ
)] (10)

Note that the sum
∑?

l≤L is performed according the

assumptions of the droplet theory over different scales.

Thus, it is the same as writing l = bk for some suitably

(basically arbitrarily) chosen base b and
∑

l≤L f(l) −→

∑log
b

L
k=0 f(bk).

Here, using P (R, ∆E; L), we are interested in the dis-

tribution of excitation radii:

PL(R) :=

∫ ∞

0

d∆E PL(R, ∆E; L) . (11)

Unfortunately, this integral over ∆E cannot be performed

analytically. Nevertheless, the exponential (third) factor in

(10) does not depend on R. Furthermore, we can assume

that the factor 1/Rθ is dominating PL(R), i.e. different

contributions from ∆E/Rθ arising in the second factor

P/(1 − Q) will cancel to first order. In other words, the

Taylor expansion of the second term yields a constant plus

higher orders in ∆E/Rθ. This is not unreasonable: If we

consider the case of the exponential distribution, where for

P (x) = e−x we have Q(x) = 1−e−x, even all contributions

from ∆E/Rθ cancel. In this case, just for completeness,

one finally obtains, using λ(L) :=
∑logb L

k=0 (b−θ)k = (1 −

(b−θ)logb L+1)/(1 − b−θ) = (1 − b−θL−θ)/(1 − b−θ):

PL(R) =
1

Rθ

∫ ∞

0

d∆Ee∆E
P

?

k
(bθ)k

(12)

=
1

Rθ

∫ ∞

0

d∆Ee∆Eλ(L) =
1

Rθ

1

λ(L)
(13)

Indeed, the probabilities PL(R) are normalized, since

∑?
R≤L PL(R) = λ(L) 1

λ(L) = 1.

In Fig. 9, the measured probabilities PL(R) for R > 0

are shown for single-spin-flip excitations for system with

L = 80 at the transition point h = hc. The match with

the assumed scaling form ∼ R−θ, using θ = −1.49 as

obtained [25] from the scaling of domain-wall energies at

h = hc, is reasonable. Also for smaller sizes L < 80, the

distribution looks similar, but they extend only to slightly

smaller radii. Interestingly, for example for the ε-coupling

case the distribution shows the same power-law behav-

ior (see inset), although the ε-coupling excitations are not

generated with a “central” spin and although each excita-

tion generates many excitation clusters, in contrast to the

assumptions used above (for the third type of excitations,

the statistics is not as good right at hc.)

The results show that the behavior of the 3d RFIM

excitations, where θ > 0 right at h = hc, follow reasonably

well the assumptions of the droplet-scaling theory, similar

to the case of 2d spin glasses, which is an example for

a system with θ < 0, hence simpler to treat. This result

provides another strong indication that the behavior of
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)

L=80, single-spin
~R-θ
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100
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Fig. 9. Probabilities PL(R) of cluster radii R for single-spin-

flips at h = hc, the inset shows the same quantity for exci-

tations generated by the ε-coupling approach. Note that the

probabilities are measured (i.e. integrated) over logarithmic

scales, in accordance with the droplet definition within the

droplet theory. The solid lines show the power laws P (R) ∼

R−θ, which can be expected for single-spin-flip excitations (see

text).

the RFIM at the phase transition is indeed described to a

large extend by the droplet theory.

4 Summary

In this paper we studied the properties of low-energy exci-

tations in the three-dimensional RFIM via GS calculations

and subsequent generation of GSs for perturbed systems.

By tracking the difference of the excited state with respect

to the GS of the unperturbed system, we found that the

overlap q undergoes a transition from q = 1 to a smaller

value that becomes steeper with growing sample size. The

finite-size behavior of the data is compatible with a con-

vergence of a drastic change of the overlap right at the

critical value hc. This constitutes a clear difference to the

2d RFIM that was analyzed by Alava and Rieger.

In the distributions P (q), the phase transition is also

visible in the form of a shifting peak. We did not find any

clear evidence of an interval of the disorder parameter h

where the distribution would reach anything but a peak

in the limit of infinite systems. Close to the transition

h = hc our system sizes of even up to L = 100 are prob-

ably too small to reach the scaling regime. This provides

further evidence against a phase with a complex phase

space, similar to replica-symmetry breaking, in particular

right above the transition point.

The geometry of the excitation clusters was found to

be compact (volume to radius) and fractal (volume to

surface). Depending on the method by which the excita-

tions were generated, the fractal dimension ds is slightly

compared to domain walls, but not statistically signifi-

cant. Furthermore the probabilities of the excitation clus-

ter radii follow a power-law behavior R−θ, with θ being

the droplet-scaling exponent measured previously for do-

main walls at the phase transition point. This means that

two main assumptions of the droplet theory, compactness

and universality of the excitations, are verified by our re-

sults.

For future work, it would be desirable to test whether

the main assumptions of the droplet theory hold also for

the four-dimensional RFIM, where also some GS results

have been obtained previously [27]. Furthermore it would
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be desirable to study the dynamics of the RFIM within the

droplet pictures, for example the scaling of energy barriers

with system sizes.
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