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Sampling rare events: Statistics of local sequence alignments
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A method to calculate probability distributions in regions where the eventsvame unlikely (e.g., p
~10 %9 is presented. The basic idea is to map the underlying model on a physical system. The system is
simulated at a low temperature, such that preferably configurations with originally low probabilities are gen-
erated. Since the distribution of such a physical system is known, the original unbiased distribution can be
obtained. As an application, local alignment of protein sequences is studied. The deviation of the distribution
p(S) of optimum scores from the extreme-value distribution is quantified. This deviation decreases with
growing sequence length.
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In many fields of physics, such as statistical physics, par- By simply changing perspective, one can apply these
ticle physics, or biophysics, the rare-event tails of probabilitystandard techniques to many other problems. Here, the
distributions are studied. Here a method is presented, whicthethod is applied to sequence alignment. The basic idea is
allows one to obtain the probabilities downfie- 10" “*for  that one uses a physical system, which has a state given by a
problems where the distribution is taken over a quenche@air of sequences and is held at temperaffirénstead of
disorder. As an example, the method is applied to and exdirectly drawing the random sequences. This idea is similar
plained by using a biological problem, which has a highto the simulated annealing approat®], used to find ap-
relevance for genome research. proximate solutions of hard optimization problems. But the

Modern molecular biology, e.g., théuman genome method presented here goes much beyond simulated anneal-
project[1], relies heavily on the use of large databasdls  ing, because not only the minimum of one system but the
where DNA or protein sequences are stored. The basic tog|hole distribution over all random instances is sampled dur-
for accessing these databases and comparing different S®y one run. The state of the system changes in time, gov-
quences isequence alignmenthe result of each compari- erned by the rules of statistical mechanics. The en&rgy
son is a maximum alignmEBt:OI’e SOne is interested either the system is defined &= — S. Therefore, at low tempera-
in glObal or local Optimum alignments. For the first case, the tures the System prefers pairs of sequences with h|gh score
score is maximized over all alignments of both completeyajue S Since the thermodynamic properties of the system
sequences. The optimum local alignment is the optimungre known, it is possible to extract the target distribution

over all global alignments of all possible pairs of contiguousy(s) from the measured distributiop* (S) of scores.
subsequences. To estimate the significance of the result of a Tq fix the notations, for the alignment problem two se-

comparison, one has to know, based on a random model, thgjencesx=x;x,- - -x, andy=y;y,- - -y,, over a finite al-
statistical distributionp(S) of scores. For biologically rel- phapet withr letters are given. For DNA the alphabet has
evant models, e.g., for protein sequences with BLOSUM6Z4oy |etters, representing the bases; for protein sequences it
substitution scoref3] and affine gap cosfigl], p(S) is not  has 20 letters, representing the amino acids. fi.ee the
known in the interesting region, whepgS) is small. Anum-  probability for the occurrence of lettér assuming here that
ber of empirical studie$5,6] for local alignment, in the re- | |etters of a sequence are independent. An alignment is a
gion wherep(S) is large, suggest thai(S) is anextreme-  pairing {(x; Yidb (k=1,2,... K, 1<i\<ics,<n and 1
value (or Gumbe) distribution[7] o kK
< <ikr1=m) of letters from the two sequences. Note that
some letters may not be aligned, i.@apsdo occur. To each
Pa(S)=re NS Wexy —e MSTW), (1)  alignment a score is assigned, via a scoring funcsiony).
The total score is the sum of scores of all aligned letters
Eks(xik,yjk) plus the costs of all gaps. Here, so calidtine
gap costs &,8) are considered, i.e., a gap of lendtihas
costsg(l)=—a—B(I—1). The optimumglobal alignment
In this work, to determine the tail gf(S), a rare-event Sy(X,y) is obtained by maximizing the score over all values

simulationis applied. For dynamical problems, such as in-of K and over'all pOSSibIe placements of the gaps. The
vestigating queuing systems or studying the reliability ofoptimumlocal alignmentSis the maximum over all possLbIe

whereu denotes the maximum of the distribution andhar-
acterizes the behavior for large valuespi.e., the tail of the
distribution.

technical components, several technig[@shave been de- contiguous subsequences ;(:Xii(ii—l' Xig—1, y
veloped. Related methods have been introduced in physicsy;y;. - --yj,x—1 Of the optimaSy(x,y). Hence, since an
[10,11]. alignment of zero length has score zero, the optimum local

alignment is always non-negative by definition. For both glo-
bal and local alignment efficient algorithnjd3,4] exist,
*Email address: hartmann@bach.ucsc.edu which calculate an optimum alignment in tingnm).
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Hence, one can easily generate, eNys 10° samples of
pairs of sequences according the frequen€iebtain each
time the optimum alignment, and calculate a histogram of
the optimum score$. This simple samplingallows one to
calculatep(S) in the region where the probabilities are large
[e.g., p(S)~10 *]. Recently, theisland method[14] was
introduced, which allows a speed up of several orders of
magnitudes for very long sequences, but still the far end of
the distribution is out of reach. Also, please note that biologi-
cally relevant protein sequences have lengths of few hundred
amino acids, as studied in this paper.

As already sketched, to determine the behavigo(@) at
the rare-event taile.g., p(S)~10 4%, one views each pair
c=(x,y) of sequences as the state of physical system, which 0 o 50'00 10(')00 15(')00 20000
behaves according the rules of statistical mechanics, with i
— S being the energy of the system. More precisely, instead
of considering many independent pairs of fixed sequences, a FIG. 1. Average alignment scoi@as a function of step for
Markov chain[15] ¢(0)—c(1)—c(2)— - - - of pairsis used n,m=20, 4 letters, local alignment without gaps for different tem-
to generate the instances. For each instaliethe optimum  peraturesT. For each temperature, 1000 simulations were started
local alignment scor& is calculated. Belowp(c—c’) de-  With two random sequencé®w scoreg and 1000 simulations with
notes the transition probability from staeto statec’. WO equal sequencesigh scores
Changing the sequences dynamically is similar to annealed | ] ) o
disorder simulationg8]. But while the physics of an an- obtains the estimator for the unbiased dls_trlbutlon through
nealed system is different from the physics of the related?(S)=2¢P(c)=p*(S)Z(T)exp(~ST). Z(T) is unknowna
quenched system, here an annealed-disorder-like simulatidgiiori, but can be determined very easily, as shown below.
is used via applying a simple transformatiee below to Note a striking difference from conventional Monte Carlo
obtain thetrue behavior of the quenched system. (MC) simulations of random systems. For the conventional

The simplest rule for the transition is, to choose randomlyaPproach, different samples with quenched disorder are stud-
a position in one of the sequences with all positions beinded by MC simulations, each sample having the same prob-
equiprobable and to choose randomly a new letter from th@bility. Within the method presented here, a biased simula-
alphabet, the letters having probabilities i.e., p(c—c’) tion is doneon Fhe disorder while the behe_lvior. of ee_lch
=f,/(n+m) if c,c’ differ by at most one letter, anf(c random sampl_e is determined e?<actly, resulting finally in the
—¢’)=0 otherwise. With this choice of the transition prob- Unbiased distribution over the disorder.

abilities, fort—co all possible pairs of sequences have the To describe the behavior @f(S) over a wide range, the
probability P(c)=1I;f, I1;f, of occurring. Hence, simple model must be simulated at several temperatures. For this
j ,

reason, and to increase the efficiency, the model is simulated
ia theparallel temperingnethod 19]. Using this technique,

sampling is reproduced.

To increase the efficiency, one can change the samplin o .
distribution [9,16], a standard method for simulating rare e system Is §|mulat<|ald| ENT dlf_firent_ temperaturesTl_
events[17], which allows one to concentrate the sampling in = 12= """ = Tn in parallel, i.e., withN independent pairs
small regions in configuration space. A good choice for thec(Ti) of sequences. The main idea of parallel tempering is
transition rule of the sequence-alignment problem is first tghat from time to time the configurations between neighbor-
change one position of one sequence randomly as abovid temperatures;, T, are exchanged according a proba-
recalculate the optimum alignme®(c’) with a standard bilistic rule [19]. Here, each simulation step consists of one
algorithm and accept this move—c’ with the Metropolis ~ Markov step for each configuratianand one exchange step
probability [16] maxX1,expAST)], where AS=S(c’)  between one neighboring pai(Ti),c(Ti;+1).

—S(c). This leads to the equilibrium state of a physical sys- Next, a simple example is given, illustrating how the
tem at temperatur® with energyE= — S, with the distribu- method works. Optimum local alignments without gaps for
tion weighted by the sequence probabilitieéc). The ad- Sequences of equal length=n=20 andr=4 letters, all
vantage of this approach is that the equilibrium distributionhaving the same probability 1/4, are calculated. For the test
Q(c) is known from statistical physics[18: Q(c) the following score is applieds(x,y)=1 if x=y and
=P(c)exgd (c)/T)/Z with Z(T)=3.P(c)exdS(c)/T] being _s(x_,y) =-3 o'.[herW|se. Two types of runs are per_fo_r_méej:
the partition function. Thus, the estimator for the probability initially, all pairs of sequences are random, dbglinitially,
to have scoreSin the biased ensemble is each pair consists of two equal sequences. Thus, for the first
type, initially the score is low, while for the second type the
. expS/IT) «, score is initially maximal. This provides a criterion for
p*(S)= (T 2 P(c), 2) equilibration: if the average score for both initial configura-
tions agrees within error bafat timetg), the simulation is
where the sum>’ runs over all sequences with sco®& long enough. In Fig. 1 the average optimum scBifer the
Thus, from the measured histogram of scopgqS) one  beginning 10% of the running time of 1000 independent runs
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FIG. 2. Rescaled distributiop(S) for the direct simulation and FIG. 3. Distribution of alignment scoreS for L=40,100,400,
for T=0.57, T=0.69 forn,m=20, 4 letters, local alignment with- BLOSUM®62 substitution matrix and affine (12,1) gap costs. The
out gaps. The solid line is the result of a large simple samplinghin solid lines are fits to extreme-value distributions with param-
simulation withN=10° samples. Inset: Raw distribution of align- eters @,u), yielding (\,u)=(0.3555),15.35(4) (n,m=40),
ment scoresS for the direct simulation and folf =0.57 andT (0.3042),21.67(4) (n,m=100), and (0.28(03),32.01(3) for
=0.69. n,m=400.

and four different temperaturdsis shown.

To obtain weakly correlated samples, only valuesgat Packground frequencies by Robinson and Robir{fi are
to+ 7, to+ 27, etc., are taken, where is the characteristic used together with the BLOSUM®62 scoring matf] for
time in which the score-score correlatioms(ty,t)  (12,1) affine gap costs. This type of system has been studied
= ((S(te) S(t)) — (S)D)/((S?)—(S)?) decreases to &/ in Ref.[6] in the region wherg(S) is large. Here, sequences

In the inset of Fig. 2 the raw distribution & for two  of lengthn=m in the ranggq 40,400 were considered. The
temperatures is shown together with a distribution from asimulations were performed fon;=7 temperaturesT
simple sampling ofN=10" realizations. Clearly, with the e[2...10] ([3.5 --10] for n,m=400), with up to 100 in-
statistical mechanics approach, the region of high scores igependent runs of lengths up tQ,,=4x10° steps. To test
sampled much more frequently. for equilibration, it was again checked whether simulations

For low scores, the final distributions obtained from thestarting at random statefow score and starting at ground
simple sampling and from the finite-temperature simulationstates(maximum possible scoreonverged to the same av-
must agree. This can be used to determine the cord{@t  grage energy. For the lowest temperatures it was not possible
It is chosen such that the difference in an inteV@],S;] 5 equilibrate the system within the given time. The reason is
between the simple sampling distribution and the rescaleg, ¢ nearT~1/\ the equilibration times seem to diverge.
distribution atT is minimal. In the same way/(T) at lower s ingicates a phase transition in the physical system with

temperatures can b.e obtained by matching o d|§tr|put|9n robably a glassy phase at low temperatures. Hence, for the
obtained before at higher temperatures. The final distributio .
. - : Lo .. evaluation only data from those temperatures were used,
is shown in Fig. 2. For each data point, the distribution with Lo o

I\é/here equilibration could be guaranteed.

the highest accuracy was taken. For comparison, a simp ) S : .
sampling distribution obtained using a huge number of In Fig. 3 the distributionsp(S) of optimum alignment

samples K=10%) is shown. Both results agree very well. SCOTeS are shown. To obtain the same accuracy with a
Note that the distribution from the finif6-approach spans Simple-sampling approach, given a computer that optimizes

almost the entire intervdl0,20]. In principal, the region for Say 18 samples per second, a total simulation time of about
very small scoreS can be investigated also using the given2-5X 10" times the age of the universe would be necessary.
method by simulating ategativetemperatures. How power- Also shown in Fig. 3 are fits of the low-score data to Gumbel
ful the given method can be seen by looking at the rightdistributions. The resulting parameteis () are comparable
border of the interval, where a valup(20)=9.13(20) to the values found6] before and depend slightly on the
x 10" ¥ was obtained. This agrees within error bars with thesequence length. For high scores, significant deviations from
exact resul{21] 0.25°%~9.09x 10" 2. Also the same model the pure Gumbel behavior are visible, in contrast to the ear-
with (3,1) gap costs was tried and again a perfect agreemetier predictions. Since the deviations occur at high score val-
with a huge simple sampling simulation was found. Thisues, they could not be detected before using conventional
example illustrates that the method presented here is indeadethods. The reason for the deviations is edge effects: very
able to calculate accurately the distributipfS) of optimum  long alignments cannot start near the end of either of the
alignment scores in regions whepéS) is very small. sequences, so they become even more unlikely. The results
Next, the results for a biologically relevant case are prefound here can be fitted very well todifiedGumbel dis-
sented. Sequences of amino acids distributed according thgbutions of the form
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Po(S)=knel MS- u)—)\Z(S—u)Z]exq —eMs-wy  (3) logically relevant case of the local sequence-alignment prob-
lem. The distributionp(S) can be studied in regions where
with k~1, resulting in values for X,\,,u) of (0.3277 the probability is as small as 1¢°, and yet the deviations of
+0.0003,8.56 10 #+3x 10 6,15.35-0.04) forn,m=40, the distribution from the theoretical prediction are visible.

(0.2783-0.0003,1.7X 10 4+ 1x10 6,21.67-0.04) for

n,m=100, and (0.27380.0004,6. % 10 °=2 workshop “Statistical Physics of Biological Information” at
_><10 °,32.01£0.03) forn,m=400. Anyway, W|th_|ncreas— the Institute for Theoretical Physics in Santa Barbara during
ing lengthsn,m, on a scale of scores p-ropprtlonal ©  giscussions with P. Grassberger and E. Marinari. The author
~Inn, _p(S)_approaches the Gumbel distribution more andvvould like to thank A.P. Young and P. Grassberger for criti-
more, i.e., lim__X,=0. cally reading the manuscript and interesting discussions and

To summarize, a method has been presented, which ak.P. Young also for additional support. The simulations were
lows one to study rare events in random systems down tperformed on a Beowulf Cluster at the Institut fliheore-
regions ofvery low probabilities. The basic idea is to inter- tische Physik of the UniversitaMlagdeburg with technical
pret the probability space as the phase space of a physicalipport from S. Mertens and H. Bauke. Financial support
system. From the distribution of states, the original unbiase@vas obtained from the DF@eutsche Forschungsgemein-
distribution can be obtained. The method is applied to a bioschafi under Grant No. Ha 3169/1-1.
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