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Sampling rare events: Statistics of local sequence alignments

Alexander K. Hartmann*
Department of Physics, University of California, Santa Cruz, California 95064

~Received 11 September 2001; published 15 April 2002!

A method to calculate probability distributions in regions where the events arevery unlikely ~e.g., p
;10240) is presented. The basic idea is to map the underlying model on a physical system. The system is
simulated at a low temperature, such that preferably configurations with originally low probabilities are gen-
erated. Since the distribution of such a physical system is known, the original unbiased distribution can be
obtained. As an application, local alignment of protein sequences is studied. The deviation of the distribution
p(S) of optimum scores from the extreme-value distribution is quantified. This deviation decreases with
growing sequence length.
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In many fields of physics, such as statistical physics, p
ticle physics, or biophysics, the rare-event tails of probabi
distributions are studied. Here a method is presented, w
allows one to obtain the probabilities down top;10240 for
problems where the distribution is taken over a quenc
disorder. As an example, the method is applied to and
plained by using a biological problem, which has a hi
relevance for genome research.

Modern molecular biology, e.g., thehuman genome
project @1#, relies heavily on the use of large databases@2#,
where DNA or protein sequences are stored. The basic
for accessing these databases and comparing differen
quences issequence alignment. The result of each compari
son is a maximum alignmentscore S. One is interested eithe
in global or local optimum alignments. For the first case, t
score is maximized over all alignments of both compl
sequences. The optimum local alignment is the optim
over all global alignments of all possible pairs of contiguo
subsequences. To estimate the significance of the result
comparison, one has to know, based on a random model
statistical distributionp(S) of scores. For biologically rel-
evant models, e.g., for protein sequences with BLOSUM
substitution scores@3# and affine gap costs@4#, p(S) is not
known in the interesting region, wherep(S) is small. A num-
ber of empirical studies@5,6# for local alignment, in the re-
gion wherep(S) is large, suggest thatp(S) is an extreme-
value ~or Gumbel! distribution @7#

pG~S!5le2l(S2u)exp~2e2l(S2u)!, ~1!

whereu denotes the maximum of the distribution andl char-
acterizes the behavior for large values ofS, i.e., the tail of the
distribution.

In this work, to determine the tail ofp(S), a rare-event
simulation is applied. For dynamical problems, such as
vestigating queuing systems or studying the reliability
technical components, several techniques@9# have been de-
veloped. Related methods have been introduced in phy
@10,11#.
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By simply changing perspective, one can apply the
standard techniques to many other problems. Here,
method is applied to sequence alignment. The basic ide
that one uses a physical system, which has a state given
pair of sequences and is held at temperatureT, instead of
directly drawing the random sequences. This idea is sim
to the simulated annealing approach@12#, used to find ap-
proximate solutions of hard optimization problems. But t
method presented here goes much beyond simulated an
ing, because not only the minimum of one system but
whole distribution over all random instances is sampled d
ing one run. The state of the system changes in time, g
erned by the rules of statistical mechanics. The energyE of
the system is defined asE52S. Therefore, at low tempera
tures the system prefers pairs of sequences with high s
value S. Since the thermodynamic properties of the syst
are known, it is possible to extract the target distributi
p(S) from the measured distributionp* (S) of scores.

To fix the notations, for the alignment problem two s
quencesx5x1x2•••xn and y5y1y2•••ym over a finite al-
phabet withr letters are given. For DNA the alphabet h
four letters, representing the bases; for protein sequenc
has 20 letters, representing the amino acids. Letf i be the
probability for the occurrence of letteri, assuming here tha
all letters of a sequence are independent. An alignment
pairing $(xi k

,yj k
)% (k51,2, . . . ,K, 1< i k, i k11<n and 1

< j k, j k11<m) of letters from the two sequences. Note th
some letters may not be aligned, i.e.,gapsdo occur. To each
alignment a score is assigned, via a scoring functions(x,y).
The total score is the sum of scores of all aligned lett
(ks(xi k

,yj k
) plus the costs of all gaps. Here, so calledaffine

gap costs (a,b) are considered, i.e., a gap of lengthl has
costsg( l )52a2b( l 21). The optimumglobal alignment
Sg(x,y) is obtained by maximizing the score over all valu
of K and over all possible placements of the gaps. T
optimumlocal alignmentS is the maximum over all possible
contiguous subsequences x̃5xixi 11•••xi 1 l 21 , ỹ
5yjyj 11•••yj 1k21 of the optimaSg( x̃,ỹ). Hence, since an
alignment of zero length has score zero, the optimum lo
alignment is always non-negative by definition. For both g
bal and local alignment efficient algorithms@13,4# exist,
which calculate an optimum alignment in timeO(nm).
©2002 The American Physical Society02-1
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Hence, one can easily generate, e.g.,N'105 samples of
pairs of sequences according the frequenciesf i , obtain each
time the optimum alignment, and calculate a histogram
the optimum scoresS. This simple samplingallows one to
calculatep(S) in the region where the probabilities are lar
@e.g., p(S)'1024#. Recently, theisland method@14# was
introduced, which allows a speed up of several orders
magnitudes for very long sequences, but still the far end
the distribution is out of reach. Also, please note that biolo
cally relevant protein sequences have lengths of few hund
amino acids, as studied in this paper.

As already sketched, to determine the behavior ofp(S) at
the rare-event tail@e.g., p(S)'10240#, one views each pai
c5(x,y) of sequences as the state of physical system, wh
behaves according the rules of statistical mechanics, w
2S being the energy of the system. More precisely, inst
of considering many independent pairs of fixed sequence
Markov chain@15# c(0)→c(1)→c(2)→••• of pairs is used
to generate the instances. For each instancec( i ) the optimum
local alignment scoreS is calculated. Belowp(c→c8) de-
notes the transition probability from statec to state c8.
Changing the sequences dynamically is similar to anne
disorder simulations@8#. But, while the physics of an an
nealed system is different from the physics of the rela
quenched system, here an annealed-disorder-like simula
is used via applying a simple transformation~see below! to
obtain thetrue behavior of the quenched system.

The simplest rule for the transition is, to choose random
a position in one of the sequences with all positions be
equiprobable and to choose randomly a new letter from
alphabet, the letters having probabilitiesf i , i.e., p(c→c8)
5 f i /(n1m) if c,c8 differ by at most one letter, andp(c
→c8)50 otherwise. With this choice of the transition pro
abilities, for t→` all possible pairs of sequences have t
probability P(c)5) i f xi

) j f y j
of occurring. Hence, simple

sampling is reproduced.
To increase the efficiency, one can change the samp

distribution @9,16#, a standard method for simulating ra
events@17#, which allows one to concentrate the sampling
small regions in configuration space. A good choice for
transition rule of the sequence-alignment problem is firs
change one position of one sequence randomly as ab
recalculate the optimum alignmentS(c8) with a standard
algorithm and accept this movec→c8 with the Metropolis
probability @16# max@1,exp(DS/T)#, where DS5S(c8)
2S(c). This leads to the equilibrium state of a physical sy
tem at temperatureT with energyE52S, with the distribu-
tion weighted by the sequence probabilitiesP(c). The ad-
vantage of this approach is that the equilibrium distribut
Q(c) is known from statistical physics@18#: Q(c)
5P(c)exp@S(c)/T#/Z with Z(T)5(cP(c)exp@S(c)/T# being
the partition function. Thus, the estimator for the probabil
to have scoreS in the biased ensemble is

p* ~S!5
exp~S/T!

Z~T! (
c

8P~c!, ~2!

where the sum(8 runs over all sequences with scoreS.
Thus, from the measured histogram of scoresp* (S) one
05610
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obtains the estimator for the unbiased distribution throu
p(S)5(c8P(c)5p* (S)Z(T)exp(2S/T). Z(T) is unknowna
priori , but can be determined very easily, as shown belo

Note a striking difference from conventional Monte Car
~MC! simulations of random systems. For the conventio
approach, different samples with quenched disorder are s
ied by MC simulations, each sample having the same pr
ability. Within the method presented here, a biased simu
tion is doneon the disorder, while the behavior of each
random sample is determined exactly, resulting finally in
unbiased distribution over the disorder.

To describe the behavior ofp(S) over a wide range, the
model must be simulated at several temperatures. For
reason, and to increase the efficiency, the model is simul
via theparallel temperingmethod@19#. Using this technique,
the system is simulated atNT different temperaturesT1
,T2,•••,TNT

in parallel, i.e., withNT independent pairs

c(Ti) of sequences. The main idea of parallel tempering
that from time to time the configurations between neighb
ing temperaturesTi , Ti 11 are exchanged according a prob
bilistic rule @19#. Here, each simulation step consists of o
Markov step for each configurationc and one exchange ste
between one neighboring pairc(Ti),c(Ti 11).

Next, a simple example is given, illustrating how th
method works. Optimum local alignments without gaps
sequences of equal lengthm5n520 and r 54 letters, all
having the same probability 1/4, are calculated. For the
the following score is applied:s(x,y)51 if x5y and
s(x,y)523 otherwise. Two types of runs are performed:~a!
initially, all pairs of sequences are random, and~b! initially,
each pair consists of two equal sequences. Thus, for the
type, initially the score is low, while for the second type t
score is initially maximal. This provides a criterion fo
equilibration: if the average score for both initial configur
tions agrees within error bars~at time t0), the simulation is
long enough. In Fig. 1 the average optimum scoreS for the
beginning 10% of the running time of 1000 independent ru

FIG. 1. Average alignment scoreS as a function of stept for
n,m520, 4 letters, local alignment without gaps for different tem
peraturesT. For each temperature, 1000 simulations were sta
with two random sequences~low scores! and 1000 simulations with
two equal sequences~high scores!.
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and four different temperaturesT is shown.
To obtain weakly correlated samples, only values att0 ,

t01t, t012t, etc., are taken, wheret is the characteristic
time in which the score-score correlationcS(t0 ,t)
5(^S(t0)S(t)&2^S&2)/(^S2&2^S&2) decreases to 1/e.

In the inset of Fig. 2 the raw distribution ofS for two
temperatures is shown together with a distribution from
simple sampling ofN5104 realizations. Clearly, with the
statistical mechanics approach, the region of high score
sampled much more frequently.

For low scores, the final distributions obtained from t
simple sampling and from the finite-temperature simulat
must agree. This can be used to determine the constantZ(T).
It is chosen such that the difference in an interval@S1 ,S2#
between the simple sampling distribution and the resca
distribution atT is minimal. In the same wayZ(T) at lower
temperatures can be obtained by matching to distributi
obtained before at higher temperatures. The final distribu
is shown in Fig. 2. For each data point, the distribution w
the highest accuracy was taken. For comparison, a sim
sampling distribution obtained using a huge number
samples (N5109) is shown. Both results agree very we
Note that the distribution from the finite-T approach spans
almost the entire interval@0,20#. In principal, the region for
very small scoreS can be investigated also using the giv
method by simulating atnegativetemperatures. How power
ful the given method can be seen by looking at the ri
border of the interval, where a valuep(20)59.13(20)
310213 was obtained. This agrees within error bars with t
exact result@21# 0.2520'9.09310213. Also the same mode
with (3,1) gap costs was tried and again a perfect agreem
with a huge simple sampling simulation was found. Th
example illustrates that the method presented here is ind
able to calculate accurately the distributionp(S) of optimum
alignment scores in regions wherep(S) is very small.

Next, the results for a biologically relevant case are p
sented. Sequences of amino acids distributed according

FIG. 2. Rescaled distributionp(S) for the direct simulation and
for T50.57, T50.69 forn,m520, 4 letters, local alignment with
out gaps. The solid line is the result of a large simple samp
simulation withN5109 samples. Inset: Raw distribution of align
ment scoresS for the direct simulation and forT50.57 andT
50.69.
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background frequencies by Robinson and Robinson@20# are
used together with the BLOSUM62 scoring matrix@3# for
(12,1) affine gap costs. This type of system has been stu
in Ref. @6# in the region wherep(S) is large. Here, sequence
of lengthn5m in the range@40,400# were considered. The
simulations were performed fornT57 temperaturesT
P@2•••10# (@3.5•••10# for n,m5400), with up to 100 in-
dependent runs of lengths up totmax543105 steps. To test
for equilibration, it was again checked whether simulatio
starting at random states~low score! and starting at ground
states~maximum possible score! converged to the same av
erage energy. For the lowest temperatures it was not pos
to equilibrate the system within the given time. The reason
that nearT'1/l the equilibration times seem to diverg
This indicates a phase transition in the physical system w
~probably! a glassy phase at low temperatures. Hence, for
evaluation only data from those temperatures were us
where equilibration could be guaranteed.

In Fig. 3 the distributionsp(S) of optimum alignment
scores are shown. To obtain the same accuracy wit
simple-sampling approach, given a computer that optimi
say 106 samples per second, a total simulation time of ab
2.531017 times the age of the universe would be necess
Also shown in Fig. 3 are fits of the low-score data to Gumb
distributions. The resulting parameters (l,u) are comparable
to the values found@6# before and depend slightly on th
sequence length. For high scores, significant deviations f
the pure Gumbel behavior are visible, in contrast to the e
lier predictions. Since the deviations occur at high score v
ues, they could not be detected before using conventio
methods. The reason for the deviations is edge effects: v
long alignments cannot start near the end of either of
sequences, so they become even more unlikely. The re
found here can be fitted very well tomodifiedGumbel dis-
tributions of the form

g

FIG. 3. Distribution of alignment scoresS for L540,100,400,
BLOSUM62 substitution matrix and affine (12,1) gap costs. T
thin solid lines are fits to extreme-value distributions with para
eters (l,u), yielding (l,u)5„0.355(5),15.35(4)… (n,m540),
„0.304(2),21.67(4)… (n,m5100), and „0.280(3),32.01(3)… for
n,m5400.
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ALEXANDER K. HARTMANN PHYSICAL REVIEW E 65 056102
p̃G~S!5kle@2l~S2u!2l2~S2u!2#exp~2e2l(S2u)!, ~3!

with k'1, resulting in values for (l,l2 ,u) of (0.3277
60.0003,8.56310246331026,15.3560.04) for n,m540,
(0.278360.0003,1.72310246131026,21.6760.04) for
n,m5100, and (0.273360.0004,6.13102562
31026,32.0160.03) for n,m5400. Anyway, with increas-
ing lengths n,m, on a scale of scores proportional tou
; ln n, p(S) approaches the Gumbel distribution more a
more, i.e., lim

n→`
l250.

To summarize, a method has been presented, which
lows one to study rare events in random systems down
regions ofvery lowprobabilities. The basic idea is to inte
pret the probability space as the phase space of a phy
system. From the distribution of states, the original unbia
distribution can be obtained. The method is applied to a b
tu
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logically relevant case of the local sequence-alignment pr
lem. The distributionp(S) can be studied in regions wher
the probability is as small as 10240, and yet the deviations o
the distribution from the theoretical prediction are visible.

The author developed the idea for this method at
workshop ‘‘Statistical Physics of Biological Information’’ a
the Institute for Theoretical Physics in Santa Barbara dur
discussions with P. Grassberger and E. Marinari. The au
would like to thank A.P. Young and P. Grassberger for cr
cally reading the manuscript and interesting discussions
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performed on a Beowulf Cluster at the Institut fu¨r Theore-
tische Physik of the Universita¨t Magdeburg with technica
support from S. Mertens and H. Bauke. Financial supp
was obtained from the DFG~Deutsche Forschungsgemei
schaft! under Grant No. Ha 3169/1-1.
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