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Abstract

Triplet ordering preferences are used to perform Monte Carlo sampling of the posterior
causal orderings originating from the analysis of gene-expression experiments involving
observation as well as, usually few, interventions, like knock-outs. The performance of
this sampling approach is compared to a previously used sampling via pairwise
ordering preference as well as to the sampling of the full posterior distribution. For a
fair comparison, the latter approach is restricted to twice the numerical effort of the
triplet-based approach.This is done for artificially generated causal, i.e., directed
acyclic networks (DAGs) and for actual experimental data taken from the ROSETTA
challenge. The sampling using the triplets ordering turns out to be superior to both
other approaches.

Introduction

For the last 10 years, high-throughput omics data have raised many methodological
challenges in system biology. Among these challenges, gene-regulation networks have
received a great deal of attention. In this context, Gaussian models like the Graphical
lasso [1] are very popular for inferring gene regulation networks. Another popular
approach, following the work of Pearl [2], focuses on causal Gaussian Bayesian
networks and performs intervention calculus [3] proving itself to be able to retrieve
bounds on causal effects and thus to partially determine causal relationships using
only observational data [4]. In this paper we focus on estimating causal Bayesian
networks in the presence of arbitrary mixtures of observational and interventional
data [5,6], i.e., wild-types and knock-out/down experiments with possibly multiple
interventions within each experiment.

As explained in [5] estimating the underlying DAG (Directed Acyclic Graph)
structure of a causal Bayesian network is equivalent to finding of the so-called causal
ordering between the genes of interest. In general, this causal ordering is unknown and
belongs to a very large ordering space (p! possible orderings for p genes) which cannot
be explored exhaustively. The solution suggested by [5] consists in sampling causal
orderings in the posterior distribution using Markov chain Monte-Carlo (MCMC)
simulations.

At each MCMC step, a new causal ordering is sampled according to a proposal
distribution (ex: Mallows distribution) and the maximum likelihood of the model must
be computed given the new ordering before to accept/reject the sampled ordering.
Thanks to the closed formulas developed in [5], this likelihood maximization can be
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done exactly and efficiently but requires an computational effort which still grows with
the sixth power of the number p of interacting objects (ex: genes). Thus, each single
Monte Carlo step is computationally rather expensive.

Mathematically a proper MCMC is guaranteed to converge to the correct sampling,
but only on diverging time scales. Given that for practical applications one only has a
finite amount of computational resources available, only small networks can be treated
in this way. For this reason, an approximation based solely on pair-wise probabilities
of ordering preference has recently been introduced [7]. This resulted in a considerable
increase of efficiency, but led in many cases to less reliable parameter estimates.

In this work, we extend this approximation to triplet-wise probabilities. We show
that this results in a strongly increased accuracy with respect to the pair-wise
approach. Also we show that, when allocating a comparable amount of the numerical
resources for the two algorithms, the triplet approach outperforms the sampling based
on the full maximum likelihoods. Thus, the triplet algorithm is well balanced: it is
sophisticated enough to allow for a rather accurate sampling, while it is
computationally cheap enough to be applicable in practice.

The reminder of this work is organized as follows: In Section “Model” we introduce
the model we use to analyze causal relationships and state all algorithms we have
applied. In Section “Results " we introduce the quantities we have measured to
compare the different approaches, and we present the corresponding results. We
conclude in Section {Summary and Discussion” with a summary and discussion.

Model and algorithms

Model

We consider directed graphs G = (V, E) with p nodes ¢ € V. Pairs of nodes i, j are
connected by directed edges (i,j) € E and carry a weight w; ;. A nonzero weight
indicates a causal relationship. We assume that the graph is acyclic, i.e., a directed
acyclic graph (DAG). Without loss of generality, we can assume that the nodes are
ordered according the causal relationships, i.e., w; ; > 0 = 4 < j. This means within
the following random process only nodes ¢ can have causal effects on nodes j if i < j:

On each node j =1,...,p a Gaussian random variable X; is placed given by
Xj=mj+Y wi;X;+e with ¢~ N(0,07). (1)
i<j

The term ¢; models fluctuations of the random variables, e.g., for
fluctuations of gene expression. Thus, the parameters m = (my,...,m,) and
o = (01,...,0p) represent the mean values and the standard deviations if all
interactions were absent. In the following an experiment corresponds to one realization
of the random process (1).

Within the model is furthermore possible to perform interventions on the nodes,
i.e., within selected but arbitrary realizations of the process they are fixed to given
values instead of generated according to (1). In the DAG these values are uses as
inputs to the descendants when generating a realization of the process, i.e., performing
an experiment numerically [8].

Estimating model parameters

Given are N experimental data points x* = (zf,...,zF) (1 <k < N) assumed to be

generated according t6(L). The set of nodes subject to interventions on experiment k
is denoted by Jj, respectively (Jr = () means no intervention for the k’th experiment).
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We denote by K; = {k|j ¢ Ji} the experiments where there was no intervention on
node j and by N; = |K;| the number of times node j was not target of an intervention.
The log-likelihood of the joint experimental outcome given the parameters can be
written (see [5]) as:

{(m, o, W) =

(2 ZN ZN log(o;)

Note that we omit the dependence of £ on the data here for brevity of notation.
For the given N measurements, the parameters m, 5, W leading to the maximum
likelihood estimator (MLE)

Z%Z b xPWel —m;)?. (2)

j 71 keK;

l\D\H

lmax = £(t1, 5, W) = max {(m, o, W) (3)
m,oc, W
can be obtained [5] in a straightforward way by the following procedure: First one
obtains for each experiment k£ = 1,..., N the measurements normalized with respect
to the experiments wherethere was no intervention on node j, for each node j:

. 1 ’
yk’]:xk—f Z xM. (4)
J k'EKj

Next one solves the linear system of size p(p — 1)/2
h oI k0J , k, . . ..
> vy > iy = Y by fori< i 1<ig <N (5)
i']i'<j keK; keK;

to obtain estimates w; ; of the weights for the MLE. Solving a linear system with
O(p?) variables takes O(p®) steps.From this solution one obtains, still just
following [5], estimates of the mean values

1 N
mj = — Z (969C — kae;‘-F) (6)
Nj kEKj
and of the variances 1
. kg G
b=k S -yl G
T kek;

Estimating the posterior distribution

So far, we have assumed that the causal ordering of the model is given by
oo =(1,2,...,p). In experimental situations, if the data was actually generated
according the DAG model, the ordering is most of the time unknown, i.e., all
estimates will depend on the ordering: £yax = max(0). for the general case, if the
data was note generated according to a DAG model, the modeling must involve many
orderings. Thus, in experiments and subsequent model estimation, one is actually
interested in either the ordering which maximises the MLE, or, alternatively, in
obtaining the posterior distribution involving all (or the dominant) orderings weighted
by the corresponding ordering-dependent MLEs.

Both can be obtained in principle by iterating over all p! possible causal orderings
0, i.e., permutations of the natural numbers 1,...,p. Each time one has to reorder the
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measurement data according this ordering, and obtaining the MLE (3) via solving (4),
(), (6) and (7). Clearly, if p is too large, this enumeration is not possible any more.

One alternative approach is to use a Markov-chain Monte Carlo (MCMC)
simulation, where orderings o(t) according the likelihood exp(¢max(0)) are sampled, ¢
denotes the number of steps. A convenient approach to achieve this is the Metropolis
algorithm. Here, within each step, a trial order o’ is generated. For the present study,
we use local changes, i.e., an exchange of the order of two nodes with respect to the
current ordering o(t). The trial ordering is accepted, i.e., o(t + 1) = o’ with the
probability

Pace = Min{1, exp[lmax(0") — lmax(0(t))]} . (8)
Otherwise, the trial ordering is not accepted and the current ordering kept for the next
time step, i.e., o(t + 1) = o(¢).Note that for all simulations we performed (see below
for details), the empirical acceptance rate of these locally generated trial orderings was
below 0.5. The value of 0.5 is considered by rule of thumb as a good choice, balancing
a desired high rate of changing with a desired high acceptance rate. Therefore it would
not make sense to consider trial orderings which differ from the current ordering by
more than two exchanged positions, since this would increase the fluctuations and
therefore decrease the acceptance rate even more.

This type of sampling guarantees, in principle, if the Markov chain is long enough,
that the orderings are sampled according the desired posterior distribution. Note that
for the computation of the change £;,,x(0") — fax(0(t)) of the log-likelihood one has
to recalculate the log-likelihood for the trial ordering o’ from scratch. Thus, each
MCMC Metropolis step takes O(p®) running time.

By starting with a random ordering o(0), performing a “long enough” MCMC
sampling and by discarding the “initial” part (allowing for equilibration), a sample set
S of orderings is obtained, which can be used to calculate averaged estimated
parameters, see Section {Calculation of averaged estimates’.

Calculation of averaged estimates

The aim is to study expectation values in ensembles defined by probabilities or
likelihoods P (o). Here we are interested in the true likelihoods P(0) ~ e‘max(®), Thus,
for any measured quantity A(o), where the estimate depends on the assumed ordering
o, the expectation value is given by

(A) =) A(0)P(0). (9)

Note that the measured quantities of interest are usually estimates which are obtained
from the maximum-likelihood calculation, e.g., the estimates of the weights obtained
from or estimates of the variances (7), or any other derived values.

If only a finite set S of samples is given, averages can be obtained, approximating

the expectation values:
> ocs A(0)P(o)

> ocs F(0)
These estimates are most accurate if the process use to generate the sample set follows
the desired sampling P(0) ~ elmax(0) a5 close as possible. Thus, the sample set S could
be generated by a MCMC sampling according to the true probabilities efmx, as
outlined in the previous section. In this way automatically orderings with high
contributions to (10) are preferentially generated. Note that since S is actually a
mathematical set, there will be no multiple occurrences of orderings in S. If one
allowed for multiple occurrence, then one would have to take simple arithmetic
averages instead of weighted ones as in (10).

A= (10)
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Anyway, here we work with sampling sets. The reason is that, alternatively, these
sets can be obtained by sampling according to different probabilities, which only aim
at approximating the true probabilities but are computationally much cheaper to
calculate. If the size of the set is suitably restricted, we used always |S| = 100, the
computationally expensive O(p°®) full likelihood calculations have to be performed only
for a small number of (here) 100 samples.

The approximate probabilities we have used are introduced in the following section.

Pair and triplet probabilities

Instead of sampling the full posterior distribution, in [7] it was proposed to perform an
MCMC sampling from a different distribution, the Babington-Smith (BS) ordering
distribution [9,10]. It is based on pair preferences m; ; (1 <14 # j < p) with 7, ; € [0, 1]
and 7; ; + 7;; = 1. The meaning is that within the desired ordering distribution in
any random ordering element ¢ appears before j with this probability m; ;. The pair
preferences can be estimated from the experimental data with interventions by
considering all possible two-node graphs G; ; = ({4, },{(¢,4)}) with the nodes ¢ and j
and with exactly one directed edge (i, 7). As above, for brevity of notation, we omit
the dependence of the pair preferences and any derived quantities on the data here.
Only the data values for the two nodes are considered . For each of the p(p—1)
directed two-node graphs the log-likelihood ég;x(i, j) is obtained. The pair preferences
are then given by

exp(Gian (i, )
(exp(Giax(i, ) + exp(binx (5. 1))
From the pair preferences, the BS probability of a full ordering o is obtained by

P(o|r) ~ [ [ 7or.0, (12)

i<j

(11)

Tij =

with a suitable normalization. The normalization is not needed here, since, first, we
only compare the (relative) values of (12) for different orderings. The corresponding
log-likelihoods are denoted as

epair = Epair(o) — logHWoi,,oj . (13)

i<j

Second, we performed MCMC sampling of orderings using the Metropolis algorithm
according (12) where also only relative likelihoods are needed. This was done in an
equivalent way as above, only the true MLE is replaced by (13). Thus, starting again
from a random ordering o(0), we generated trial orderings o’ by exchanging the i’th
and the j’the entry in the current ordering. The new orderings are accepted with the
corresponding Metropolis probability. Note that one does not have to recalculate the
BS probability from scratch, since the change in probability is easier to obtain. The
Metropolis acceptance probability is given by

Toj.01 Toj,06 Mok, 01 (14)

To;,0, Mok ,04

In case of multiple interventions, we observed in test which are not contributing to the results
shown here that the overall performance of the sampling according pair preferences is somehow better
if data points with interventions on other nodes than ¢, j are not considered, respectively.
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This takes only O(p) steps compared to the O(p?) steps needed for the calculation of
the full probability. In particular it is much faster than computing the full likelihood
which takes O(p®) steps.

Naturally, when sampling according to (12) the distribution will be different but
somehow similar to sampling according the true likelihood. Thus, the final estimates,
like the weights, for the posterior distribution are obtained by keeping the ny
samples with the highest Babington-Smith probabilities (12) in the sample set S. For
these orderings now the true MLE (3) is evaluated and used. This means, (10) is
applied for any kind of estimation or averaging, i.e. the Babington-Smith weights are
now used in this final averaging step.

In [7] it was found that this sampling approach is in some case similar accurate as
a full MCMC sampling as described in Sec. Estimating the posterior distribution, but
there are notable differences. Therefore it was proposed to maybe consider triplets
instead of pairs.

Thus, it is the purpose of the present work, to study this higher level
approximation of the true posterior distribution. Similar to the above defined pair
probabilities, we introduce triplet probabilities p; j € [0,1] such that
Pigk + Pikj T Pk + Piki+ Prij+ Prji = 1. These probabilities can be estimated
from the experimental data in a similar way as above, by considering all possible sub
graphs ({7,7,k}, {(i,5), (i,k), (j,k)}) with three nodes and corresponding edges. For
these sub graphs the corresponding MLE are obtained and suitably normalized,
equivalent to (11) to yield the triplet probabilities p; j 5. They can be used to
generalize the Babington-Smith probabilities of orderings to

P(0|p) ~ H pOran,Ok . (15)

i<j<k

Again, the normalization is not needed here. The corresponding log-likelihood is

denoted as
P =log [T Poros 0 - (16)
i<j<k
We perform an MCMC sampling of orderings according these probabilities using the
Metropolis algorithm and trial ordering generated via swapping of pairs of elements.
For the calculation of the acceptance probabilities only the change in probability of
(15) has to be considered, which takes now O(p?) steps for such a swap.
Again, for all evaluation and estimations, the n; ) = 100 highest-probability
samples with respect to the triplet probability are kept. For these samples the true
likelihood is obtained and used for all averaging processes according to .

Data sources

The new approach will be tested and compared to previous approaches using data
from biological applications as well for data generated my numerical simulations for
DAGs of different sizes.

For the latter one, we consider random DAGs with p nodes. For the edge weights,
each edge (7, 7) with 7 < j receives independently a zero weight with probability 1 — ¢,
i.e., these edges are absent. With probability ¢ each edge gets assigned an edge weight
which is drawn uniformly from the range [—1,—0.4] U [0.4, 1]. Thus, these edge can be
distinguished very well from the absent edges with weight 0. Below, we use ¢ = 1, i.e.
complete graphs, as well as diluted graphs with ¢ = ¢/(p — 1), i.e., these graphs have
on average ¢ neighbors. We used ¢ = 6. Finally, for each DAG instance, for each node
¢ mean values m; = 1/2 are used and the variance values o; are drawn randomly
uniformly in the interval [0.01,0.1]. We also performed some tests with other values
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and verified that our general conclusions do not all all depend on how the means and
the standard deviations are chosen. All simulations are performed for 1000 DAG
instances generated independently in this way.

Next, for each DAG instance, a certain number of N measurements is performed,
where the measurement vectors x* (k= 1,..., N) are generated according to (I).
Typically, for a DAG of p nodes, we generated N = 10p measurement vectors, other
cases are stated when it applies. We used a variable number of interventions to
investigate how the different sampling approaches respond to that variation. Note that
the scheme exhibited in Section “Estimating model parameters” allows for multiple
intervention. Nevertheless, since we are interested in comparing different sampling
approaches here, we present for simplicity just single interventions which are
systematically done the first r (r < N) experiments of each set of experiments. We
applied a systematic manner, such that for all nodes at least |r/p]| interventions are
performed while for r — p|r/p| nodes one intervention more, i.e., [r/p] interventions
are performed. This sums up to 7 interventions. For each intervention on node j, we
set X; = 0, respectively, corresponding to a knock-out.

The advantage of using artificially generated data is that the actual model used to
generate the data is available. Therefore all estimated and averaged values, obtained
using a sampling via the true likelihoods as well as using a sampling based on pair and
triplet probabilities, can be compared to the actual model parameters. This allows for
a good comparison of the different sampling approaches. In particular for a varying
number of network sizes, even large ones, and for varying number of interventions.

On the other hand, the DAG models might not represent all subtleties of biological
applications. Thus, to allow for a different viewing angle on the different approaches,
we applied also data obtained from biological measurements. Here, we used the
Rosetta Compendium data set [11] which contains gene expression data on yeast. It
contains data from experiments on mutants with interventions (knock-out or
know-down) for single as well as multiple interventions. Also a large amount of data
from wild-type experiments (no interventions) is contained. The database can be
accessed freely at the location: http://arep.med.harvard.edu/ExpressDB. We used
in particular a sub network taken from [12] consisting of p = 17 genes (STT2, TECI,
NDJ1, KSS1, YLR343W, YLR334C, MFA1, STE6, KAR4, FUS1, PRM1, AGA1,
AGA2, TOMSG, FIG1, FUS3, YEL059W) and data for N = 300 experiments. For this
set of genes, no knowledge about any possibly underlying network structure or
network parameters is assumed while performing the numerical tests here. Only the
actual experimental outcomes taken from the database are used. Thus, the estimated
parameters generated using the true likelihood form the set of reference values here to
perform a comparison of the different approaches. For this purpose, to allow for an
exact enumeration, avoiding sampling errors for the reference values, we selected [7] a
sub network consisting of p = 8 genes, namely STT2, TEC1, NDJ1, KSS1, YLR343W,
YLR334C, MFA1, STE6. Note that these genes form a coherent sub network in the
network estimated in [12]: with respect to the full 17 nodes network, only one single
interaction involving a node of the sub network STE6 (to FUS1) is missing for this
selected subset. For these 8 genes, four of the experiments contained single node
interventions, namely knock-downs on nodes KSS1, SST2, and twice on TECI.

Results

To evaluate and compare the power of the Babington-Smith pair and triple
approaches, we applied them to various data obtained from DAG ensembles of
different graph sizes as well as to data obtained from biological applications.

First, as shown in Section ‘Direct comparison”, we applied the calculation of the
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Babington-Smith pair and triple likelihoods to a single graph, where we enumerated
all orderings and compared the result to the full likelihoods. In Section

‘Application to Rosetta Compendium”, the results of the application of the MCMC
sampling to the Rosetta data set are shown. Next, in Section

YEvaluation for random DAGs", MCMC sampling for all three types of likelihoods,
respectively, were applied to data obtained for different random DAGs of size p = 20
and p = 50 nodes. Finally, in Section “Greedy approach!’, the results of estimating the
most-likely orderings via greedy algorithms based on pair- and triplet-probabilities for
random DAGs are shown.

Direct comparison

First, we evaluated the likelihood computation for a single randomly picked realization
of a complete (¢ = 1) DAG with p = 8 nodes. We performed N = 100 experiments,
among those r = 4 with single-node interventions. For this sample, we enumerated all
p! = 40, 320 orderings, and for each ordering we evaluated the true likelihood (2)
together with the pair-wise Babington-Smith log-likelihood and the triplet-wise
BS log-likelihood (16).

In the left part of Fig[l, for each ordering the pair-wise Babington-Smith likelihood
is shown as a function of the full likelihood. This means a scatter plot of p! orderings
of points (£max(0), P (0)) is shown. The ordering 0™** leading to the maximum full
likelihood appears to the right of the scatter plot, with £,y (0™#*) &~ 1053. This
ordering will dominate any average according to (10). Obviously, this ordering does
not exhibit the maximum pair-wise BS likelihood, which is #P*" =~ —7, obtained by an
ordering which true log-likelihood is about fy,.x &~ 1016. The horizontal line in the
plot indicates the pair-wise BS log-likelihood ¢P#" of the ordering o™?*. A
considerable amount of all orderings, actually more than 2700, are located above this
line. Thus, they exhibit a value of /P*" which is higher than for the ordering o™2*.
Therefore, when performing an MC sampling according the pair-wise likelihoods (13)
plus evaluating the true likelihoods for averaging, one must generate a very large
sample if the true maximum-likelihood ordering is to be included.

The corresponding result considering triple-wise BS likelihoods ¢t"P! is shown in the
right part of Fig[l]/in the same way. Here, the sequence exhibiting the maximum value
of £"P! =~ —62 has a true log-likelihood of £ya & 1040, which is much closer to the
sequence 0™?* which has (still) £pax(0™*F) &~ 1053. Only about 100 sequences exhibit
a triple-wise BS likelihood larger than for o™®*
This means an MC sampling using the triplet-wise BS likelihoods allows for much more
accurate estimation of model parameters with respect to the true likelihoods. This can
be seen also in the next section, where an actual biological application is considered.

Application to Rosetta Compendium

For the experimental data points of the Rosetta Compendium for p = 8 nodes and

N = 300 experiments with four interventions (see Section “Data sources] for details),
we obtained the averages of the estimated interaction parameters according to (10).
One can either estimate the direct causal effects, i.e., the entries w;; of the weight
matrices W. Here, we concentrated on the matrice

L=1+W+W>4  +WPl=(I-W)", (17)

which carry the total (direct and indirect) causal effects [7] mediated through chains of
causal effects (note that WP = 0 because of the DAG structure). Thus, for all cases,
we estimated the 8 x 8 = 64 entries of the matrix L.

The sampling was performed in four different ways:
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Fig 1. Log-likelihood comparisons. Left: Scatter plot of the true log-likelihood
versus the pair-wise log likelihood for data generated for an DAG of size p = 8.
All 8! orderings were enumerated and the pairs of true likelihood and pair probability
plotted. The horizontal line indicates the pair-wise BS log-likelihood for that ordering
which exhibits the maximum true likelihood. Right: The same but for true
log-likelihood (x-axis) versus triplet log-likelihood (16). Note the different scales of the
pair-wise and triple-wise log-likelihoods are only due to the missing normalization of
likelihoods.

1. All p! = 40320 orderings were enumerated and the true expectation value for all
64 matrix entries was obtained via (9).

2. To estimate the influence of a finite sample size, a subset S of 1000 orderings
with the highest true likelihoods e‘™*x(?) was taken. For this subset the averages
of estimates of the 64 matrix entries were obtained via (10)).

3. An MCMC sampling according the pair BS probabilities (12) was
performed.1000 independent MCMC chains where performed, each starting with
an independently chosen random ordering. The length of each MCMC chain
consisted of 100 pair-exchange trial steps according to (14). From these orderings,
the set S of the 1000 orderings exhibiting the highest pair BS probabilities was
taken and the average estimates of the matrix entries were obtained via (10).

4. An MCMC sampling according the triplet BS probabilities (12) is performed, in
an equivalent way as for the pair BS probabilities. All parameters were the same
and the analysis was performed in the same way. Thus, everything was the same,
except that the pair BS probabilities were replaced by the more demanding
triplet BS probabilities.

In Fig[2lthe averages obtained from the approaches 2-4 are compared to the exact
expectation values obtained from the first approach. For a perfect estimation of the
averages, all data points would lie on the diagonal. Clearly deviations are visible,
which is to be expected since the averages are only approximations of the expectation
values. The main result is that the deviations are much stronger for the sampling
using the pair probabilities. On the other hand, for the triplet probabilities, the
scatter of the data points is comparable to the scatter of the exact sampling of
restricted size. This shows that the sampling of a finite size set of ordering samples is
already close to perfect when using the triplet probabilities.

In the inset of Fig[2 we also show the mean-squared errors e = (A* — (A))2, where
A are the different matrix entries L;; and ’a’ denotes the algorithm (a= pairs, triplets,
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Fig 2. Comparison on the Rosetta Dataset. Comparison of the estimations of
the 64 entries of the total causal effects matrix L using the exact expectation values
(Lij) (from a complete enumeration) and estimates ﬁij obtained from the three
approaches: pair-wise sampling, triplet-wise sampling, and a subset of the exact
sample. For each matrix entry, the average value obtained via one of the three
approaches is shown, respectively, as a function of the exact expectation value. The
data is taken from the module Rosetta data set (8 genes). The inset shows the
mean-squared error e? between averaged entry and exact expectation value, as a
function again of the exact expectation values.

subset). The above findings are supported by MSE values, which are comparable for
triplets probability and subset (exact probability) sampling, but much larger for the
pair probability sampling.

Evaluation for random DAGs

Next, we show results for numerically generated data for an ensemble of DAGs. This
has the advantage, that due to the average the influence of fluctuations is negligible
when comparing the efficiencies of the different sampling approaches. Furthermore, we
were able to perform the simulations for different DAG sizes, here we studied DAGs
with p = 20 and with p = 50 nodes. Also, we could vary the number r of interventions
over a wide range to get a grip on how this influences the performance of the different
algorithms. Finally, we could compare the estimated parameters with the original
values used to generate the data. Thus, to measure the efficiency, we consider all edge
weights w; ;, where w; ; might be zero because it does not match the causal ordering,
or because the causal interaction is just absent (in the case of edge probability ¢ < 1).
This is done in the following way: From each sampling, we obtain averaged estimated
edge weights w; ; (i, = 1,...,p) according to (10). Now, we count the “bad”
estimates of the edge weights as follows:

e O ([ 5| — wo)
dlb =1 o —wn) w0

©(z) denotes the threshold function which is ©(z) = 0 for < 0 and ©(x) =1 for
x > 0. Thus, for a weight which is zero in the original DAG used to generated the
data, the averaged estimate is counted as bad if its absolute value exceeds a threshold

(18)

Wi,j —Wij
Wi, j
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value wg. For an edge with nonzero weight of the original DAG the average estimate is
counted as bad, if the relative deviation of the average estimated weight and the
original weight exceeds threshold value w;. We used wy = 0.2 and w; = 0.5. In
general, details of the results might depend on the actual values of wy and wq, but we
verified that the principal trends, with respect to which sampling approach performs
better, remain the same. To exclude the influence of the actual threshold values, we
also performed an Receiver Operator Characteristics (ROC) analysis, see below. We
iterated over all edges, i.e. measured

Nbad = ]ﬁ > Gnaalisg) - (19)
i#]

The results we show are an average over all 1000 random DAGs.

The measurement data was obtained for N = 10p experiments, i.e., N = 200
experiments for p = 20 nodes and N = 500 experiments for p = 50. We performed
interventions for a varying number 0 < r < N of experiments as explained in Section
‘Data sources”. The different sets S of sampled orderings, for which the averages w;
were calculated using (10), were obtained via four different sampling approaches,
respectively:

pairs An MCMC sampling according the pair BS probabilities is performed. 100
independent MCMC chains where performed, each starting with an
independently chosen random ordering. The length of each MCMC chain
consisted of 10100 pair-exchange trial steps according to (14). During the last
100 steps of each MCMC chain, configurations were stored, i.e., the initial 10000
steps are for equilibration. From these 10000 stored orderings, the set S of the
100 orderings exhibiting the highest pair BS probabilities was taken and the
average entries, now using the true maximum likelihoods of these configurations,
were obtained via (10).

triplets An MCMC sampling according the triplet BS probabilities (12) is performed, in

an equivalent way as for the pair BS probabilities. All parameters were the same
and the analysis was performed in the same way. Thus, everything was the same,
except that the pair BS probabilities were replaced by the more demanding
triplet BS probabilities.

full In a similar way an MCMC sampling with the full maximum likelihoods was
performed. Here only 10 independent runs starting with random orderings were
done. Note hat in the limit of infinite long simulation time, each of such an
MCMC chain should yield the true expectation values (9). Nevertheless, for a
fair comparison, the length of the MCMC chains was chosen such that the full
simulation CPU time was slightly above two times the running time of the
MCMC simulation using the triplet BS probabilities. Since each MCMC step
involves a full O(p%) calculation of the maximum likelihoods, this means per
MCMC chains only 50 steps could be performed.

exact The set S consisted only of the original ordering of nodes which was used

generate the data. Thus, only one single O(p®) maximum likelihood computation
has to be performed. This usually yielded the best estimates of the parameters.
Clearly, in true experiments, this ordering is not available.

In Fig (3] the resulting average values for the fraction np,q of incorrectly estimated
edge weights is shown as a function of the relative number r/p of single-node
interventions. One can observe that with increasing number of interventions, the
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quality of the averaged weight estimate increases. This is especially true for the range
r < p where the number of interventions is smaller than the number of nodes in the
DAG. For r > p the quality of the averaged estimates increases only slightly.

0.5
p=20 nodes
04 L N=200 experiments
full Qtyip) —
i pairs =+ |
- 03 triplets =
£ d exact =
02 % 1
@ o ¥ 4
0.1, o, t. R
0 T'f--r-w---?fﬁﬁééﬁ
0o 1 2 3 4 5 6 7 8 9
rip

Fig 3. Topological errors. Average fraction ny,q of incorrectly estimated edge
weights as a function of the number of interventions r per node. The data was
generated for 1000 randomly generated DAGs of size p = 20 nodes. The results are
obtained using four different sampling approaches using the true maximum likelihoods
(full), the pair BS probabilities (pair), the triplet BS probabilities (triplet) and using
just the exact ordering of nodes of the DAGs. The running time for the sampling
using the true maximum likelihoods was restricted to two times the CPU time of the
triplet sampling.

Also one can observe that the full sampling, due to the limited number of MCMC
steps performed, is the worst approach, except for a very small number of
interventions, where the estimates are bad anyway. Furthermore, the quality of the
estimates is much better when using the triplet probabilities as compared to the pair
probabilities. Still, one cannot reach the quality of the estimate which we obtained
when using the single true ordering. Thus, the result from the true ordering
constitutes a lower limit for what is possible using sampling.

As mentioned already, the details of the results for ny,q depend on the choice of
the threshold values wg and wy. For this reason we determined the ROC for whether a
weight is considered non-zero or not. For this purpose we used a simple thresholding,
i.e., a weight for edge i, j is considered non-zero if is estimate exceeds a threshold
W; j > wa. Thus, for a large threshold value, only few weights will be considered as
nonzero, while for a small value of wy many weights will be considered as non-zero.
Since we know the weights used to generate the data, we know those edges which are
correctly identified as being non-zero, i.e., the number of true positives Npos, as well as
the number of incorrectly as being non-zero identified edges, the false positives Niase.
For the corresponding normalized rates npos = Npos/(p(p — 1)) and
Nealse = Niatse/ (P(p — 1)), the function npes(Nfaise) can be obtained by varying wy. This
is the actual ROC curve. The steeper it grows for small values of ng,jse, i-€., the more
true positives are found at the cost of accepting false negative estimates, the better is
the determination of the non-zero edge weights. Thus, the area Aroc under the ROC
(AUROQC) is a measure for the quality of the estimate. Since the AUROC is a number
obtained via the variation of the threshold ws it has the advantage of being
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parameter-free. Due to the normalization, the AUROC is bounded by one, which is the
optimum case of finding all true-positive non-zero weights without false-positive ones.
In Fig[4lthe AUROC is shown for the same data of the p = 20 complete DAGs.
Clearly, with increasing number r of interventions, the AUROC grows. The increase is
strongest for values r < p, beyond this point the increase in the quality of the
estimates is much smaller. One can also observe that again the triplet-based sampling
outperforms the pair-based sampling. Also, the sampling using the true maximum
likelihoods, restricted to about two times the numerical effort of the triplet-based
approach, is better for about r < 0.8p but worse for r > 0.8p, confirming the previous

results.
1r .. _L ; )L( ; ;‘ % ; % ; * i‘
- x x %
- x
%
PSPPSR EED
09 | /% .
l,‘i
@) e .
2 Px triplets
< i x pairs >
0.8 i g 1
ﬁx p=20 nodes
= N=200 experiments
0.’7 Il Il Il Il Il

Fig 4. AUROC. Area Aroc under ROC curve (AUROC) for estimating non-zero
edge weights as a function of the number of interventions r per node. The results are
obtained using three different sampling approaches using the true maximum
likelihoods (full), the pair BS probabilities (pair), and the triplet BS probabilities
(triplet). The running time for the sampling using the true maximum likelihoods was
restricted to two times the CPU time of the triplet sampling.

We also considered diluted DAGs. In Fig[5, the number nyp.q of strongly
incorrectly-estimated edge weights is shown as a function of relative number r/p of
interventions for the case of diluted DAGs which exhibit one average ¢ = 6 neighbours,
which is less than one third compared to the case of the complete graphs. Here, the
results of the pair and triplet-based sampling approaches are much closer to each
other, but the general trend remains, showing that the triplet-based sampling
outperforms the pair-based sampling, and the full likelihood-based sampling for a
comparable numerical effort.

The facts that the results of the pair and triplet-based approaches are closer to
each other can be some expected, because the effective number of parameters to be
estimated is smaller, thus the corresponding likelihoods or probabilities will be closer
to each other. Thus, we also studied larger DAGs with p = 50 nodes. Here we
generated N = 500 experimental outcomes per node for each DAG. For the MCMC
sampling we used again 100 independent runs for the pair-based and the triplet-based

sampling, 10 independent runs for the sampling based on the true maximum
likelihoods £y,ax. For the former two, we used 15100 MC steps for equilibration and
100 steps for measurement, for each of the independent runs. For the sampling based
on pay, due to its expensive O(p®) computation, we could perform only 25 MCMC
steps in order to consume about two times the CPU time needed for the triplet-based
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Fig 5. Topological errors for diluted DAGs. For a diluted graph with p =20
nodes: Average fraction npaq of incorrectly estimated edge weights as a function of the
number of interventions r per node. The results are obtained using four different
sampling approaches using the true maximum likelihoods (full), the pair BS
probabilities (pair), the triplet BS probabilities (triplet) and using just the exact
ordering of nodes of the DAGs. The running time for the sampling using the true
maximum likelihoods was restricted to two times the CPU time of the triplet sampling.

sampling.

The corresponding results of np.q(r/p) for complete graphs are shown in Figl6!
Here the differences between the approaches are indeed larger compared to the p = 20
case, but the general trend is confirmed that the triplet-based approach outperforms
the pair-based approach, which in turn outperforms the exact sampling. The results
when just using the original causal ordering form again a lower bound on what can be
achieved for npag.

Greedy approach

Finally, to allow for a comparison of the approaches from a different perspective, we
consider the case where we do not aim at estimating parameters of the model, e.g., the
weights of the causal interactions. Instead we focus on the estimation of the causal
ordering itself which was used to numerically generate the data. This is a much harder
task. One approach could be to enumerate all orderings and take that one exhibiting
the largest maximum likelihood /.« as an estimate of the correct ordering. This
represents a double-nested optimization: For each given ordering, the exact maximum
likelihood is obtained in a straightforward way as explained in Section

‘Estimating model parameters’. This has to be repeated for all possible orderings.
Thus it would require an numerical effort O(p!) for system consisting of p nodes, i.e.
more than exponentially.

This is not feasible for systems beyond exhibiting few nodes. Therefore, we follow a
different approach here. We apply a greedy construction of an estimate for the true
ordering.

For this purpose, we again use the pair-wise and the triplet-wise probabilities,
respectively. This works as follows: We initialize the ordering with the a single pair
(4,4) of nodes, for the pair-based approach, or the triplet (i, j, k) of nodes, for the
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Fig 6. Topological errors for larger complete DAGs. Average fraction np,q of
incorrectly estimated edge weights as a function of the number of interventions r per
node for complete graph of p = 50 nodes. The results are obtained using four different
sampling approaches using the true maximum likelihoods (full), the pair BS
probabilities (pair), the triplet BS probabilities (triplet) and using just the exact
ordering of nodes of the DAGs. The running time for the sampling using the true

maximum likelihoods was restricted to two times the CPU time of the triplet sampling.

triplet-based approach, which exhibits the largest value of pair preference m; ; or the
largest triplet preference p; j 1, respectively. Next, iteratively nodes are included in the
ordering, one-by-one, such that the resulting combined BS probability, evaluated
according to (12) or (15), respectively, is largest. The construction is finished when a
full ordering of length p is obtained. This means in each step, one chooses among O(p)
nodes and O(p) insertion positions, i.e., one considers O(p?) choices. Also, like in the
MCMC steps, one has to consider O(p) terms when evaluation the influence of on the
pair-wise likelihood for each extension of the ordering. Similarly, for the triplet-based
greed approach, each insertion choice requires the calculation of O(p?) factors. This
leads to an overall running-time of O(p3) for the pair-based and O(p*) for the
triplet-based greedy approaches.

To evaluate the resulting ordering, we compared it to the original ordering which
was used to generate the data, while again varying the number of interventions in the
same way as before. For the comparison, we used Kendal’s tau-distance K, which is
defined for two orderings o, o’ as the number of pairs of nodes which appear in
different relative orders in the two orderings.

K(o,o'):|{{i,j}|oi<0j/\0;»>0;}| (20)

Note that Kendal’s tau distance is also called bubble-sort distance because it states the
number of elementary sorting swaps to arrange one ordering in the order of the other
given ordering. The maximum possible value is p(p — 1)/2 for p elements.

In Fig[7/the average of K is shown for complete DAGs with p = 20 nodes as a
function of the number r of interventions. Here a larger (quite unrealistic) number of
N = 1000 experiments is numerically performed. This allowed us to change the
number 7 of interventions in a very large range such that we could also access the
region were the greedy approach actually determines the true ordering with high
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probability. One observes that indeed when increasing the number of interventions,
the greedy orderings resemble the original DAG ordering more and more. Compared
to the maximum value p(p — 1)/2 = 190, the orderings found by the greed approaches
are quite similar to the true ordering. Interestingly, as seen in the inset of Fig|7, for
about O(50) interventions, the greedy approaches finds the true ordering, among

20! =~ 2 x 10'® ones, in more than half of all cases! This is in particular striking,
because apparently the numerical effort (O(p?) or O(p*)) as well as the number of
interventions (linear) appears to grow only polynomially with the number of nodes.
Nevertheless, for any value of r, the triplet-based greedy approach clearly outperforms
the pair-based approach significantly. This confirms the result found above using the
MCMC sampling.
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Fig 7. Kendall’s tau. Average Kendall’s 7 distance K to the original ordering for
ordering obtained via applying the greedy approach for pairs and triplet
Babington-Smith probabilities. The average is obtained over 1000 DAGs of size

p = 20, while varying the number r of interventions performed within the numerically
generated measurement data. The inset shows the frequency Py that the original
DAG ordering is found, i.e., the frequency that K = 0.

Summary and Discussion

To summarize, we studied the estimation of causal orderings and corresponding
parameters in sampled data using interventions. In particular we compared pair-wise
Babington-Smith sampling, which was discussed before [7] with triplet-wise sampling
which we introduced in this work. All results show a much better performance for the
triplet sampling approach. When limiting the numerical effort to about two times the
running time of the triplet sampling, a sampling using the full maximum likelihood
turned out to be much worse than both pair- and triplet-wise sampling.

These results were confirmed for various cases: for data from actual biological
measurements as well as for artificial data generated in a controlled way for a
DAG-based Gaussian causal model. We studied small and larger DAGs, as well as
completely connected and diluted ones. The general result stays also the same
independently of whether one compares the estimated weight parameters directly, uses
thresholding to find correct estimates, or performs an ROC analysis of the estimated
nonzero weights. Also when restricting the analysis to just the prediction of the
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orderings, the triplet approach turns out to be much more efficient than the pair
approach.

Therefore, the triplet-based approach appears to be well balanced: It is
computationally efficient enough such that long MCMC chains can be easily generated,
for systems large enough for practical applications. This would be impossible when
using a sampling based on the full likelihood, except for small systems. On the other
hand, in combination with the final computation of the true maximum-likelihood
estimators for a comparable small subset of “best” configurations, the triplet approach
allows for accurate results, much better than the pair-based approach.

In principle, one could also try a similar approach based on quadruplets of nodes.
Nevertheless, in contrast to when moving from pairs to triplets, we believe that this
will not result in a considerable increase of accuracy. One reason, e.g., is that for the
study of the Rosetta data set, the accuracy using the triplet sampling was comparable
to the exact evaluation for a finite subset of orderings with the hightest exact
likelihoods (see Fig[2). One the other hand, the numerical effort for evaluating the
Metropolis criterion in each MCMC step would increase to O(p?) for a
quadruplet-based algorithm.Thus, the triplet approach seems to be multi-criterion
(accuracy, numerical demand) efficient within the hierarchy of approaches based on
n-nodes sub graphs.

On the other hand, for further applications, it might be fruitful to perform a
MCMC chains which consist of mixture of triplet-wise (first part of chain) and full
maximum-likelihood sampling (last part). But this is beyond of the scope of the
current study.

Furthermore, it could be interesting to study more thoroughly the point » = p
where most results exhibit a notable change of characteristics. It could be interesting
whether this change corresponds to a kind of information-driven phase transition,
similar to neural networks where the memory of a network changes if the amount of
data to be learned is increased beyond a threshold. We have already started research
in this direction.
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