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We introduce a model for the global optimization problem of nectar harvesting by flower visitors,
e.g., nectar-feeding bats, as a generalization of the (multiple) traveling-salesperson problem (TSP).
The model includes multiple independent animals and many flowers with time-dependent content.
This provides an ensemble of realistic combinatorial optimization problems, in contrast to previously
studied models like random Satisfiability or standard TSP.

We numerically studied the optimum harvesting of these foragers, with parameters obtained from
experiments, by using genetic algorithms. For the distribution of travel distances, we find a power-
law (or Lévy) distribution, as often found for natural foragers. Note, in contrast to many models,
we make no assumption about the nature of the flight-distance distribution, the power law just
emerges. This is in contrast to the TSP, where we find in the present study an exponential tail.

Furthermore, the optimization problem exhibits a phase transition, similar to the TSP, at a
critical value for the amount of nectar which can be harvested. This phase transition coincides with
a dramatic increase in the typical running time of the optimization algorithm. For the value of the
critical exponent ν, describing the divergence of the correlation length, we find ν = 1.7(4), which is
on the other hand compatible with the value found for the TSP.

Finally, we also present data from field experiments in Costa Rica for the resource use for freely
visiting flower bats. We found that the temporal patterns in experiments and model agree remark-
ably, confirming our model. Also the data show that the bats are able to memorize the positions of
food sources and optimize, at least partially, their routes.
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I. INTRODUCTION

Evolution is a process of the constant optimizing of a
species regarding its survival and reproduction capabili-
ties. One particular activity each animal has to perform
is harvesting [1, 2]. Hence nature poses another optimiza-
tion problem, since every single animal has to optimize
its own effort in obtaining as much food as needed with as
little effort as possible in a potentially dangerous world.

However, each animal competes with other animals of
the same and other species. Thus the food resources
available within a given area are harvested simultane-
ously by, in our case, multiple bats. This poses the ques-
tion of whether the single-animal optimization can even
take into account the activity of other bats, such that
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overall optimal or near-optimal behavior is reached by
the total group of animals. Being able to calculate such
overall optima would allow the determination of how the
efficiency of a bat’s behavior approaches the theoretical
optimum solution. To date, a theoretical approach for
this everyday animal foraging problem of determining
minimum-effort harvesting optima in multiple bat and
time-dynamic resource landscapes has, to our knowledge,
not been published. With this study we present a cor-
responding model and an approach to determining such
optima. Note that for static non-time dependent situa-
tions, simulations to detect optimal harvesting exist, e.g.,
for the social foraging behavior of bacteria like E.coli [3].
On the other hand, also many models for search in ran-
dom environments, but without spatio-temporal memory
exist [4–6].

From the theoretical point of view, optimization prob-
lems have been moved into the focus of statistical physics,
where the collective behavior of many-particle systems is
investigated. Of particular interest are phase transitions,
which are abrupt changes of the properties of a system,
e.g., for the solid-liquid transition of water when increas-
ing the temperature above the melting point. Few years
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ago, phase transitions have been observed [7–10] also for
simple random ensembles of optimization problems, like
the (TSP), K-Satisfiability (K-SAT), or the vertex-cover
problem. These ensembles have the advantage of being
easy to describe but among practitioners they are often
criticized as being very artificial and far from real-world
problems.

Therefore, we study here an optimization problem di-
rectly occurring in nature, the problem [7, 11] of nectar
harvesting by flower visitors. Nectar harvesting behavior
leads to a single movement path during daily activity,
with intermittent stops at flowers to collect nectar. The
length of this path can serve as a measure of the cost of
harvesting. This means we want to find spatio-temporal
sets of paths, one path for each animal, such that the
overall net gain of energy is maximized. The global op-
timization of the “nectar-harvesting problem” (NHP) is
a generalization of the (multiple) traveling-salesperson
problem (TSP) [12], which is known to be NP-hard [13].
This means, that the NHP is computationally hard to
solve and the only algorithms available are those, where
the worst-case running time grows exponentially with the
size of the problem (i.e. the number of flowers available in
the environment). In comparison with the standard TSP
there are further special characteristics of foraging at re-
plenishing resource locations. First, a flower’s value is
not only 0 or 1 but can take intermediate values depend-
ing on its current nectar content. Furthermore, flowers
are revisited within the daily activity period as nectar
is replenished through ongoing secretion. Thus we can
expect that, from the computational point of view, the
nectar harvesting problem NHP is even harder to solve
than the TSP.

Note that the NHP does not take into account if a
neural system could actually implement the optimization
process used, instead it should serve as a null-model for
the best optimizing bats possible, to which real bats and
models based on learning theory can and could be com-
pared with. Nevertheless, it is well known that swarm
intelligence may lead to finding global optima. This is
used in nature-inspired approaches like ant-colony opti-

mization [14, 15]. Therefore, investigating (near) global
optima of the NHP might tell actually a lot about the
global result of the individual behavior of real bats, even
tough in the moment the capabilities of the individu-
als with respect to optimization are yet not extensively
known.

The notion that bats optimize their behavior was moti-
vated by data from field experiments in the Costa Rican
rain forest, where we investigated the spatio-temporal
behavior of nectar-feeding bats [16, 17], which exploit re-
source landscapes with flowers at fixed locations offering
nectar to their visitors in variable amounts depending on
secretion rate and past exploitation events. Flower fields
thus constitute potentially predictable resource distribu-
tions with deterministic spatio-temporal dynamics. Ver-
tebrate flower visitors with cognitive abilities may have
evolved mechanisms to adapt their resource-exploitation

behavior to such dynamics. Hence each animal may be
able to optimize its own behavior, justifying the compar-
ison with the result of an optimization approach.

We analyzed the step-size distribution of the optimum
paths. We observed a power-law, i.e., Lévy distribu-
tion of the flight distances as an emergent property of
our model, without assuming a power-law distribution
anywhere in the model. Note that for the related but
much more abstract and non-time-dependent traveling-
salesperson problem (TSP), our results presented below
do not show power-law behavior but a faster exponen-
tial decrease. For the NHP, the power-law nature of the
distribution is a true emergent property of the system
and its optimization. Such distributions have been ob-
served often in nature [4, 18–20] and used, i.e., assumed
in modelling approaches [21–25]. It is an open question
[26] whether the Lévy-type distributions seen in natu-
ral systems arise from an evolutionary process, as seen in
some models [5, 6], or whether it is an emergent property
of the system, as for the present case.

As we will furthermore show below, the NHP also ex-
hibits a phase transition in terms of solvability, and com-
putational complexity. This is similar to, e.g., K-SAT
or TSP but in contrast to these previously studied model
the NHP describes a quite realistic ensemble of real-world
optimization problems. With our experiments we tested
the validity of the three central assumptions on which
our theoretical analyses are based and gathered evidence
that real bats indeed optimize their foraging behavior.
We assume that a forager discriminates within patches
between resource locations differing in profitability. This
requires spatial reference memory. Furthermore, a for-
ager must remember its own foraging actions in order to
avoid otherwise profitable locations after depletion and
before subsequent replenishment. This requires spatial
working memory. Thirdly, a forager able to visit re-
source locations along shortest travel paths needs besides
a cognitive spatial representation the ability for odome-
try to discriminate path lengths. Our experimental data
support these assumptions. Furthermore, our method of
examining decision making and foraging behavior with
free-ranging animals provides a novel experimental ap-
proach of how to actually test predictions of theoretical
models under natural conditions.

II. MATERIAL AND METHODS

A. Model

An animal’s daily foraging tour consisted of a series of
visits to flowers. Food intake during the visit to a flower
depended on the current nectar content of the flower at
the time of a visit, and was limited by the bat’s maximal
intake rate and by its stomach capacity. Each tour was
characterized by a total amount of nectar intake and a
total amount of net energy gain, determined after the
energy cost of foraging activities was subtracted.
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A habitat was modeled as M bats living in a square
area of size one hectare (104m2), where randomly placed
flowers k = 1, . . . , N are available for feeding. Our model
and the parameters we used are based on experimental
data for bats obtained in earlier studies [16, 17, 27]. We
studied habitats with up to 24 bats having 10 to 120 flow-
ers available. The positions of the flowers determine the
matrix of distances d(k, k′) between flowers k, k′. Each
flower k produces nectar with rate pk(t), t is the time
during one night, in which at t = 0 h the bats start har-
vesting. Here we considered usually constant production
rates pk(t) = const = 50.4µl/h for t ∈ [0, 12] h. For
some simulations we also used triangle-like rates, which
have pk(−1.5h) = pk(8.5h) = 0 and rise from t = −1.5
h linearly with time until pk(0.5h) = pmax = 57.6µl/h,
and decrease linearly with time afterward until t = 8.5 h.
Each flower can hold a maximum amount Ck of nectar,
here Ck = 200µl

The behavior of each bat j ∈ {1, . . . ,M} during one
night is described by a series of N (j) visited flowers

s
(j)
i ∈ {1, . . . , N} (i = 1, . . . , N (j)) and time moments

t
(j)
i when the flowers are reached. We assumed that

all bats fly with constant speed v = 3m/s. Hence,
the time to travel between the i’th and (i + 1)’th visit

is ∆t
(j)
i+1 = vd(s

(j)
i , s

(j)
i+1). The remaining time t

(j)
i+1 −

t
(j)
i − ∆t

(j)
i+1 a bat spends at the i’th visit, most of

the time at rest. An “instance” is a completed sim-
ulation based on a set of (randomly chosen) positions

of the flowers together with resulting travel schedules

x = [(s
(1)
1 , t

(1)
1 ), . . . , (s

(1)

N(1) , t
(1)

N(1)), (s
(2)
1 , t

(2)
1 ), . . .] of all M

bats during one night.
We are interested in the net energy balance of an in-

stance x. The net energy balance f(x) is the harvested
nectar minus the nectar expended by the bats for the en-
ergetic cost of their tours (all energies are measured in
terms of amount µl of nectar). To be more specific, the
net energy gain per bat is given by

f(x) =
1

M

M∑

j=1

(
E

(j)
collect(x)︸ ︷︷ ︸

time-dependent

− E
(j)
travelcost(x)︸ ︷︷ ︸

position-dependent

− E
(j)
stopcost(x)

︸ ︷︷ ︸
stop-dependent

)
. (1)

• E
(j)
collect(x) is the amount of nectar bat j collects. If

a bat arrives at a flower, it takes as much nectar
as possible, i.e., limited by the amount of available
nectar at the given time (which is determined by
the nectar produced so far and the nectar taken
during previous stops by this and other bats) and
by the capacity C(j) of the stomach, here C(j) =
500µl for all bats. Nectar is digested with rate
rdigest, hence after some time a full stomach can
take additional nectar again.

• E
(j)
travelcost(x) determines the energy consumed by

flying between the different visits and is deter-
mined by the total flight distance and by the en-
ergy consumption clength = 0.4µl/s (with velocity
v = 3m/s).

• E
(j)
stopcost(x) accounts for a higher energy need when

feeding at a flower (hovering flight) and is, for
simplicity, for each bat j just a constant energy
cstop = 1.2µ l times the number of stops N (j).

For our simulations, we are interested in maximizing
the net energy gain f(x) for a given distribution of the
flowers and number of bats. It is the net gain that an
animal can invest directly or indirectly into reproduc-
tion. We used a genetic algorithm briefly described in
the next subsection. This energy gain increases when
the cost for collecting the nectar decreases. Biologically
speaking, this would mean that a bat minimizes its own
locomotion effort and that it also minimizes the effects
of exploitative competition between itself and the other
bats. In particular, we want to determine whether under
given ecological conditions it is possible in principle for
each bat to obtain enough nectar to meet at least its ba-
sic requirements. Having the optimum solution available,
it is then possible to compare it with the performance of
real bats. Agent-based simulations could also be used
to test assumptions about information gathering, infor-
mation processing, and decision making by individual or
competing bats, extending previous experimental labora-
tory studies on the spatial memory and spatial cognition
of bats [28, 29]

B. Simulation Algorithms

We have performed computer simulations [30] using ge-
netic algorithms [31] and using a greedy algorithm (see
below) to find optimum or at least near-optimum solu-
tions.

The basic idea of an evolutionary (or genetic) algo-
rithm is to mimic the evolution of a group of possi-
ble schedules (often called “individuals” in this context,
not to be confused with the bats) to the same problem.
Schedules that adapt better to the optimization task (i.e.
have a higher “fitness”) have a higher probability of sur-
vival. Thus they pass their genes in the simulation pro-
cess more frequently to subsequent generations than oth-
ers. This means that the average fitness of the population
of schedules increases with time, hence one gradually ap-
proaches the optimum schedule. To be specific, we used
a “population size” (not to be confused with the num-
ber M of bats) ranging from 100 schedules x(z) (smallest
system size) to 1000 realizations, tournament selection
[32, 33], and an adaptive mutation rate of 1/N (j) for each
bat. Mutation operators allowed the random changing of
the time a bat pauses after a series of visits by a small
amount, as well as the insertion/deletion/exchange of one
or several flowers within and between different schedules
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of an instance. As a crossover mechanism we took “time-
point crossover”, which means that a new schedule xnew

can be built from taking the sequence of flowers visited
before some absolute (randomly chosen) time tcross from
one schedule x(z1) (for all bats), and the sequence of flow-
ers visited after tcross from a second schedule x(z2). We
also applied local optimization steps, where changes are
only accepted if they increase f(x). Possible changes here
are replacing a visited flower by another flower, changing
the order in which two flowers are visited, or changing
the time a bat pauses at a flower. To find the global op-
timum schedules with high probability we applied up to
105 generations of the genetic algorithm.

We also computed exact solutions for single TSP prob-
lems [34]. We used this partially to generate initial sched-
ules for the genetic algorithms, but also for the purpose
of comparison of some quantities. Technically, we used
the CONCORDE library. [35].

Also a “greedy” algorithm was used to find a solu-
tion of the NHP. Solutions from this algorithm may not
converge as closely to the optimal solution as with the
genetic algorithm. However, we applied it as the greedy
heuristic derived from reinforcement learning could ac-
tually be similar to a strategy used by real bats. The
greedy algorithm did not use the mutation and recom-
bination methods of the genetic algorithm but instead
proceeded as follows:

• each bat approaches the flower with highest current
energy gain (energy intake - energy costs for flight)

• if the stomach of the bat is full, rest until fully
digested

• if highest energy gain is negative (cost of flying is
higher than any nectar content) wait for 10 minutes
and try again until a positive best energy gain is
found.

As in the genetic algorithm, several problem instances
were calculated with this strategy: typically an average
over 800 runs was performed. Note that these systems
are computationally easier, hence we could study larger
systems.

C. Experiments

Experiments were conducted to gather evidence that
real bats indeed optimize flight behavior. Data were ob-
tained from eight individuals of free-flying Glossophaga
commissarisi bats visiting a field of 50 artificial flowers
[36] in the rain forest at La Selva Biological Station,
Costa Rica (Fig. 1).

Artificial flowers were computer controlled and pro-
duced nectar at a quality and rate found in natural flow-
ers. Ongoing secretion occurred into a virtual nectar ac-
count that determined nectar availability during an ac-
tual visit by a bat. Bats had been caught and equipped
with passive transponder identification tags (RFID PIT

tags) prior to the experiments. We present the data from
the first three days after onset of the experiment. Nectar-
feeding bat species other than Glossophaga commissarisi
were uncommon on the experimental plot (< 5% cap-
tures) and did not participate in the experiment.

Each artificial flower was equipped with an electronic
reader that identified a bat in real-time as it visited a
flower. This allowed counting on an individual basis the
visitation data of the free-flying bats.

Also, the delivery of nectar was dependent on the indi-
vidual identity of the visiting bat. This allowed us to op-
erate the flower field in a “non-competition” mode where
separate sets of virtual nectar accounts that were kept
for each individual allowed depletion and replenishment
of nectar to be made individually specific and indepen-
dent from the potential competition by others. This was
useful, since we wanted to investigate cognitive abilities
of individual bats by exposing them to experimentally
defined conditions of food availability that remained un-
affected by other individuals. Our artificial flowers were
of two types “slowly refilling” (SR, 30 mins to refill) and
“quickly refilling” (QR, 15 mins to refill). Flowers were
arranged such that the closest neighbors of QR flowers
were all SR (diagonal direction, 14 m) while the next QR
type was further away (up-down direction, 20 m). The
rationale behind this experiment was that while a forager
näıve about flower qualities should minimize path length
by flying diagonally, a forager with knowledge of flower
quality should fly in up-down direction predominantly
visiting QR flowers. Thus we expected a forager that op-
timizes to have a preferred angle of traveling within the
flower field and that this angle would change, assuming
quality is discriminated, after the spatial positions of QR
flowers were learned.

FIG. 1: Experimental 100x100 m flower field in the Costa
Rican rain forest. Circles in A, B show positions of artificial
flowers that were either quickly refilling QR (large) or slowly
refilling SR (small). Minimum distance between neighbors
was 14 m while minimum distance between QR type flowers
was 20 m. Lines in A, B show hypothetical minimal travel
paths for a forager that does not discriminate between flower
qualities (A) and for a forager only visiting QR flowers (B).
Note that flower qualities differed as shown in (B) throughout
the experiment.
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III. RESULTS

Below we state the results of our simulations to find
optimized joint exploitations of a habitat with randomly
arranged flowers. The distribution of travel distances ex-
hibits a power law as often found for natural systems.
Also, we find a second order phase transition between a
phase where enough resources are available to a phase
where this is not the case. We characterize the phase
transitions by means of finite-size scaling.

Also, we show results from the experiments in the rain
forest, which, considering the frequency of visits dur-
ing the night, agree qualitatively with the simulation re-
sults. Furthermore, the results indicate that the bats use
their spatio-temporal memory to optimize their foraging
paths.

A. Properties of optimized schedules

FIG. 2: (color online) Example of an optimal solution ob-
tained for two bats and 40 flowers. The path of one bat is
marked by full lines (red), the path of the other bat by bro-
ken lines (black).

An example for an optimum solution of a one-night
schedule for two bats having available 40 flowers is shown
in Fig. 2. One can observe that all flowers are visited sev-
eral times, but not too often, since it is beneficial after
emptying a flower to wait before the flower is revisited.
Correspondingly, the bats spent most of the time waiting
at some flowers, which costs the least amount of energy.
Note that for this sample solution, both bats visit basi-
cally all flowers.

Nevertheless, for larger number of bats and larger num-
ber of flowers, it becomes beneficial that the bats parti-
tion the area among them, because this reduces the over-
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FIG. 3: (color online) Distribution of area coverage for 80
flowers and different numbers M of bats, averaged over 200
random instances. The lines are guide to the eyes only, ob-
tained by fitting to Gaussians.

all flight distance slightly. To quantify this, we have mea-
sured the “area coverage” which is defined as follows: To
each flower s we assign a circle Cs, centered at the po-

sition of the flower, which has a radius r =
√

A
2N and

therefore an area πA/(2N). For each bat j of a tour x,
we take the union of all circles for the flowers visited and
measure its covered area, i.e.,

Aj =

∣∣∣∣∣
⋃

i

C
s
(j)
i

∣∣∣∣∣ (2)

Therefore, flowers which are close to each other will not
contribute so much to Aj , because the corresponding cir-
cles overlap extensively. In this way the quantity Aj

takes into account the geographical distribution of the
flowers, as compared to measuring just the fraction of
visited flowers. This makes sense, because visiting close-
by flowers will not cost so much energy for the bats. The
measurement is done each time by two-dimensional nu-
merical integration. In Fig. 3, the distribution of the
relative area coverage a = Aj/A (for all bats j), where
A is the total area, is shown for different number of bats
and always 80 flowers. Note that the relative coverage
of a bat visiting 80 randomly distributed flowers has a
mean of approximately a = 0.76. Therefore, already 2
bats do not visit during a night all flowers, but almost
all. Furthermore, one can observe that a decreases on
average with growing number of bats. This means, with
increased competition, it becomes, to achieve a global
cooperative optimum, more beneficial to partition the
area among the bats. Therefore, only through the global
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FIG. 4: Distribution of travel distances d between two stops
shown on log-log scale, here for N = 200 flowers, two bats
on an area of A = 106 m2, averaged over 5000 instances. The
line indicates a fit of the tail of the distribution (d ≥ 8) to a
power law d−µ, resulting in µ = 2.7(1).

optimization constraint, an indirect repulsive interaction
among the bats is introduced.

Next, we present the distribution of flight distances be-
tween two consecutive stops, as shown in Fig. 4 for the
case of 200 flowers and two bats, here, to fit all bats in,
for a larger system A = 106m2. The histogram is taken
from 100 independent problem instances. As visible,
very small distances are rare, because the flower are dis-
tributed uniformly inside the square, therefore small dis-
tances do not occur very often, even if they are overrep-
resented in optimum schedules. The typical flight length
is about 2 m. Large flight distances are also rare, which
is reasonable because of the optimization task, therefore,
if possible, long direct flights are avoided. Within the
double-logarithmic scale, a power law ∼ d−µ is visible
for large distances. From a fit we obtained an expo-
nent µ = 2.7(1). Note that the underlying distribution
of distances, for a uniform random distributions of the
flowers in the plane, is growing P0(d) ∼ d. Therefore,
a power-law distribution which decreases with distance
is not evident from the distribution of underlying dis-
tances. Nevertheless, a power-law (“Lévy-flight”) behav-
ior is common for experimentally measured distribution
of distances of natural foragers [4, 18–20]. Thus, such a
power-law distribution was used in an analytically solv-
able “local-search” model [21] of harvesting with refilling
resources. Within the model, a forager either moves to
a close by resource if a filled one is available, and where
otherwise the forager performs a long step with a random
direction and a power-law distributed step length. The
value of the exponent was determined from optimizing

10-8
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10-6

10-5

10-4

10-3

10-2

10-1

 0  50  100  150  200  250  300  350

p
(d

)

d

TSP

N = 200
exp(-d/20)

FIG. 5: Distribution of travel distances d between two stops
for a TSP solution of a large system with 200 flowers, aver-
aged over 104 instances. Please note the linear scale for the
distances. The line shows the function exp(−d/20), as a guide
to the eyes.

the efficiency, which resulted in an exponent µ = 2 , for
the case the exact locations of resources in not known
(µ < 2 otherwise). This exponent is smaller than the
result obtained here, i.e., the distribution for NHP de-
creases faster. The reason that very long distances are
suppressed in the NHP with respect to the local search
case, is that the global optimization target of NHP takes
the full environment into account, leading to shorter so-
lutions and avoiding long distances.

For a further comparison, we have also obtained the
distribution of distances for the standard TSP case, here,
for N = 200 flowers distributed in the same square of side
length 103 m. The result is shown in Fig. 5. The behavior
in the tail is very different, an exponential behavior is
visible. We verified that this is not a finite size effect, by
studying a much larger system with N = 4096 flowers,
where we again found an exponential tail. The reason is
apparently, due to the constant refilling of the flowers,
for the time-dependent NHP it is more beneficial to take
few long flights several times, as compared to the TSP,
where each flower is visited exactly one time and it is not
important when. Anyway, the addition of the biological
characteristics of NHP like multiple harvesters and time-
dependence make it apparently fundamentally different
from the TSP. Hence, in general, studying ensembles of
realistic optimization problems might lead in many cases
to insights which cannot be provided solely by studying
classical and very abstract optimization problems.

Also, we studied the temporal patterns of visits at flow-
ers during one night for a direct comparison of simulation
and experimental data. These data are explained in de-
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FIG. 6: The probability that a system can effectively collect a
given net energy E per bat, i.e. f(x) ≥ E, for different system
sizes. N is the number of flowers and M the number of bats.
The inset shows the result for a greedy optimization. Lines
are visual guides only.

tail below, together with the corresponding experimental
results, see Sec. IIID.

B. Phase transition

For each given random distribution of the flowers we
obtained the maximum amount fopt = maxx f(x) of the
net energy, optimized over all schedules. We measured
the probability Pharvest that the bats can effectively har-
vest at least some given amount E of energy per bat, i.e.
the probability that fopt ≥ E. We have performed corre-
sponding simulations for system sizes 10 flowers/2 bats,
20/4 and 40/8, so that the number of bats per flower was
kept constant. In Fig. 6, the result obtained from aver-
aging over 100 flower distributions is shown. Note that
the amount of nectar produced by all flowers per 12-hour
night amounted to 3024µl per bat. Since the bats have
to expend energy for flying, the net gain will always be
less than the nectar energy produced.

The different curves cross near EC = 2995.1(3)µl
and become steeper with growing system size N . The
“globally-optimizing” bats will be able most of the time
to collect an amount of nectar smaller or equal to EC ,
which is very close to the amount of nectar produced dur-
ing one night. Clearly, the bats will never be able to har-
vest all nectar, since each flower will produce some nectar
after the last visit of a bat. From the behavior of the data
it is visible that for very large systems with many bats
and many flowers, keeping the same bat/flower ratio, we
can expect a threshold behavior resembling a physical

phase transition [37], where suddenly a collective prop-
erty of the system changes dramatically. Similar phe-
nomena have recently been observed for artificial random
ensembles of some classical NP-hard problems like TSP,
K-SAT or the vertex-cover problem [7]. The phase tran-
sition observed here appears to be of interdisciplinary
interest for researchers working on applied optimization
and their relation to typical computational hardness, be-
cause in contrast to these rather academic cases like TSP
and K-SAT, the NHP ensemble is a quite realistic and
comprehensive model of a real-world problem.

Note that the actual existence of a phase transition
does not depend on how well the bats optimize. The
simulations based on the greedy algorithm (inset of Fig.
6) lead to lower individual net energy gain but again a
transition is visible, just occurring at much lower energy
EC ≈ 1630(5)µl.
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FIG. 7: The probability from Fig. 6 plotted for the rescaled
energy (E − EC) · N1/ν with ν = 1.7. N is the number of
flowers and M the number of bats. Lines are visual guides
only. The inset shows the average run time of the algorithm
as function of the energy for different system sizes. See text
for further details.

Next, we characterize this phase transition quantita-
tively by means of critical exponents as obtained from
finite-size scaling (FSS) [38, 39]. FSS is a fundamen-
tal approach for overcoming the limited system sizes ac-
cessible in simulations by studying several “small” sys-
tems and extrapolating to large system sizes. Actually
applying FSS works as follows: First, we determined
EC as the point where the curves for different system
sizes intersect. Next, we plotted Pharvest as a function of

Ẽ = (E − EC) · N1/ν , starting with ν = 1 and gradu-
ally changing the value of ν such that all curves collapse
onto one, resulting in ν = 1.7(4). The result is shown in
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Fig. 7. The fact that the data can be rescaled in this way
means that the phase transition exhibits a growing cor-
relation length, i.e. the optimal tours of the bats depend
more and more on each other when the phase transition
point is approached.

The value of the parameter ν is compatible with the
value ν ≈ 1.5 found in simulations of the TSP [9]. There-
fore, with respect to the scaling of the phase transition,
TSP and NHP might be comparable, opposed to the dis-
tribution of distances (see above), where TSP and NHP
exhibit non-universality. Therefore, some characteris-
tics of TSP “survive” in the more complicated multiple-
traveler time-dependent NHP.

Next, we turn to the relationship between the phase
transition and the behavior of the optimization algo-
rithm. The genetic algorithm used to optimize f(x)
gradually improves the solutions during the optimiza-
tion. Hence at any given so-far running time ts of the
algorithm, measured in (number of generations)×(size of
population), there exists a best so-far generated solution
characterized by the net energy E that is harvested dur-
ing the corresponding tours. In the inset of Fig. 7 the
running time required to gain a net energy E is shown.
Interestingly, the running time grows only moderately as
a function of E for energy less than EC , but exhibits a
drastic increase very close to the phase transition. Note
also the logarithmically scaled time axis. Thus, the data
indicate that the running time increases exponentially as
a function of problem size. Hence, the solvability of the
NHP seems to be closely related to the typical degree
of hardness in finding a solution on a computer. This
behavior is similar to the run time behavior recently ob-
served within the statistical-mechanical analysis of the
above mentioned classical optimization problems like K-
SAT [7].

C. Experimental results

Next, we present the results from the experiments in
the rain forest. Note that these experiments were per-
formed without having the simulation results already at
hand. Therefore, the experiments were not designed, e.g.,
to prove that a phase transition for real bats exists or
that they achieve a harvesting close to optimum (which
is an interesting question for sure, because natural evo-
lution always aims at the optimum). Nevertheless, we
were able to observe experimental indications that indeed
bats in some way optimize over time and space. Also, we
compare the distribution of activity over time between
experiments and simulations, which yields a remarkable
qualitative agreement. In the summary, we suggest re-
fined experimental setups for future expeditions, where
the simulation results are taken into account.

Here, we analyzed 772 bouts of activity by 8 bats.
Feeding bouts lasted 1 to 3 mins during which 7 to 23
flowers were visited and were followed by intervals of rest-
ing for 5 to 25 mins. Bats flew between experimental

A B

1st night, first 50 visits 3rd night, visits 207−257

C D

1st night, final 50 visits 3rd night, final 50 visits

FIG. 8: The temporal development of flight patterns and
space use by two bats (#141 dark lines, #178 light lines)
within three days of visiting the flower field. Flight paths be-
tween n = 50 consecutive visits are shown from the beginning
(A, C) and the end of three days (B, D) of the experiment.
Circle areas are proportional to the number of flower visits,
size of arrows are proportional to number of commutes. As
visits to QR flowers increased from nights 1 to 3, flight paths
changed in direction from diagonal to up-down.

flowers for minimum mean distances of 12 to 33 km per
night. Within our experimental patch of flowers bats did
not visit flowers at random. While initially SR and QR
flowers were visited more or less equally (see Fig. 8A), af-
ter three days about 80% of the visits were to QR flowers
(see Fig. 8B).

The spatial pattern of experimental flower distribution
allowed us to evaluate if bats minimized the lengths of
travel paths (Fig. 8). The experimental flowers were dis-
tributed such that a bat that did not discriminate be-
tween flower qualities should predominantly travel along
diagonal directions to minimize travel distance whereas
it should travel along up-down directions when prefer-
ring quickly-refilling flowers. Although we were not able
to perform a large number of experiments to obtain good
statistics, the data indicate that the angle of travel di-
rections deviated significantly from random. Examples of
this development of flight pattern are shown in Fig. 8 for
two bats. At the onset of the experiments the mean angle
was apparently closer to a diagonal orientation than to an
up-down orientation (Fig. 8A, 8C) and this angle changed
to a predominantly up-down direction towards the end of
the experiment (Fig. 8B, 8D). This result shows that the
bats were both able to distinguish the quality of flowers
and minimize path lengths (while preferentially sticking
to QR flowers) and that they optimized their behavior
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FIG. 9: A time distribution (sum of all visits) measured in
the rain forest. Lines are visual guides only. Inset: Time
distribution (visits per bat) in simulation for instances with
N = 40 resources (flowers) and M = 2 bats. The production
rate is triangle-like and the capacity of each resource is at
Ck = 200µl. The total energy produced per flower and night
is 288µl.

with respect to efficiency.

D. Temporal patterns

Finally, we studied the temporal patterns of visits at
flowers during one night. The experimental findings as
shown in the main plot of Fig. 9. Some bats remained
active in the study area throughout the night whereas
other bats only made shorter visits to the area. Over-
all, activity was markedly higher at the beginning of the
night and again, with a smaller peak at the end of the
night. This can be understood as follows: At the begin-
ning of the night a large quantity of nectar has already
accumulated from before the onset of harvesting activity,
while towards the end, the bats can again, and with little
effort, harvest non-depleted nectar that has accumulated
during the night. Furthermore, another less important
effect is that after an initial harvesting the stomachs of
the bats are full and they need time to digest the nectar.

This can be compared with our numerical results of
the optimized schedules, see inset of Fig. 9. The differ-
ence between active and less-active periods is more pro-
nounced in the simulation data: in particular the first
peak in the simulation is shifted towards the middle of
the night. This is probably because for globally optimum
harvesting the bats in the simulation need to be “aware
of the future” such that they wait until even more nec-
tar has accumulated and then harvest it from multiple

different resource locations within short time intervals.
By contrast, real bats at the end of daily rest are hun-
gry and compete with each other. Hence, waiting for
too long early at night increases the risk that other bats
deplete the resources. Nevertheless, the qualitative sim-
ilarity of the simulation results with the data obtained
experimentally in the rain forest shows that our model
makes qualitative predictions of spatial and temporal re-
source use that already reproduce the behavior of real
bats.

Note that we also studied numerically the case, where
the capacity of the flowers was set to infinity. Here, to
attain the global optimum, it is worth waiting long un-
til almost the end of the night, to reduce the total flight
distance. And indeed (not shown here), the temporal
distribution changes to one which grows monotonously
and exhibits one large peak at the end of the night. This
shows that the temporal flight pattern is a direct con-
sequence of optimization performed by the bats and the
limited capacity of the flowers, which the bats are appar-
ently aware of.

IV. SUMMARY AND DISCUSSION

We have introduced a model to describe the exploita-
tive behavior of flower visitors harvesting nectar. The
model is a generalization of the NP-hard traveling-
salesperson problem, hence no fast algorithm yet exists
to solve it on a computer. Therefore a treatment of the
problem using algorithms which calculate the exact op-
tima is out of reach. We used genetic algorithms to find
optimal or nearly optimal routes and schedules in numer-
ical simulations such that a collection of bats can jointly
exploit a habitat globally efficiently.

Note that it is not clear a prioi whether real bats in
a habitat are able to harvest nectar so efficiently, pri-
marily because an ideal-free distribution of individuals
in the spatial and temporal dimension with a complete
avoidance of overlap between all individuals of a bat pop-
ulation is very unlikely. Also, as we observed during our
rain forest studies, a bat’s flight path during a night does
not only connect harvesting events but detours to in-
teract with other bats, search for new flowers or avoid
danger. This makes a direct comparison of efficiency im-
possible. Nevertheless, as mentioned, collective individ-
ual optimization may lead to global optima, which is ex-
ploited by swarm intelligence algorithms like ant-colony
optimization. Therefore, the study of global optima of
the NHP is justified.

In fact, from the preliminary results of our experiments
in the rain forest, we can conclude that the bats are in-
deed able to partially optimize. The experiments are
based on the surveillance of bats using artificial flowers
and measuring their level of activity during the night.
The results indicate that the underlying model exhibits
enough ingredients to sufficiently describe the basic be-
havior of the bats, in particular that the bats exhibit
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spatio-temporal memory: The bats seem to be able to
optimize their exploitation, which is apparent in the in-
creasing fraction of flights to “quickly refilling” flowers.

In an analysis of the flight lengths of the optimum
schedule, we found a power-law (Lévy) distribution. Such
distributions have often been observed in various ecolog-
ical systems, like flies [18], Albatrosses [4], marine preda-
tors [19], or humans [20]. The quest for the origin of such
behavior arose a great deal of attention and led to many
studies trying to explain its origins [26]. In modelling
harvesting or food search, power-law distributions have
been used severals times, e.g., for determining the opti-
mum exponent of such a distribution, when the ressource
distribution might be unkown [21]. There are other more
recent models, where a power-law distribution of the step
sizes is also assumed in some way or the other [22–25]. In
all these studies the power-law behavior does not emerge
without assuming it, but they are explicit part of the
models. Therefore, such models correspond to the as-
sumption that evolution has led the animals to develop a
(random) search strategy which encodes such Lévy walks,
in particular with the aim to detect yet unknown food
ressources.

It is not always true that Lévy flights lead to the op-
timal foraging behavior. Clearly, if the ressources are
dense, ranom walk behavior is suffiecient to find them,
while minimizing the step length. Also, under certain
conditions other distribuions of the step sizes are opti-
mal, e.g., a ballistic search [40].

On the other hand, a power-law distribution of dis-
tances was also found for a foraging model [41], where
no assumption about the distribution of step sizes was
made, but where the ressources were distributed in the
plane with ressource qualitiy values drawn from a scale-
free power-law distribution. One forgager with a local
search strategy was simulated, such that always the clos-
est ressource was taken with the smallest distance to
quality ration. A power-law distribution for the distance
was only found with a proper choice of the power for the
quality distribution. Hence, the observed distance distri-
bution seems to be here a result of the specific power-law
choice of the ressource quality distribution, but not a true
emergent property of the system.

Thus, we find in the present study a power-law dis-
tribution of travel distances without any correspoding
assumption and with the ressources being distributed
uniform randomly. In no part of the present model a
power-law distribution is assumed, neither for step-sizes
of animal movement nor for the quantities describing
the food ressources. This means also that no assump-
tions about evolutionary processes favoring such power-
law distributions have been made. Thus, emerging Lévy-
walk distributions is possible without the assumption of
directly influence of evolution, in contrast to some pre-
vious ideas [26]. On the other hand, there exist models
of target-searching agents in randomly changing environ-
ments, where an evolution-caused power-law distribution
was observed [5, 6].

Nevertheless, for our model, in principal, the animals
have perfect knowledge of the food ressources, partially
justified by the good spatio-temporal memory of the bats,
we observed in experiments. Thus the observed Lévy dis-
tribution is not describing a random search strategy, but
it emerges without specific assumptions just from opti-
mizing the search efforts versus search gain. Interest-
ingly, the time dependence, seems to be an important
ingredient, because for the TSP we observe an exponen-
tial distribution of step sizes for the optimal tours.

Furthermore, beyond the statistical properties of the
optimal schedules, when increasing the demand of the
bats in our simulations, we found a phase transition from
a region where the bats have enough nectar available to a
region where not all bats can be fed sufficiently. This, as
mentioned above, is due to a growing correlation length
of the system. From a biological point of view this means
that optimization becomes more demanding as more in-
dividuals are in exploitation competition. This is because
individual optimization becomes increasingly dependent
on how well an individual can avoid the effects of ex-
ploitative competition caused by the other individuals.
This we could observe also when studying the running
time of the genetic algorithm: The transition coincides
with a marked increase in running time, indicating that
the problem becomes typically hard to solve on a com-
puter.

Note that we have observed the phase transition, coin-
ciding with a substantial increase in running time, for
an ensemble of realistic time-dependent combinatorial
optimization problems, in contrast to previously stud-
ied models which are rather simple and static, like ran-
dom K-Satisfiability or the coloring problem on random
graphs. This indicates that also for realistic optimization
problems phase transitions occur and it may be useful
to investigate them, e.g., to determine optimum working
conditions by analyzing ratios of outcome versus effort,
which are often found to be best near phase transitions.
In particular, as visible in the distribution of flight dis-
tances, the results indicate that the behavior of NHP,
which involves multiple bats and time-dependence, is dif-
ferent from the strongly reduced TSP model. Neverthe-
less, the growth of the correlation, as measured by the
critical exponent ν, appears to be similar.

Concerning future research directions, the occurrence
of a phase transition in the optimum solution could serve
as a guiding line for also further experimental studies:
It is tempting to ask, whether such a phase transition
can be observed experimentally in the natural rain forest
environment. Within an experiment using artificial flow-
ers, for example, the amount of nectar offered until the
bats start to move out of the habitat could be continu-
ously reduced. Note that with the present experimental
data, where the feeders were controlled such that the bats
acted independently of each other, it is unfortunately not
a simple matter of reanalysis of the data. There, new ex-
perimental (and, unfortunately, involved and expensive)
campaigns in the rain forest, guided by the present re-
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sult and forcing the bats to compete, will be needed. If
a similar phase transition is observed experimentally, the
value Eexp

C where the phase transition occurs would in-
dicate how well the bats are able to optimize, compared
with the theoretical optimum studied here. In particular,
if the experimental data for different “sizes”, i.e., number
of bats and flowers, can be rescaled (as in the simulation
results in Fig. 7) this would mean that there is a growing
correlation between the bats. This would provide strong
evidence that the bats communicate or interact in some
way, directly or maybe indirectly through flower exploita-
tion, leading to a jointly more efficient exploitation of the
habitat. Also, the analysis of the schedules of competing
bats, will show whether they partition the habitat among
them, as seen in the optimal schedules, and whether such
a partition evolves over time. In general, performing such
experiments having a comparison with the optimum will
result in a much greater understanding of the exploita-
tion capabilities of highly-evolved vertebrates.

On the simulation side, one could perform extensive
detailed agent-based simulations, with bats having lo-
cal memory and (possibly different) local optimization
strategies. This is motivated by other results from our
experiments (not shown), where we grouped the bat’s
activities into bouts and measured the frequency f bats
revisited flowers within a bout, as a function of the num-
ber nvis of visits in a bout. We found that, the more vis-
its are included in a bout, the more likely revisits occur,
i.e. f(nvis) exhibits a sigmoid shape. This inidcate that
bats exhibit a limited working memory helping them to
harvest efficiently. We performed some preliminary agent
based simulations with bats performing greedy search for
the next flower to visit. The bats had a limited amount
of working memory allowing them to avoid flowers they

visited recently. We found that for bats remembering
two or three past visits, the f(nvis) function resembled
the measured data best. This result makes it tempting to
perform agent based simulations more extensively. Given
that we found a phase transition for the optimum as well
as for the very simple greedy solutions, it appears likely
that it exists for the agent-based case as well. It should be
of high interest to know if and how the transition depends
on the “cognitive complexity” of the agents. By carefully
adjusting the experiments to the agent’s complexity, one
might even try to determine how well-developed the “al-
gorithms” for spatial and temporal cognition in natural
bats are.
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