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Abstract 1

Triplet ordering preferences are used to perform Monte Carlo sampling of the posterior 2

causal orderings originating from the analysis of gene-expression experiments involving 3

observation as well as, usually few, interventions, like knock-outs. The performance of 4

this sampling approach is compared to a previously used sampling via pairwise 5

ordering preference as well as to the sampling of the full posterior distribution. For a 6

fair comparison, the latter approach is restricted to twice the numerical effort of the 7

triplet-based approach.This is done for artificially generated causal, i.e., directed 8

acyclic networks (DAGs) and for actual experimental data taken from the ROSETTA 9

challenge. The sampling using the triplets ordering turns out to be superior to both 10

other approaches. 11

Introduction 12

For the last 10 years, high-throughput omics data have raised many methodological 13

challenges in system biology. Among these challenges, gene-regulation networks have 14

received a great deal of attention. In this context, Gaussian models like the Graphical 15

lasso [1] are very popular for inferring gene regulation networks. Another popular 16

approach, following the work of Pearl [2], focuses on causal Gaussian Bayesian 17

networks and performs intervention calculus [3] proving itself to be able to retrieve 18

bounds on causal effects and thus to partially determine causal relationships using 19

only observational data [4]. In this paper we focus on estimating causal Bayesian 20

networks in the presence of arbitrary mixtures of observational and interventional 21

data [5, 6], i.e., wild-types and knock-out/down experiments with possibly multiple 22

interventions within each experiment. 23

As explained in [5] estimating the underlying DAG (Directed Acyclic Graph) 24

structure of a causal Bayesian network is equivalent to finding of the so-called causal 25

ordering between the genes of interest. In general, this causal ordering is unknown and 26

belongs to a very large ordering space (p! possible orderings for p genes) which cannot 27

be explored exhaustively. The solution suggested by [5] consists in sampling causal 28

orderings in the posterior distribution using Markov chain Monte-Carlo (MCMC) 29

simulations. 30

At each MCMC step, a new causal ordering is sampled according to a proposal 31

distribution (ex: Mallows distribution) and the maximum likelihood of the model must 32

be computed given the new ordering before to accept/reject the sampled ordering. 33

Thanks to the closed formulas developed in [5], this likelihood maximization can be 34
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done exactly and efficiently but requires an computational effort which still grows with 35

the sixth power of the number p of interacting objects (ex: genes). Thus, each single 36

Monte Carlo step is computationally rather expensive. 37

Mathematically a proper MCMC is guaranteed to converge to the correct sampling, 38

but only on diverging time scales. Given that for practical applications one only has a 39

finite amount of computational resources available, only small networks can be treated 40

in this way. For this reason, an approximation based solely on pair-wise probabilities 41

of ordering preference has recently been introduced [7]. This resulted in a considerable 42

increase of efficiency, but led in many cases to less reliable parameter estimates. 43

In this work, we extend this approximation to triplet-wise probabilities. We show 44

that this results in a strongly increased accuracy with respect to the pair-wise 45

approach. Also we show that, when allocating a comparable amount of the numerical 46

resources for the two algorithms, the triplet approach outperforms the sampling based 47

on the full maximum likelihoods. Thus, the triplet algorithm is well balanced: it is 48

sophisticated enough to allow for a rather accurate sampling, while it is 49

computationally cheap enough to be applicable in practice. 50

The reminder of this work is organized as follows: In Section “Model” we introduce 51

the model we use to analyze causal relationships and state all algorithms we have 52

applied. In Section “Results ” we introduce the quantities we have measured to 53

compare the different approaches, and we present the corresponding results. We 54

conclude in Section “Summary and Discussion” with a summary and discussion. 55

Model and algorithms 56

Model 57

We consider directed graphs G = (V,E) with p nodes i ∈ V . Pairs of nodes i, j are 58

connected by directed edges (i, j) ∈ E and carry a weight wi,j . A nonzero weight 59

indicates a causal relationship. We assume that the graph is acyclic, i.e., a directed 60

acyclic graph (DAG). Without loss of generality, we can assume that the nodes are 61

ordered according the causal relationships, i.e., wi,j > 0 ⇒ i < j. This means within 62

the following random process only nodes i can have causal effects on nodes j if i < j: 63

On each node j = 1, . . . , p a Gaussian random variable Xj is placed given by 64

Xj = mj +
∑

i<j

wi,jXi + ǫj with ǫj ∼ N(0, σ2
j ) . (1)

The term ǫj models fluctuations of the random variables, e.g., for 65

fluctuations of gene expression. Thus, the parameters m = (m1, . . . ,mp) and 66

σ = (σ1, . . . , σp) represent the mean values and the standard deviations if all 67

interactions were absent. In the following an experiment corresponds to one realization 68

of the random process (1). 69

Within the model is furthermore possible to perform interventions on the nodes, 70

i.e., within selected but arbitrary realizations of the process they are fixed to given 71

values instead of generated according to (1). In the DAG these values are uses as 72

inputs to the descendants when generating a realization of the process, i.e., performing 73

an experiment numerically [8]. 74

Estimating model parameters 75

Given are N experimental data points xk = (xk
1 , . . . , xk

p) (1 ≤ k ≤ N) assumed to be 76

generated according tõ(1). The set of nodes subject to interventions on experiment k 77

is denoted by Jk, respectively (Jk = ∅ means no intervention for the k’th experiment). 78
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We denote by Kj = {k|j 6∈ Jk} the experiments where there was no intervention on 79

node j and by Nj = |Kj | the number of times node j was not target of an intervention. 80

The log-likelihood of the joint experimental outcome given the parameters can be 81

written (see [5]) as: 82

ℓ(m, σ,W) =

−
log(2π)

2

∑

j

Nj −
∑

j

Nj log(σi) −
1

2

∑

j

1

σ2
j

∑

k∈Kj

(xk
j − xkWeT

j − mj)
2 . (2)

Note that we omit the dependence of ℓ on the data here for brevity of notation. 83

For the given N measurements, the parameters m̂, σ̂,Ŵ leading to the maximum 84

likelihood estimator (MLE) 85

ℓmax = ℓ(m̂, σ̂,Ŵ) = max
m,σ,W

ℓ(m, σ,W) (3)

can be obtained [5] in a straightforward way by the following procedure: First one 86

obtains for each experiment k = 1, . . . , N the measurements normalized with respect 87

to the experiments wherethere was no intervention on node j, for each node j: 88

yk,j = xk −
1

Nj

∑

k′∈Kj

xk′

. (4)

Next one solves the linear system of size p(p − 1)/2 89

∑

i′|i′<j

ŵi′,j

∑

k∈Kj

yk,j
i yk,j

i′ =
∑

k∈Kj

yk,j
i yk,j

j for i < j, 1 ≤ i, j,≤ N (5)

to obtain estimates ŵi,j of the weights for the MLE. Solving a linear system with 90

O(p2) variables takes O(p6) steps.From this solution one obtains, still just 91

following [5], estimates of the mean values 92

m̂j =
1

N j

∑

k∈Kj

(xk
j − xkŴeT

j ) (6)

and of the variances 93

σ̂j =
1

N j

∑

k∈Kj

(yk,j
j − yk,jŴeT

j )2 . (7)

Estimating the posterior distribution 94

So far, we have assumed that the causal ordering of the model is given by 95

o0 = (1, 2, . . . , p). In experimental situations, if the data was actually generated 96

according the DAG model, the ordering is most of the time unknown, i.e., all 97

estimates will depend on the ordering: ℓmax = ℓmax(o). for the general case, if the 98

data was note generated according to a DAG model, the modeling must involve many 99

orderings. Thus, in experiments and subsequent model estimation, one is actually 100

interested in either the ordering which maximises the MLE, or, alternatively, in 101

obtaining the posterior distribution involving all (or the dominant) orderings weighted 102

by the corresponding ordering-dependent MLEs. 103

Both can be obtained in principle by iterating over all p! possible causal orderings 104

o, i.e., permutations of the natural numbers 1, . . . , p. Each time one has to reorder the 105
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measurement data according this ordering, and obtaining the MLE (3) via solving (4), 106

(5), (6) and (7). Clearly, if p is too large, this enumeration is not possible any more. 107

One alternative approach is to use a Markov-chain Monte Carlo (MCMC) 108

simulation, where orderings o(t) according the likelihood exp(ℓmax(o)) are sampled, t 109

denotes the number of steps. A convenient approach to achieve this is the Metropolis 110

algorithm. Here, within each step, a trial order o′ is generated. For the present study, 111

we use local changes, i.e., an exchange of the order of two nodes with respect to the 112

current ordering o(t). The trial ordering is accepted, i.e., o(t + 1) = o′ with the 113

probability 114

pacc = min{1, exp[ℓmax(o
′) − ℓmax(o(t))]} . (8)

Otherwise, the trial ordering is not accepted and the current ordering kept for the next 115

time step, i.e., o(t + 1) = o(t).Note that for all simulations we performed (see below 116

for details), the empirical acceptance rate of these locally generated trial orderings was 117

below 0.5. The value of 0.5 is considered by rule of thumb as a good choice, balancing 118

a desired high rate of changing with a desired high acceptance rate. Therefore it would 119

not make sense to consider trial orderings which differ from the current ordering by 120

more than two exchanged positions, since this would increase the fluctuations and 121

therefore decrease the acceptance rate even more. 122

This type of sampling guarantees, in principle, if the Markov chain is long enough, 123

that the orderings are sampled according the desired posterior distribution. Note that 124

for the computation of the change ℓmax(o
′) − ℓmax(o(t)) of the log-likelihood one has 125

to recalculate the log-likelihood for the trial ordering o′ from scratch. Thus, each 126

MCMC Metropolis step takes O(p6) running time. 127

By starting with a random ordering o(0), performing a “long enough” MCMC 128

sampling and by discarding the “initial” part (allowing for equilibration), a sample set 129

S of orderings is obtained, which can be used to calculate averaged estimated 130

parameters, see Section “Calculation of averaged estimates”. 131

Calculation of averaged estimates 132

The aim is to study expectation values in ensembles defined by probabilities or 133

likelihoods P (o). Here we are interested in the true likelihoods P (o) ∼ eℓmax(o). Thus, 134

for any measured quantity A(o), where the estimate depends on the assumed ordering 135

o, the expectation value is given by 136

〈A〉 ≡
∑

o

A(o)P (o). (9)

Note that the measured quantities of interest are usually estimates which are obtained 137

from the maximum-likelihood calculation, e.g., the estimates of the weights obtained 138

from (5) or estimates of the variances (7), or any other derived values. 139

If only a finite set S of samples is given, averages can be obtained, approximating 140

the expectation values: 141

Â ≡

∑

o∈S A(o)P (o)
∑

o∈S P (o)
(10)

These estimates are most accurate if the process use to generate the sample set follows 142

the desired sampling P (o) ∼ eℓmax(o) as close as possible. Thus, the sample set S could 143

be generated by a MCMC sampling according to the true probabilities eℓmax , as 144

outlined in the previous section. In this way automatically orderings with high 145

contributions to (10) are preferentially generated. Note that since S is actually a 146

mathematical set, there will be no multiple occurrences of orderings in S. If one 147

allowed for multiple occurrence, then one would have to take simple arithmetic 148

averages instead of weighted ones as in (10). 149
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Anyway, here we work with sampling sets. The reason is that, alternatively, these 150

sets can be obtained by sampling according to different probabilities, which only aim 151

at approximating the true probabilities but are computationally much cheaper to 152

calculate. If the size of the set is suitably restricted, we used always |S| = 100, the 153

computationally expensive O(p6) full likelihood calculations have to be performed only 154

for a small number of (here) 100 samples. 155

The approximate probabilities we have used are introduced in the following section. 156

Pair and triplet probabilities 157

Instead of sampling the full posterior distribution, in [7] it was proposed to perform an 158

MCMC sampling from a different distribution, the Babington-Smith (BS) ordering 159

distribution [9, 10]. It is based on pair preferences πi,j (1 ≤ i 6= j ≤ p) with πi,j ∈ [0, 1] 160

and πi,j + πj,i = 1. The meaning is that within the desired ordering distribution in 161

any random ordering element i appears before j with this probability πi,j . The pair 162

preferences can be estimated from the experimental data with interventions by 163

considering all possible two-node graphs Gi,j ≡ ({i, j}, {(i, j)}) with the nodes i and j 164

and with exactly one directed edge (i, j). As above, for brevity of notation, we omit 165

the dependence of the pair preferences and any derived quantities on the data here. 166

Only the data values for the two nodes are considered 1. For each of the p(p − 1) 167

directed two-node graphs the log-likelihood ℓ
(2)
max(i, j) is obtained. The pair preferences 168

are then given by 169

πi,j =
exp(ℓ

(2)
max(i, j))

(exp(ℓ
(2)
max(i, j) + exp(ℓ

(2)
max(j, i))

. (11)

From the pair preferences, the BS probability of a full ordering o is obtained by 170

P (o|π) ∼
∏

i<j

πoi,oj
(12)

with a suitable normalization. The normalization is not needed here, since, first, we 171

only compare the (relative) values of (12) for different orderings. The corresponding 172

log-likelihoods are denoted as 173

ℓpair ≡ ℓpair(o) = log
∏

i<j

πoi,oj
. (13)

Second, we performed MCMC sampling of orderings using the Metropolis algorithm 174

according (12) where also only relative likelihoods are needed. This was done in an 175

equivalent way as above, only the true MLE is replaced by (13). Thus, starting again 176

from a random ordering o(0), we generated trial orderings o′ by exchanging the i’th 177

and the j’the entry in the current ordering. The new orderings are accepted with the 178

corresponding Metropolis probability. Note that one does not have to recalculate the 179

BS probability from scratch, since the change in probability is easier to obtain. The 180

Metropolis acceptance probability is given by 181

ppair
acc = min







1,
πoj ,oi

πoi,oj

∏

k|i<k<j

πoj ,ok
πok,oi

πoi,ok
πok,oj







. (14)

1In case of multiple interventions, we observed in test which are not contributing to the results

shown here that the overall performance of the sampling according pair preferences is somehow better

if data points with interventions on other nodes than i, j are not considered, respectively.
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This takes only O(p) steps compared to the O(p2) steps needed for the calculation of 182

the full probability. In particular it is much faster than computing the full likelihood 183

which takes O(p6) steps. 184

Naturally, when sampling according to (12) the distribution will be different but 185

somehow similar to sampling according the true likelihood. Thus, the final estimates, 186

like the weights, for the posterior distribution are obtained by keeping the nincl 187

samples with the highest Babington-Smith probabilities (12) in the sample set S. For 188

these orderings now the true MLE (3) is evaluated and used. This means, (10) is 189

applied for any kind of estimation or averaging, i.e. the Babington-Smith weights are 190

now used in this final averaging step. 191

In [7] it was found that this sampling approach is in some case similar accurate as 192

a full MCMC sampling as described in Sec. Estimating the posterior distribution, but 193

there are notable differences. Therefore it was proposed to maybe consider triplets 194

instead of pairs. 195

Thus, it is the purpose of the present work, to study this higher level 196

approximation of the true posterior distribution. Similar to the above defined pair 197

probabilities, we introduce triplet probabilities ρi,j,k ∈ [0, 1] such that 198

ρi,j,k + ρi,k,j + ρj,i,k + ρj,k,i + ρk,i,j + ρk,j,i = 1. These probabilities can be estimated 199

from the experimental data in a similar way as above, by considering all possible sub 200

graphs ({i, j, k}, {(i, j), (i, k), (j, k)}) with three nodes and corresponding edges. For 201

these sub graphs the corresponding MLE are obtained and suitably normalized, 202

equivalent to (11) to yield the triplet probabilities ρi,j,k. They can be used to 203

generalize the Babington-Smith probabilities of orderings to 204

P (o|ρ) ∼
∏

i<j<k

ρoi,oj ,ok
. (15)

Again, the normalization is not needed here. The corresponding log-likelihood is 205

denoted as 206

ℓtripl = log
∏

i<j<k

ρoi,oj ,ok
. (16)

We perform an MCMC sampling of orderings according these probabilities using the 207

Metropolis algorithm and trial ordering generated via swapping of pairs of elements. 208

For the calculation of the acceptance probabilities only the change in probability of 209

(15) has to be considered, which takes now O(p2) steps for such a swap. 210

Again, for all evaluation and estimations, the nincl = 100 highest-probability 211

samples with respect to the triplet probability are kept. For these samples the true 212

likelihood is obtained and used for all averaging processes according to (10). 213

Data sources 214

The new approach will be tested and compared to previous approaches using data 215

from biological applications as well for data generated my numerical simulations for 216

DAGs of different sizes. 217

For the latter one, we consider random DAGs with p nodes. For the edge weights, 218

each edge (i, j) with i < j receives independently a zero weight with probability 1 − q, 219

i.e., these edges are absent. With probability q each edge gets assigned an edge weight 220

which is drawn uniformly from the range [−1,−0.4] ∪ [0.4, 1]. Thus, these edge can be 221

distinguished very well from the absent edges with weight 0. Below, we use q = 1, i.e. 222

complete graphs, as well as diluted graphs with q = c/(p − 1), i.e., these graphs have 223

on average c neighbors. We used c = 6. Finally, for each DAG instance, for each node 224

i mean values mi = 1/2 are used and the variance values σi are drawn randomly 225

uniformly in the interval [0.01, 0.1]. We also performed some tests with other values 226
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and verified that our general conclusions do not all all depend on how the means and 227

the standard deviations are chosen. All simulations are performed for 1000 DAG 228

instances generated independently in this way. 229

Next, for each DAG instance, a certain number of N measurements is performed, 230

where the measurement vectors xk (k = 1, . . . , N) are generated according to (1). 231

Typically, for a DAG of p nodes, we generated N = 10p measurement vectors, other 232

cases are stated when it applies. We used a variable number of interventions to 233

investigate how the different sampling approaches respond to that variation. Note that 234

the scheme exhibited in Section “Estimating model parameters” allows for multiple 235

intervention. Nevertheless, since we are interested in comparing different sampling 236

approaches here, we present for simplicity just single interventions which are 237

systematically done the first r (r ≤ N) experiments of each set of experiments. We 238

applied a systematic manner, such that for all nodes at least ⌊r/p⌋ interventions are 239

performed while for r − p⌊r/p⌋ nodes one intervention more, i.e., ⌈r/p⌉ interventions 240

are performed. This sums up to r interventions. For each intervention on node j, we 241

set Xi = 0, respectively, corresponding to a knock-out. 242

The advantage of using artificially generated data is that the actual model used to 243

generate the data is available. Therefore all estimated and averaged values, obtained 244

using a sampling via the true likelihoods as well as using a sampling based on pair and 245

triplet probabilities, can be compared to the actual model parameters. This allows for 246

a good comparison of the different sampling approaches. In particular for a varying 247

number of network sizes, even large ones, and for varying number of interventions. 248

On the other hand, the DAG models might not represent all subtleties of biological 249

applications. Thus, to allow for a different viewing angle on the different approaches, 250

we applied also data obtained from biological measurements. Here, we used the 251

Rosetta Compendium data set [11] which contains gene expression data on yeast. It 252

contains data from experiments on mutants with interventions (knock-out or 253

know-down) for single as well as multiple interventions. Also a large amount of data 254

from wild-type experiments (no interventions) is contained. The database can be 255

accessed freely at the location: http://arep.med.harvard.edu/ExpressDB. We used 256

in particular a sub network taken from [12] consisting of p = 17 genes (STT2, TEC1, 257

NDJ1, KSS1, YLR343W, YLR334C, MFA1, STE6, KAR4, FUS1, PRM1, AGA1, 258

AGA2, TOM6, FIG1, FUS3, YEL059W) and data for N = 300 experiments. For this 259

set of genes, no knowledge about any possibly underlying network structure or 260

network parameters is assumed while performing the numerical tests here. Only the 261

actual experimental outcomes taken from the database are used. Thus, the estimated 262

parameters generated using the true likelihood form the set of reference values here to 263

perform a comparison of the different approaches. For this purpose, to allow for an 264

exact enumeration, avoiding sampling errors for the reference values, we selected [7] a 265

sub network consisting of p = 8 genes, namely STT2, TEC1, NDJ1, KSS1, YLR343W, 266

YLR334C, MFA1, STE6. Note that these genes form a coherent sub network in the 267

network estimated in [12]: with respect to the full 17 nodes network, only one single 268

interaction involving a node of the sub network STE6 (to FUS1) is missing for this 269

selected subset. For these 8 genes, four of the experiments contained single node 270

interventions, namely knock-downs on nodes KSS1, SST2, and twice on TEC1. 271

Results 272

To evaluate and compare the power of the Babington-Smith pair and triple 273

approaches, we applied them to various data obtained from DAG ensembles of 274

different graph sizes as well as to data obtained from biological applications. 275

First, as shown in Section “Direct comparison”, we applied the calculation of the 276
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Babington-Smith pair and triple likelihoods to a single graph, where we enumerated 277

all orderings and compared the result to the full likelihoods. In Section 278

“Application to Rosetta Compendium”, the results of the application of the MCMC 279

sampling to the Rosetta data set are shown. Next, in Section 280

“Evaluation for random DAGs”, MCMC sampling for all three types of likelihoods, 281

respectively, were applied to data obtained for different random DAGs of size p = 20 282

and p = 50 nodes. Finally, in Section “Greedy approach”, the results of estimating the 283

most-likely orderings via greedy algorithms based on pair- and triplet-probabilities for 284

random DAGs are shown. 285

Direct comparison 286

First, we evaluated the likelihood computation for a single randomly picked realization 287

of a complete (q = 1) DAG with p = 8 nodes. We performed N = 100 experiments, 288

among those r = 4 with single-node interventions. For this sample, we enumerated all 289

p! = 40, 320 orderings, and for each ordering we evaluated the true likelihood (2) 290

together with the pair-wise Babington-Smith log-likelihood (13) and the triplet-wise 291

BS log-likelihood (16). 292

In the left part of Fig 1, for each ordering the pair-wise Babington-Smith likelihood 293

is shown as a function of the full likelihood. This means a scatter plot of p! orderings 294

of points (ℓmax(o), ℓpair(o)) is shown. The ordering omax leading to the maximum full 295

likelihood appears to the right of the scatter plot, with ℓmax(o
max) ≈ 1053. This 296

ordering will dominate any average according to (10). Obviously, this ordering does 297

not exhibit the maximum pair-wise BS likelihood, which is ℓpair ≈ −7, obtained by an 298

ordering which true log-likelihood is about ℓmax ≈ 1016. The horizontal line in the 299

plot indicates the pair-wise BS log-likelihood ℓpair of the ordering omax. A 300

considerable amount of all orderings, actually more than 2700, are located above this 301

line. Thus, they exhibit a value of ℓpair which is higher than for the ordering omax. 302

Therefore, when performing an MC sampling according the pair-wise likelihoods (13) 303

plus evaluating the true likelihoods for averaging, one must generate a very large 304

sample if the true maximum-likelihood ordering is to be included. 305

The corresponding result considering triple-wise BS likelihoods ℓtripl is shown in the 306

right part of Fig 1 in the same way. Here, the sequence exhibiting the maximum value 307

of ℓtripl ≈ −62 has a true log-likelihood of ℓmax ≈ 1040, which is much closer to the 308

sequence omax which has (still) ℓmax(o
max) ≈ 1053. Only about 100 sequences exhibit 309

a triple-wise BS likelihood larger than for omax (indicated again by the horizontal line). 310

This means an MC sampling using the triplet-wise BS likelihoods allows for much more 311

accurate estimation of model parameters with respect to the true likelihoods. This can 312

be seen also in the next section, where an actual biological application is considered. 313

Application to Rosetta Compendium 314

For the experimental data points of the Rosetta Compendium for p = 8 nodes and 315

N = 300 experiments with four interventions (see Section “Data sources” for details), 316

we obtained the averages of the estimated interaction parameters according to (10). 317

One can either estimate the direct causal effects, i.e., the entries wij of the weight 318

matrices W. Here, we concentrated on the matrice 319

L = 1 + W + W2 + . . . + Wp−1 = (I − W)−1, (17)

which carry the total (direct and indirect) causal effects [7] mediated through chains of 320

causal effects (note that Wp = 0 because of the DAG structure). Thus, for all cases, 321

we estimated the 8 × 8 = 64 entries of the matrix L. 322

The sampling was performed in four different ways: 323
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Fig 1. Log-likelihood comparisons. Left: Scatter plot of the true log-likelihood (2)
versus the pair-wise log likelihood (13) for data generated for an DAG of size p = 8.
All 8! orderings were enumerated and the pairs of true likelihood and pair probability
plotted. The horizontal line indicates the pair-wise BS log-likelihood for that ordering
which exhibits the maximum true likelihood. Right: The same but for true
log-likelihood (x-axis) versus triplet log-likelihood (16). Note the different scales of the
pair-wise and triple-wise log-likelihoods are only due to the missing normalization of
likelihoods.

1. All p! = 40320 orderings were enumerated and the true expectation value for all 324

64 matrix entries was obtained via (9). 325

2. To estimate the influence of a finite sample size, a subset S of 1000 orderings 326

with the highest true likelihoods eℓmax(σ) was taken. For this subset the averages 327

of estimates of the 64 matrix entries were obtained via (10). 328

3. An MCMC sampling according the pair BS probabilities (12) was 329

performed.1000 independent MCMC chains where performed, each starting with 330

an independently chosen random ordering. The length of each MCMC chain 331

consisted of 100 pair-exchange trial steps according to (14). From these orderings, 332

the set S of the 1000 orderings exhibiting the highest pair BS probabilities was 333

taken and the average estimates of the matrix entries were obtained via (10). 334

4. An MCMC sampling according the triplet BS probabilities (12) is performed, in 335

an equivalent way as for the pair BS probabilities. All parameters were the same 336

and the analysis was performed in the same way. Thus, everything was the same, 337

except that the pair BS probabilities were replaced by the more demanding 338

triplet BS probabilities. 339

In Fig 2 the averages obtained from the approaches 2-4 are compared to the exact 340

expectation values obtained from the first approach. For a perfect estimation of the 341

averages, all data points would lie on the diagonal. Clearly deviations are visible, 342

which is to be expected since the averages are only approximations of the expectation 343

values. The main result is that the deviations are much stronger for the sampling 344

using the pair probabilities. On the other hand, for the triplet probabilities, the 345

scatter of the data points is comparable to the scatter of the exact sampling of 346

restricted size. This shows that the sampling of a finite size set of ordering samples is 347

already close to perfect when using the triplet probabilities. 348

In the inset of Fig 2 we also show the mean-squared errors e2 = (Âa − 〈A〉)2, where 349

A are the different matrix entries Lij and ’a’ denotes the algorithm (a= pairs, triplets, 350
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Fig 2. Comparison on the Rosetta Dataset. Comparison of the estimations of
the 64 entries of the total causal effects matrix L using the exact expectation values
〈Lij〉 (from a complete enumeration) and estimates L̂ij obtained from the three
approaches: pair-wise sampling, triplet-wise sampling, and a subset of the exact
sample. For each matrix entry, the average value obtained via one of the three
approaches is shown, respectively, as a function of the exact expectation value. The
data is taken from the module Rosetta data set (8 genes). The inset shows the
mean-squared error e2 between averaged entry and exact expectation value, as a
function again of the exact expectation values.

subset). The above findings are supported by MSE values, which are comparable for 351

triplets probability and subset (exact probability) sampling, but much larger for the 352

pair probability sampling. 353

Evaluation for random DAGs 354

Next, we show results for numerically generated data for an ensemble of DAGs. This 355

has the advantage, that due to the average the influence of fluctuations is negligible 356

when comparing the efficiencies of the different sampling approaches. Furthermore, we 357

were able to perform the simulations for different DAG sizes, here we studied DAGs 358

with p = 20 and with p = 50 nodes. Also, we could vary the number r of interventions 359

over a wide range to get a grip on how this influences the performance of the different 360

algorithms. Finally, we could compare the estimated parameters with the original 361

values used to generate the data. Thus, to measure the efficiency, we consider all edge 362

weights wi,j , where wi,j might be zero because it does not match the causal ordering, 363

or because the causal interaction is just absent (in the case of edge probability q < 1). 364

This is done in the following way: From each sampling, we obtain averaged estimated 365

edge weights ŵi,j (i, j = 1, . . . , p) according to (10). Now, we count the “bad” 366

estimates of the edge weights as follows: 367

δbad(i, j) =

{

Θ(|ŵi,j | − w0) if wi,j = 0

Θ
(∣

∣

∣

wi,j−ŵi,j

ŵi,j

∣

∣

∣
− w1

)

if wi,j 6= 0
. (18)

Θ(x) denotes the threshold function which is Θ(x) = 0 for x ≤ 0 and Θ(x) = 1 for 368

x > 0. Thus, for a weight which is zero in the original DAG used to generated the 369

data, the averaged estimate is counted as bad if its absolute value exceeds a threshold 370
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value w0. For an edge with nonzero weight of the original DAG the average estimate is 371

counted as bad, if the relative deviation of the average estimated weight and the 372

original weight exceeds threshold value w1. We used w0 = 0.2 and w1 = 0.5. In 373

general, details of the results might depend on the actual values of w0 and w1, but we 374

verified that the principal trends, with respect to which sampling approach performs 375

better, remain the same. To exclude the influence of the actual threshold values, we 376

also performed an Receiver Operator Characteristics (ROC) analysis, see below. We 377

iterated over all edges, i.e. measured 378

nbad =
1

p(p − 1)

∑

i6=j

δbad(i, j) . (19)

The results we show are an average over all 1000 random DAGs. 379

The measurement data was obtained for N = 10p experiments, i.e., N = 200 380

experiments for p = 20 nodes and N = 500 experiments for p = 50. We performed 381

interventions for a varying number 0 ≤ r ≤ N of experiments as explained in Section 382

“Data sources”. The different sets S of sampled orderings, for which the averages ŵi,j 383

were calculated using (10), were obtained via four different sampling approaches, 384

respectively: 385

pairs An MCMC sampling according the pair BS probabilities (12) is performed. 100 386

independent MCMC chains where performed, each starting with an 387

independently chosen random ordering. The length of each MCMC chain 388

consisted of 10100 pair-exchange trial steps according to (14). During the last 389

100 steps of each MCMC chain, configurations were stored, i.e., the initial 10000 390

steps are for equilibration. From these 10000 stored orderings, the set S of the 391

100 orderings exhibiting the highest pair BS probabilities was taken and the 392

average entries, now using the true maximum likelihoods of these configurations, 393

were obtained via (10). 394

triplets An MCMC sampling according the triplet BS probabilities (12) is performed, in 395

an equivalent way as for the pair BS probabilities. All parameters were the same 396

and the analysis was performed in the same way. Thus, everything was the same, 397

except that the pair BS probabilities were replaced by the more demanding 398

triplet BS probabilities. 399

full In a similar way an MCMC sampling with the full maximum likelihoods was 400

performed. Here only 10 independent runs starting with random orderings were 401

done. Note hat in the limit of infinite long simulation time, each of such an 402

MCMC chain should yield the true expectation values (9). Nevertheless, for a 403

fair comparison, the length of the MCMC chains was chosen such that the full 404

simulation CPU time was slightly above two times the running time of the 405

MCMC simulation using the triplet BS probabilities. Since each MCMC step 406

involves a full O(p6) calculation of the maximum likelihoods, this means per 407

MCMC chains only 50 steps could be performed. 408

exact The set S consisted only of the original ordering of nodes which was used 409

generate the data. Thus, only one single O(p6) maximum likelihood computation 410

has to be performed. This usually yielded the best estimates of the parameters. 411

Clearly, in true experiments, this ordering is not available. 412

In Fig 3 the resulting average values for the fraction nbad of incorrectly estimated 413

edge weights is shown as a function of the relative number r/p of single-node 414

interventions. One can observe that with increasing number of interventions, the 415
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quality of the averaged weight estimate increases. This is especially true for the range 416

r < p where the number of interventions is smaller than the number of nodes in the 417

DAG. For r > p the quality of the averaged estimates increases only slightly. 418
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Fig 3. Topological errors. Average fraction nbad of incorrectly estimated edge
weights as a function of the number of interventions r per node. The data was
generated for 1000 randomly generated DAGs of size p = 20 nodes. The results are
obtained using four different sampling approaches using the true maximum likelihoods
(full), the pair BS probabilities (pair), the triplet BS probabilities (triplet) and using
just the exact ordering of nodes of the DAGs. The running time for the sampling
using the true maximum likelihoods was restricted to two times the CPU time of the
triplet sampling.

Also one can observe that the full sampling, due to the limited number of MCMC 419

steps performed, is the worst approach, except for a very small number of 420

interventions, where the estimates are bad anyway. Furthermore, the quality of the 421

estimates is much better when using the triplet probabilities as compared to the pair 422

probabilities. Still, one cannot reach the quality of the estimate which we obtained 423

when using the single true ordering. Thus, the result from the true ordering 424

constitutes a lower limit for what is possible using sampling. 425

As mentioned already, the details of the results for nbad depend on the choice of 426

the threshold values w0 and w1. For this reason we determined the ROC for whether a 427

weight is considered non-zero or not. For this purpose we used a simple thresholding, 428

i.e., a weight for edge i, j is considered non-zero if is estimate exceeds a threshold 429

ŵi,j ≥ w2. Thus, for a large threshold value, only few weights will be considered as 430

nonzero, while for a small value of w2 many weights will be considered as non-zero. 431

Since we know the weights used to generate the data, we know those edges which are 432

correctly identified as being non-zero, i.e., the number of true positives Npos, as well as 433

the number of incorrectly as being non-zero identified edges, the false positives Nfalse. 434

For the corresponding normalized rates npos = Npos/(p(p − 1)) and 435

nfalse = Nfalse/(p(p− 1)), the function npos(nfalse) can be obtained by varying w2. This 436

is the actual ROC curve. The steeper it grows for small values of nfalse, i.e., the more 437

true positives are found at the cost of accepting false negative estimates, the better is 438

the determination of the non-zero edge weights. Thus, the area AROC under the ROC 439

(AUROC) is a measure for the quality of the estimate. Since the AUROC is a number 440

obtained via the variation of the threshold w2 it has the advantage of being 441
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parameter-free. Due to the normalization, the AUROC is bounded by one, which is the 442

optimum case of finding all true-positive non-zero weights without false-positive ones. 443

In Fig 4 the AUROC is shown for the same data of the p = 20 complete DAGs. 444

Clearly, with increasing number r of interventions, the AUROC grows. The increase is 445

strongest for values r < p, beyond this point the increase in the quality of the 446

estimates is much smaller. One can also observe that again the triplet-based sampling 447

outperforms the pair-based sampling. Also, the sampling using the true maximum 448

likelihoods, restricted to about two times the numerical effort of the triplet-based 449

approach, is better for about r < 0.8p but worse for r > 0.8p, confirming the previous 450

results. 451
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Fig 4. AUROC. Area AROC under ROC curve (AUROC) for estimating non-zero
edge weights as a function of the number of interventions r per node. The results are
obtained using three different sampling approaches using the true maximum
likelihoods (full), the pair BS probabilities (pair), and the triplet BS probabilities
(triplet). The running time for the sampling using the true maximum likelihoods was
restricted to two times the CPU time of the triplet sampling.

We also considered diluted DAGs. In Fig 5, the number nbad of strongly 452

incorrectly-estimated edge weights is shown as a function of relative number r/p of 453

interventions for the case of diluted DAGs which exhibit one average c = 6 neighbours, 454

which is less than one third compared to the case of the complete graphs. Here, the 455

results of the pair and triplet-based sampling approaches are much closer to each 456

other, but the general trend remains, showing that the triplet-based sampling 457

outperforms the pair-based sampling, and the full likelihood-based sampling for a 458

comparable numerical effort. 459

The facts that the results of the pair and triplet-based approaches are closer to 460

each other can be some expected, because the effective number of parameters to be 461

estimated is smaller, thus the corresponding likelihoods or probabilities will be closer 462

to each other. Thus, we also studied larger DAGs with p = 50 nodes. Here we 463

generated N = 500 experimental outcomes per node for each DAG. For the MCMC 464

sampling we used again 100 independent runs for the pair-based and the triplet-based 465

sampling, 10 independent runs for the sampling based on the true maximum 466

likelihoods ℓmax. For the former two, we used 15100 MC steps for equilibration and 467

100 steps for measurement, for each of the independent runs. For the sampling based 468

on ℓmax, due to its expensive O(p6) computation, we could perform only 25 MCMC 469

steps in order to consume about two times the CPU time needed for the triplet-based 470
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Fig 5. Topological errors for diluted DAGs. For a diluted graph with p = 20
nodes: Average fraction nbad of incorrectly estimated edge weights as a function of the
number of interventions r per node. The results are obtained using four different
sampling approaches using the true maximum likelihoods (full), the pair BS
probabilities (pair), the triplet BS probabilities (triplet) and using just the exact
ordering of nodes of the DAGs. The running time for the sampling using the true
maximum likelihoods was restricted to two times the CPU time of the triplet sampling.

sampling. 471

The corresponding results of nbad(r/p) for complete graphs are shown in Fig 6. 472

Here the differences between the approaches are indeed larger compared to the p = 20 473

case, but the general trend is confirmed that the triplet-based approach outperforms 474

the pair-based approach, which in turn outperforms the exact sampling. The results 475

when just using the original causal ordering form again a lower bound on what can be 476

achieved for nbad. 477

Greedy approach 478

Finally, to allow for a comparison of the approaches from a different perspective, we 479

consider the case where we do not aim at estimating parameters of the model, e.g., the 480

weights of the causal interactions. Instead we focus on the estimation of the causal 481

ordering itself which was used to numerically generate the data. This is a much harder 482

task. One approach could be to enumerate all orderings and take that one exhibiting 483

the largest maximum likelihood ℓmax as an estimate of the correct ordering. This 484

represents a double-nested optimization: For each given ordering, the exact maximum 485

likelihood is obtained in a straightforward way as explained in Section 486

“Estimating model parameters”. This has to be repeated for all possible orderings. 487

Thus it would require an numerical effort O(p!) for system consisting of p nodes, i.e. 488

more than exponentially. 489

This is not feasible for systems beyond exhibiting few nodes. Therefore, we follow a 490

different approach here. We apply a greedy construction of an estimate for the true 491

ordering. 492

For this purpose, we again use the pair-wise and the triplet-wise probabilities, 493

respectively. This works as follows: We initialize the ordering with the a single pair 494

(i, j) of nodes, for the pair-based approach, or the triplet (i, j, k) of nodes, for the 495
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Fig 6. Topological errors for larger complete DAGs. Average fraction nbad of
incorrectly estimated edge weights as a function of the number of interventions r per
node for complete graph of p = 50 nodes. The results are obtained using four different
sampling approaches using the true maximum likelihoods (full), the pair BS
probabilities (pair), the triplet BS probabilities (triplet) and using just the exact
ordering of nodes of the DAGs. The running time for the sampling using the true
maximum likelihoods was restricted to two times the CPU time of the triplet sampling.

triplet-based approach, which exhibits the largest value of pair preference πi,j or the 496

largest triplet preference ρi,j,k, respectively. Next, iteratively nodes are included in the 497

ordering, one-by-one, such that the resulting combined BS probability, evaluated 498

according to (12) or (15), respectively, is largest. The construction is finished when a 499

full ordering of length p is obtained. This means in each step, one chooses among O(p) 500

nodes and O(p) insertion positions, i.e., one considers O(p2) choices. Also, like in the 501

MCMC steps, one has to consider O(p) terms when evaluation the influence of on the 502

pair-wise likelihood for each extension of the ordering. Similarly, for the triplet-based 503

greed approach, each insertion choice requires the calculation of O(p2) factors. This 504

leads to an overall running-time of O(p3) for the pair-based and O(p4) for the 505

triplet-based greedy approaches. 506

To evaluate the resulting ordering, we compared it to the original ordering which 507

was used to generate the data, while again varying the number of interventions in the 508

same way as before. For the comparison, we used Kendal’s tau-distance K, which is 509

defined for two orderings o, o′ as the number of pairs of nodes which appear in 510

different relative orders in the two orderings. 511

K(o,o′) = |
{

{i, j}|oi < oj ∧ o′i > o′j
}

| (20)

Note that Kendal’s tau distance is also called bubble-sort distance because it states the 512

number of elementary sorting swaps to arrange one ordering in the order of the other 513

given ordering. The maximum possible value is p(p − 1)/2 for p elements. 514

In Fig 7 the average of K is shown for complete DAGs with p = 20 nodes as a 515

function of the number r of interventions. Here a larger (quite unrealistic) number of 516

N = 1000 experiments is numerically performed. This allowed us to change the 517

number r of interventions in a very large range such that we could also access the 518

region were the greedy approach actually determines the true ordering with high 519
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probability. One observes that indeed when increasing the number of interventions, 520

the greedy orderings resemble the original DAG ordering more and more. Compared 521

to the maximum value p(p − 1)/2 = 190, the orderings found by the greed approaches 522

are quite similar to the true ordering. Interestingly, as seen in the inset of Fig 7, for 523

about O(50) interventions, the greedy approaches finds the true ordering, among 524

20! ≈ 2 × 1018 ones, in more than half of all cases! This is in particular striking, 525

because apparently the numerical effort (O(p3) or O(p4)) as well as the number of 526

interventions (linear) appears to grow only polynomially with the number of nodes. 527

Nevertheless, for any value of r, the triplet-based greedy approach clearly outperforms 528

the pair-based approach significantly. This confirms the result found above using the 529

MCMC sampling. 530
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Fig 7. Kendall’s tau. Average Kendall’s τ distance K to the original ordering for
ordering obtained via applying the greedy approach for pairs and triplet
Babington-Smith probabilities. The average is obtained over 1000 DAGs of size
p = 20, while varying the number r of interventions performed within the numerically
generated measurement data. The inset shows the frequency Ptrue that the original
DAG ordering is found, i.e., the frequency that K = 0.

Summary and Discussion 531

To summarize, we studied the estimation of causal orderings and corresponding 532

parameters in sampled data using interventions. In particular we compared pair-wise 533

Babington-Smith sampling, which was discussed before [7] with triplet-wise sampling 534

which we introduced in this work. All results show a much better performance for the 535

triplet sampling approach. When limiting the numerical effort to about two times the 536

running time of the triplet sampling, a sampling using the full maximum likelihood 537

turned out to be much worse than both pair- and triplet-wise sampling. 538

These results were confirmed for various cases: for data from actual biological 539

measurements as well as for artificial data generated in a controlled way for a 540

DAG-based Gaussian causal model. We studied small and larger DAGs, as well as 541

completely connected and diluted ones. The general result stays also the same 542

independently of whether one compares the estimated weight parameters directly, uses 543

thresholding to find correct estimates, or performs an ROC analysis of the estimated 544

nonzero weights. Also when restricting the analysis to just the prediction of the 545
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orderings, the triplet approach turns out to be much more efficient than the pair 546

approach. 547

Therefore, the triplet-based approach appears to be well balanced: It is 548

computationally efficient enough such that long MCMC chains can be easily generated, 549

for systems large enough for practical applications. This would be impossible when 550

using a sampling based on the full likelihood, except for small systems. On the other 551

hand, in combination with the final computation of the true maximum-likelihood 552

estimators for a comparable small subset of “best” configurations, the triplet approach 553

allows for accurate results, much better than the pair-based approach. 554

In principle, one could also try a similar approach based on quadruplets of nodes. 555

Nevertheless, in contrast to when moving from pairs to triplets, we believe that this 556

will not result in a considerable increase of accuracy. One reason, e.g., is that for the 557

study of the Rosetta data set, the accuracy using the triplet sampling was comparable 558

to the exact evaluation for a finite subset of orderings with the hightest exact 559

likelihoods (see Fig 2). One the other hand, the numerical effort for evaluating the 560

Metropolis criterion in each MCMC step would increase to O(p3) for a 561

quadruplet-based algorithm.Thus, the triplet approach seems to be multi-criterion 562

(accuracy, numerical demand) efficient within the hierarchy of approaches based on 563

n-nodes sub graphs. 564

On the other hand, for further applications, it might be fruitful to perform a 565

MCMC chains which consist of mixture of triplet-wise (first part of chain) and full 566

maximum-likelihood sampling (last part). But this is beyond of the scope of the 567

current study. 568

Furthermore, it could be interesting to study more thoroughly the point r = p 569

where most results exhibit a notable change of characteristics. It could be interesting 570

whether this change corresponds to a kind of information-driven phase transition, 571

similar to neural networks where the memory of a network changes if the amount of 572

data to be learned is increased beyond a threshold. We have already started research 573

in this direction. 574
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