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Abstract

Background: Statistics of pairwise local sequence alignment involves the question “how probable is a certain

alignment score if we compare two random sequences of given length?”. So far, research has focused on the

mathematically convenient null model where both sequences are random i.i.d. objects. In many applications,

such as a large-scale database homology search for transmembrane proteins, this model is not the most

appropriate one: One sequence (the query) remains fixed, while it is scored against many other sequences.

Search sensitivity and specificity benefit from position-dependent scoring schemes or use of HMMs. Additionally,

one may wish to relax the i.i.d. assumption in the null model. Despite their practical importance, the statistical

properties of these settings have not been well investigated yet.

Results: We use here an efficient general method that computes the exact score distribution to any desired

accuracy. In this way, we have access to the “tail” of the distribution, describing in particular the region of

intermediate score values, which are relevant for practical applications. The method is applicable to many null

models and many similarity measures that satisfy a few weak assumptions. It can be applied, e.g., to HMMs,

normalized alignment, or even stochastic context-free grammars. Our method uses recent ideas from rare-event

simulation, combining Markov chain Monte Carlo simulation with importance sampling and generalized

ensembles. It significantly extends the class of models where exact p-values can be computed.
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Conclusions: This paper explains the methodology and presents results on alignment statistics for

transmembrane protein homology search with position-dependent scoring schemes. We compare the results for

random i.i.d. sequences with those for fixed queries. The third approach models queries by a transmembrane

HMM. This is a generic random string model adapted to transmembrane proteins through the classification of

amino acids to cytoplasmic, membrane, and non-cytoplasmic regions.

Introduction

The most popular sequence-comparison algorithms are the Smith-Waterman algorithm [1] for pairwise

local sequence alignment and the Viterbi algorithm for sequence-to-HMM alignment [2]. They return a raw

similarity score that quantifies the similarity between the input objects. Unfortunately, this raw score is

hard to interpret because one does not know the absolute scale of the score.

An interpretation becomes possible when we specify a probabilistic null model for the input: Then the

similarity score becomes a random variable S whose probabilities Prob(S = s) under the null model can be

determined. Sometimes this can be done analytically, but usually one has to apply numerical simulation.

The p-value assigned to an observed score s is defined as pval(s) := Prob(S ≥ s) in the null model, and

− log pval(s) is a measure of surprise (and hence a universally normalized score) for s. The key problem is,

of course, to find Prob(S = s) for a given comparison method, a given scoring scheme, and a given null

model.

In this paper, we explain and extend an efficient and generally applicable technique that solves this

problem in many different sequence comparison settings, such as for a BLAST-like database search [3] with

a fixed query, for position-specific scoring and/or gap-cost schemes (essentially HMMs), or for normalized

alignment [4]. In each of those settings a variety of null models in addition to the i.i.d. model is possible.

Before we state our main contributions, we review existing results and methods and illustrate some of their

deficiencies, motivating the need for new methods.

Previous work.

Let Σ be a fixed alphabet, denoting e.g. the nucleotides or the amino acids.
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Most of the existing statistical work for pairwise sequence comparison focuses on null models where both

sequences are random and at each position a symbol σ ∈ Σ is chosen independently of the other positions

(“i.i.d. model”), with a given frequency fσ > 0 (
∑

σ∈Σ fσ = 1). f often reflects the average composition of

proteins in the UniProt/SwissProt database [5]. Scores for individual pairs of symbols are given by a

constant (position-independent) symmetric Σ× Σ scoring matrix with negative expected score, such as

BLOSUM62 [6]. Gap costs are mostly restricted to linear or affine schemes. We shall refer to this model

later as “random query - general-purpose scoring” (RQGS).

For gapless pairwise local sequence alignment, the raw score distribution can be derived numerically by

Markov chain analysis [7] and also asymptotically for infinite sequences (Karlin-Altschul or Dembo-Karlin

statistics [8]): It is an extreme value distribution (EVD), also called Gumbel distribution [9]:

Prob(S > s) = 1− exp[−c · exp(−λs)], where the parameters λ > 0 and c > 0 depends on the score matrix,

on the symbol frequencies f , and on the query and subject sequence lengths LQ and LS. Asymptotically we

have c = KLQLS for a length-independent K > 0.

For gapped pairwise local sequence alignment, there exist no universal analytic results, but special

cases [10] and empirical evidence also indicate convergence towards the Gumbel form for long sequences; λ

and K now additionally depend on the gap-cost function [11]. Several recent works have focused on

efficient numerical estimation of these parameters [12]. The “edge effects” [13] for finite sequences are

treated in various ways, e.g. by adjusting the lengths of the sequences to “effective lengths” but still

assuming a Gumbel form of the distribution. Nevertheless, for moderate sequence lengths, which are

biologically most relevant, the true distribution differs strongly from a Gumbel form [14,15], which can be

dealt with by including a correction term to the Gumbel form.

The (RQGS) model is convenient, because the problem of computing significance values reduces to the

estimation of only two parameters, which can be precomputed for each scoring scheme. However, there are

also several problems. For instance, the mathematics do not automatically extend to more complex null

models than the i.i.d. model, which is one of the reasons that they are not used in practice. Another

striking consequence is the following one: The p-values reported by (the original) BLAST only depend on

the raw score and query and subject length, and not on the individual query. This leads to large

distortions when the query composition does not match the null model composition. For example, when we

run a homology search for the Human transmembrane protein rhodopsin (UniProt accession P08100) with

BLAST (BLOSUM 62, gap-init 12, gap-extend 1, no composition adjustment, no filtering), we find a
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possibly remote homolog Q8NH42 with an E-value 1 of 9 · 10−8. However, using a recent “composition-based

adjustment” option [16, 17] leads to a very different E-value of 0.001 for the same protein. This underlines

the importance of query-specific or at least composition-based statistics, particularly for intermediate

p-values.

The statistics of position-dependent scoring and/or gap-cost schemes, as used in PSI-BLAST [18] or in

hidden Markov model (HMM) frameworks, are much less well explored. The central question here is,

“given a query Q and a position-specific scoring scheme, what is the score distribution when random

null-model sequences of given length are scored against Q?”. We refer to this model as “fixed query -

position-dependent scoring” (FQPS). As compromise between the general (RQGS) and the very specific

(FQPS) models, one may release the i.i.d. assumption on the query of the (RQGS) model and draw query

sequences according to probabilities given by an HMM.

In all these cases EVDs are still used heuristically. Hence, one attempts to fit the parameters of the EVD

by straightforwardly sampling from the score distribution. This is, we generate pairs of random sequences

according to the given null model and calculate the corresponding alignment score. Such an approach is

e.g. implemented in the hmmcalibrate program from the HMMER package [19]. Nevertheless, this may

fail to describe the tail of the distribution correctly, although this is most important for the estimation of

statistical significance.

Our motivation for a simulation-based method that makes no initial parametric assumption refers to the

approach [20] to increase the sensitivity of detecting homologs of a given transmembrane (TM) protein in a

database search: A bipartite scoring scheme with a (non-symmetric) transmembrane helix specific scoring

matrix (such as SLIM [20]) for the TM helices and a general-purpose scoring matrix (such as BLOSUM [6])

for the remaining regions of the query protein were applied, see Figure 1. This results in higher search

sensitivity and specificity. However, a statistical theory or efficient computational method in such a

(FQPS) framework is missing so far.

Our contributions and paper outline

We present a general framework (Algorithm 2) for efficient estimation of the tail of raw score distributions

in sequence comparison problems. We only make the following assumptions:

1. We are able to sample sequences x according to the null model and to compute the null model

1The E-value for score s is the expected number of database hits with score at least s and depends on both pval(s) and the
database size.
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probability of any given x.

2. We have an efficient algorithm A that computes the score S(x, y), where x, y could be a pair of

random sequences (RQGS or HMM), or one fixed and one random sequence (FQPS).

3. The scores are rational numbers with a common denominator. Hence, without loss of generality, they

can be assumed to be integers.

4. Optionally for the (HMM) approach, we have an efficient algorithm V that predicts the most likely

state sequence for a given sequence.

Our framework is readily applicable to the (RQGS), (FQPS) and (HMM) models, but also to more exotic

settings, such as normalized alignment [4], where the score is not additive, but normalized by the alignment

length, for which no statistical framework exists so far. Very recently Eddy [21] studied the distributions of

Viterbi and Forward scores under probabilistic local alignment, for which a numerical analysis of the

rare-event tail would be of interest as well.

In the current stage of the methodology, the computation of an accurate “on the fly” p-value for each

particular database query might be impracticable as the convergence is not achieved within a few minutes.

Therefore one might compromise between the i.i.d. assumption on the query and a more specific model to

precompute score distributions. Our method is applicable to models where null probabilities can be

computed efficiently, such as HMMs, normalized alignment, and even stochastic context-free grammars.

We will illustrate the approach for the HMM for TM proteins (TMHMM [22,23]), which has been proven

valuable in predicting TM helices. In this approach (and possible in other models as well) one is able to

specify the score distribution in more detail, in the sense that a query might be classified into various

sub-classes C with individual score distributions. A natural classification of the TMHMM is the number of

transmembrane regions of the most likely prediction.

The rest of the paper is organized as follows. The following section presents the mathematical background

on importance sampling and Markov chain Monte Carlo methods followed by a description of the

methodology. For ease of exposition, we first state it in terms of the local alignment score for a fixed query

and position-dependent score matrix (as illustrated in Figure 1), but then provide a general high-level

description to underline its versatility. Section “Results” shows computational results on transmembrane

protein similarity statistics in (RQGS), (FQPS) and (HMM), particularly the dependency of the score

distribution P (s) on the sub-classes C is studied. A discussion concludes the paper.
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Background
Importance sampling.

Importance sampling is a general technique to reduce the variance in the estimation of quantities that can

be written as an expectation E[h(Z)], where Z is a random object and h is a real-valued function. We

assume that we can draw n random samples Z1, . . . , Zn from the null model. The expectation is then

approximated by the empirical mean E[h(Z)] ≈ 1/n ·∑n
i=1 h(Zi).

In our setting, to estimate the score distribution (and then p-values), we consider the state space

Z = ΣLQ × ΣLS , from which we generate N random pairs of sequences ({X1, Y1} , . . . , {XN , YN}). These

pairs are then aligned by a given algorithm A and the corresponding similarity scores S(Xi, Yi) are

computed. We consider the family of functions hs : Z → {0, 1} for all s > 0, defined by hs(x, y) := 1 if

S(x, y) = s, and hs(x, y) := 0 if S(x, y) 6= s. So

Prob(S(X, Y ) = s) = E[hs(X, Y )] ≈ |{i : S(Xi, Yi) = s}|/N

If the probability to be estimated is small, say 10−9, we need about 1012 samples to estimate it with

reasonable precision. For very rare events, this “naive” sampling quickly becomes infeasible.

Importance sampling generates the “interesting” events more often by sampling from a different

distribution and correcting for this bias afterward, which results in a more accurate estimate with a

reasonable number of samples. Let p be the probability mass function (pmf) of (X, Y ), and let q be

another pmf satisfying q(x, y) > 0 whenever p(x, y) > 0. Then

Ep[h(X, Y )] =
∑

x,y

h(x, y) · p(x, y)

=
∑

x,y

h(x, y) · p(x, y)

q(x, y)
· q(x, y)

= Eq

[

h(X ′, Y ′)
p(X ′, Y ′)

q(X ′, Y ′)

]

≈ 1

n

n
∑

i=1

h(X ′
i, Y

′
i ) · p(X ′

i, Y
′
i )

q(X ′
i, Y

′
i )

, (1)

where each pair (X ′
i, Y

′
i ) is sampled from pmf q. To successfully apply importance sampling, q has to fulfill

three properties: First, it needs to put high probability on the region of interest; second, we need to be able

to sample according to q; third, we need to be able to compute the correcting weight p(x, y)/q(x, y). Since

directly sampling from q often proves difficult, we shall use a general sampling method which we describe

next.
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Metropolis-Hastings sampling

If we need to generate samples from a discrete distribution q but have no simple direct method to do so,

the Metropolis-Hastings method [24] provides a solution by constructing an ergodic Markov chain with

stationary distribution q in the following way.

Let us call the elements (X, Y ) of the sample space Z configurations. Each configuration (x, y) has a set

N (x, y) of potential neighbors (x′, y′) ∈ N (x, y) that are proposed with positive probability P(x,y),(x′,y′) as

the next configuration. The proposal is accepted with probability

α ((x, y)→ (x′, y′)) = min
{

1,
q(x′, y′) · P(x′,y′),(x,y)

q(x, y) · P(x,y),(x′,y′)

}

, (2)

in which case (x′, y′) becomes the new configuration (x, y). Otherwise (x′, y′) is discarded and (x, y)

remains unchanged.

For an appropriate choice of neighborhoods N (x, y) and of P(x,y),(x′,y′), the so-constructed Markov chain is

indeed ergodic, and the distribution of the configuration converges exponentially fast towards q,

irrespective of the start configuration. We say that the chain has reached equilibrium when convergence

has occurred up to numerically negligible error. Thus, if the configuration (x, y) is sampled after

equilibration, it will behave like a sample from q. In practice, the exact speed of equilibration is unknown

and convergence diagnostics are applied (see below). Several (almost) independent samples are obtained by

running the chain further and taking a sample every k-th step for sufficiently large k to allow time for

“forgetting” the state of the last sampled configuration. This time is usually referred as mixing time.

Methodology

The crucial point of the Metropolis-Hastings update (see Algorithm 1) is the choice of an appropriate

neighborhood N (x, y) and the computation of the probabilities of newly proposed states q(x′, y′). The

neighborhood should be chosen such that the acceptance rate Eq. (2) is between 0.3 and 0.7. We shall

factorize the (unnormalized) pmf q in two contributions, firstly weights w : Z→ R
+ that assign each score

value of interest a weight and secondly the null probability, i.e.

q(x, y) = w(S(x, y)) · p(x, y) . (3)

Note that we will leave w(·) undetermined for a moment, until Section “Wang-Landau Sampling”. The

importance reweighting equation Eq. (1) for hs is then

Prob(S = s) = E [hs(X, Y )] =
∑

x,y

hs(x, y) · p(x, y) ≈ 1

Z

N
∑

i=1

hs(X
′
i, Y

′
i )

w(s)
(4)
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with the normalization constant Z =
∑

s

∑N
i=1

hs(X′
i,Y ′

i )
w(s) .

The (HMM) contains more information than the distribution of S in the sense that each query is a member

of a certain sub-class characterized by the number of transmembrane regions “# of TM helices” to be

determined by the Viterbi algorithm. Each class has its own probability

Pn(s) = Prob(S = s|# of TM helices = n). In order to take this property into account, we deal with the

joint probability Prob(S = s, # of TM helices = n). Accordingly, the weights have a two dimensional

domain w : Z× [0, nmax]→ R and hs in Eq. (4) is replaced by an indicator function hs,n that depends on

two parameters.

Generally the occurrence of x = x1 . . . xLQ
and y = y1 . . . yLS

is characterized by the null probability

p(x, y) = Prob(X = x, Y = y) = fquery(x1 . . . xLQ
) · f subject(y1 . . . yLS

).

This simple factorization allows us to draw proposals for the query and for the subject independently, i.e.

first one of the two sequences is chosen at random 2 with probability 1/2. Then one sequence of its

neighbors is proposed as one partner of the new pair. Hence, we only need to consider the proposal

densities Px,x′ and Py,y′ . For the three different models under consideration these are specified as follows.

Proposal densities for (FQPS) and (RQGS)

In the simplest case either both sequences are i.i.d. or the query is fixed (to some sequence x̃) and the

probabilities of their occurrence factorize, i.e.

fquery(x) =

{

f iid(x) =
∏LQ

i=1 fxi
for (RQGS) and

1{x=x̃} for (FQPS)
(5)

and of course f subject(y) = f iid(y) =
∏LS

i=1 fyi
in both cases.

Due to the factorization that occurs in Eq. (5) it is possible to draw sequences from N (x) such that the

detailed balance condition f iid(x) · Px,x′ = f iid(x′) · Px′,x is fulfilled by the following set of Monte Carlo

moves (see also Figure 2 and Table 1)

a) substitution at position k,

b) insertion at position k with left shift,

c) insertion at position k with right shift,

d) deletion at position k with left shift,

2In the case of (FQPS) the subject is always chosen.
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e) deletion at position k with right shift.

Operation a) appears with probability 1/2 and the other ones with probability 1/2 · 1/4 each. This is one

possible choice that guarantees detailed balance.

Note that all sequences in N (x) have the same length and each operation involves a replacement of an

existing letter with a newly drawn letter, in case a) by a direct substitution and in the cases b)-e) indirect

via a shift operation. Each position of a sequence has the same probability of being chosen and the

replaced letter is chosen in all cases according to the probabilities fσ (σ ∈ Σ).

With this construction the Metropolis-Hastings ratio Eq. (2) simplifies to the special case of the Metropolis

algorithm, i.e.

α ((x, y)→ (x′, y′)) = min

{

1,
w(S(x′, y′))

w(S(x, y))

}

, (6)

where the acceptance rate depends on the score values only.

Proposal densities for the (HMM)

In contrast to the approach presented in the previous section, the generalized method we use here also

works for null models that do not allow for direct sampling from N (x) as in the case of i.i.d. sequences. In

principle this framework, summarized in Algorithm 1, is applicable to all models that allow for a rapid

calculation of the null probabilities f(·). We first explain the ingredients before stating the algorithm.

Let us briefly state some important features of HMMs [2, 25]. In this general probabilistic framework one

assumes that a sequence of observed symbols is generated through a sequence of “hidden” states. This

state sequence, also called path, follows a simple Markov chain. The states are connected to the output

symbols through emission probabilities; that is, a state can produce a symbol according to a distribution

over all possible symbols. More formally, a HMM consists of

• a finite set Σ of symbols (in our case the amino acid alphabet),

• a finite set Γ of (hidden) states,

• inital state probabilities πµ for all µ ∈ Γ with
∑

µ∈Γ πµ = 1,

• emission probabilities pµ
σ in each state µ ∈ Γ and for all σ ∈ Σ with

∑

σ∈Σ pµ
σ = 1,

• a stochastic transition probability matrix P = (pµ,τ )µ,τ∈Γ, i.e.
∑

τ∈Γ pµ,τ = 1.
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Given these model parameters and a fixed sequence x = x1 . . . xL of output symbols, the state sequence

Z = Z1 . . . ZL is a stochastic process.

For the Monte Carlo sampling as needed here, it is not possible to simulate a HMM directly to generate

output sequences, since importance sampling changes the underlying sequence probabilities. Nevertheless,

one still needs to compute the probabilities fHMM(x) for the Monte Carlo acceptance procedure, i.e. the

probabilities that x is the observed sequence generated by the HMM. These probabilities can be computed

in O(L · |Γ|2) time using the well known forward algorithm as described in the following. One introduces

the auxiliary variables fµ(i), which correspond to the probability that the subsequence x1 . . . xi is

generated by the model given that the last state variable Zi has the value µ, i.e.

fµ(i) = Prob(X1 . . . Xi = x1 . . . xi|Zi = µ). The overall probability is then fHMM(x) =
∑

µ∈Γ fµ(L). The

probabilities fµ(i) can be determined by the recursion

fµ(i) = pµ
xi

∑

τ∈Γ

fτ (i− 1) pτ,µ (7)

with initial conditions fµ(1) = πµpµ
x1

.

Within the same time complexity the Viterbi algorithm V computes the most probable state path for a

given sequence of observations, that is

z1 . . . zL = V (x1 . . . xL) = argmax
z̄1...z̄L∈ΓL

Prob(Z1 . . . ZL = z̄1 . . . z̄L|x1 . . . xL).

Let vµ(i) be the probability of the most probable path ending in state µ ∈ Γ with observation xi. These

values can be computed recursively by

vµ(i) = pµ
xi

max
τ∈Γ
{vτ (i− 1) pτ,µ} (8)

with boundary condition vµ(1) = π(µ) · pµ
x1

. Note that these probabilities are not normalized, in particular

∑

µ∈Γ vµ(i) ≤ 1. The most probable path is reconstructed by backtracking [25].

The HMM approach we use to sample transmembrane queries is the TMHMM developed by Sonnhammer

et. al. [22]. In this setting, the output symbols are (structural) domains, and hidden states are “tied”

according to their emission probabilities. They are classified into seven groups:

• Helix core,

• two different groups of caps on either side,

• loops on the cytoplasmic side,
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• short and long loops on the non-cytoplasmic side,

• globular domains.

The internal structure of the helix core and loop module allows modeling different lengths of the

corresponding protein domain by assigning jump probabilities. The globular domains have a self-looping

structure and hence may also have various lengths. The other modules have fixed length. The overall

number of model parameters is 216. Figure 3 shows the actual layout of TMHMM. Each box represents a

group of “tied” states. The states corresponding to “helix core” represent the transmembrane helices that

connect states of the cytoplasmic side and the non-cytoplasmic side of the membrane. The prediction of

the positions of the “helix core” states determines the loci of the special purpose scoring matrix SLIM for

position specific alignment (see Figure 1).

The following Metropolis-Hastings update (Algorithm 1) consists of two steps: First, the proposal of a new

configuration from the neighborhood N (x) is made by inserting/replacing letters with equal weights

fσ = 1
|Σ| for all σ ∈ Σ using one of the five Monte-Carlo moves described above. The acceptance ratio Eq.

(2) in that case is given by

α ((x, y)→ (x′, y′)) = min

{

1,
w(S(x′, y′)) · fquery(x′) · f subject(y′)

w(S(x, y)) · fquery(x) · f subject(y)

}

. (9)

The second step of the algorithm is based on the TMHMM. This allows us to sample non-i.i.d. sequences

with appropriate weights and to predict transmembrane helical regions that can be used in the position

specific alignment scheme (as described in [20]) even for random sequences.

Wang-Landau Sampling

The idea of importance sampling is to choose the weights w(·), such that the drawn events in the region of

interest have a high probability to occur in the simulation. Ideally, P (s) is already known and in that case

one might choose w(s) ∝ 1/P (s) on the entire range of interest. Then all states are visited with equal

probability, and hence a flat score histogram is achieved in the limit of infinite sample size. This idea refers

back to statistical physics and it is known as “generalized ensemble” or “flat histogram” methods. In the

following we will denote this weights by wflat.

Of course the true P (s) is unknown and the method requires some guesses which approximate wflat to a

suitable accuracy. The achieved score histogram becomes only approximatively flat. The true (unknown)

distribution can then be estimated by reweighting the histogram of visited states using the importance

sampling formula Eq. (4) for hs.
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Many iterative sampling schemes to achieve initial guesses had been developed in the 1990ies, for example

entropic sampling [26], multicanonical sampling [27] and later transition matrix Monte Carlo [28–30], only

to mention a few. Here we use the Wang-Landau algorithm [31,32] to approximate wflat as input for

Metropolis-Hastings sampling.

The Wang-Landau algorithm (Algorithm 2) explicitly violates detailed balance by dynamically updated

weights depending on the visited states in the following way: First, a score range of interest [smin, smax] is

chosen. The algorithm basically employs a histogram H(s) and weights w(s) defined on the desired score

range. For more complicated models such as the (TMHMM), these objects are two-dimensional depending

on the score s and the class n, i.e. H(s, n) and w(s, n). Furthermore, real valued parameters φi > 1 are

used in each iteration i. Initially, the histogram values H(s, n) are set to 0 in the desired range and all

weights w(s, n) to a constant, say 1. For the first iteration, i = 0, φi can be as large as e1. Then, a

simulation is performed using acceptance ratio Eq. (6) or Eq. (9). After each step, corresponding to one

step of a (biased) random walk in configuration space, w(s, n) is updated as w(s, n)← w(s, n)/φi, where s

is the current score value and n the sub-class of the current state. Also the histogram H is updated by one

H(s, n)← H(s, n) + 1. This is continued until an “approximately flat histogram” is achieved. A possible

criterion might be H(s, n) > 0.6 · 1
smax−smin+1

∑smax

s′=smin
H(s′, n) for all s, n. Once the histogram is “flat”, φ

is decreased by the rule φi+1 ←
√

φi and all entries of the histogram H are set to 0 again, while w is kept

for the next iteration. Note that the flatness criterion is not essential for the algorithm. It is enough to

guarantee that all values of s have been visited, for example by requiring that the random walker has

cycled several times through the interval of interest [smin, smax].

Due to the decreasing rule φi+1 ←
√

φi, the modification factor φ converges towards 1. The simulation is

stopped when φ reaches a value which is close to 1. It turned out that in our case the range from

φ0 = exp(0.1) ≈ 1.105 to φfinal = exp(0.0002) ≈ 1.0002 has been proven valuable.

Since detailed balance is violated explicitly, the convergence of the algorithm can not be proven. For this

reason one should always perform a simulation with φ = 1 for data production, which corresponds to the

Metropolis-Hastings algorithm.

Improvements

Of course there is much room for improvement. For example, consider the time evolution of the histogram

H(s) for RQGS with LQ = LS = 348 up to smax = 500 with Prob(S = smax) ≈ 10−65 in Figure 4a.

When starting with an initial guess w(s) = 1 for all s ∈ [23, 500], the random walker needed about
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5.8× 105 Monte-Carlo steps for a round trip, i.e. to move from the lowest score smin = 23 to the highest

one smax = 600 and back. The duration of a round trip is a measure of the mixing time of the

corresponding Markov chain. Hence, the shorter the round trip time, the faster the convergence. During

the first round trip, the weights have been improved such that the second round trip (and further round

trips) needed only 13% of the computational effort of the first one. Once the random walker has performed

its first round trip, the typical round trip time does not change significantly. This tight bottleneck in the

very early stage of the algorithm can be overcome by suitable initial guesses of w. In Figure 4b the time

evolution of the same parameter set (RQGS with LQ = LS = 348) is shown except for the choice of the

weights, which have been chosen as w(s) ≈ 1/Prob(S = s|LQ = 348, LS = 200), i.e. from a previous

simulation of a different but similar setup. One observes that the histogram becomes “flat” within a much

smaller amount of Monte-Carlo steps. Furthermore, the first round-trip time decreases to 1.3× 105 (i.e.

22% of the value for the naive guess w(s) = 1). From the practical point this allows for saving computer

time for simulations for a target parameter set B that is (more or less) close to a parameter set A for which

a suitable approximation of Prob(S = s) has already been obtained. However, there remains the task to

iterate the Wang-Landau algorithm down to values of φ that are close enough to 1. In cases where the two

parameter sets A and B are sufficiently close to each other, in the sense that the score distributions

Prob(S = s) do not differ too much, even that might be unnecessary. In that case it suffices to run a short

batch run with φ = 1, i.e. a detailed balance simulation, and then apply importance reweighting and use

the so obtained approximation of P (s) for a longer production run. This kind of procedure is shown in the

inset of Figure 4b: The detailed balance simulations were performed with LQ = LS = 348, whereas the

weights w(s) came from a simulation with LS = 320 and LS = 400, respectively. The result shows that the

histograms are not “flat” at all, but the distributions were close enough to visit all score values on the

range of interest. In this successive way of iterations a broad range of the parameter space is accessible.

Estimation of the statistical error

Statistical analysis of Markov-chain Monte-Carlo data requires a careful inspection of correlation effects

because the events depend on the history of the chain. This correlations vanish within a typical timescale

and events that are separated by a sufficient number of steps can be assumed to be independent. However,

since Monte-Carlo methods are only approximative, an assignment of statistical errors are requisite. In this

study we used Flyvbjerg and Peterson’s [33] blocking method to estimate the error.
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Results

To our knowledge we present the first highly accurate score statistics for alignments with position-specific

scoring schemes. The alignment scores were calculated with the standard Smith-Waterman algorithm with

the BLOSUM62 matrix for the (RQGS) and a bipartite version BLOSUM62/SLIM for (FQPS) and

(HMM) (see Figure 1). For the affine gap costs we have chosen the standard values with a gap-open

penalty of 12 and a gap-extension penalty of 1, and UniProt letter frequencies for i.i.d. sequences.

We discuss four different transmembrane proteins as queries (see Table 2) in the (FQGS) scheme. The

results are shown in Figure 5, where the distributions of (FQGS) and (RQGS) are compared against each

other. The subject lengths are set to the query lengths. For the production run of one distribution in

Figure 5 (LQ = LS = 348) 16,777,216 Metropolis-Hastings updates have been performed. This took about

16 hours on an Intel Pentium 4 with 3.4GHz. The performance of the corresponding HMM is weaker for

three reasons: Firstly, we are interested in a joint distribution for that we need more samples. Secondly,

more proposals are rejected from the sampler due to the HMM-weights and finally the computation of the

forward-probabilities requires additional floating point operations. The computation of 16,777,216

Metropolis-Hastings updates for this model costs about 45 CPU hours. We use an 8 times larger sample

size in order to account for the first drawback. Hence, we put an overall computational effort on this

model, which is 23 times as large as for (FQGS) and (RQGS) (apart from the Wang-Landau iterations).

Here we observe that the curvature is more pronounced in the (FQPS) model: Significant differences of

shapes already show up in the high probability region, which is accessible by simple sampling (Figure 5a).

All (RQGS) distributions match almost perfectly (only two lengths are shown), whereas the shape of the

(FQPS) distributions varies slightly with the sequence type. This shows that position-specific scoring in

connection with a fixed query sequence may better discriminate between different sequences than the

standard approach of having two random sequences in connection with position-independent scoring, as

already claimed in [20].

If the score distribution follows a Gumbel form Prob(S > s) = 1− exp[−c · exp(−λs)], then, in the far right

tail, essentially Prob(S > s) = c · exp(−λs) since 1− exp[−ε] = ε (numerically) for very small ε > 0. Hence,

Prob(S = s) = c′ · exp(−λs) (with c′ = c · (eλ − 1)), and log Prob(S = s) should be an affine function

s 7→ −λ · (s− s0) with s0 := − log(c′)/λ.

As pointed out by Altschul and Gish [13], edge effects occur for finite sequences: An alignment may extend

to the end of either sequence and the score will be distorted towards lower values and high scores become

less probable. In the limit of infinite sequences this effect vanishes and the tail of the Gumbel distribution
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can be understood as an upper bound for finite sequences. Indeed, we clearly see that the curves in

Figure 5b are not straight lines in the right tail, but have negative curvature.

A better fit to the empirical distribution is obtained by determining parameters s0, λ > 0, λ2 > 0 in a

modified Gumbel distribution with

log Prob(S = s) = log(λ)− λ (s− s0)− λ2 (s− s0)
2 , (10)

where s0 can be interpreted as the center of the distribution. The parameter λ2 is generally small (and

thus shows its effect only in the far tail). It vanishes for sequences of equal length as the length tends to

infinity. Previously, such a correction has been proposed for (RQGS) statistics and has been computed for

different parameter sets of BLOSUM62 and PAM250 with affine gap costs [14, 15].

More pronounced differences are seen in the behavior of the tail (Figure 5b), which is only accessible via

our importance sampling approach. The difference between the probabilities spans several orders of

magnitude; hence a wrong choice of the model would falsify the estimation of significance drastically. Most

importantly, the pmf obtained using the position-specific scoring is considerably curved. Thus, using EVDs

from fits to data of the high-probability region is even more questionable here than in the (RQGS) model,

where the pmf is almost a straight line. Note that for the (RQGS) model, previous simulations [15] have

already shown that for the special case of LS = LQ, the pmf converges for large sequence length indeed to

an EVD.

In the rare-event tail, alignment lengths are in the order of the query length, hence the alignment is

effectively global, or, in terms of statistical mechanics, optimal alignments “percolate”. This is the same

kind crossover that can be observed in the high-probability region when crossing the phase boundary of the

linear-logarithmic transition [34] by decreasing the gap-costs. When the gap costs are small enough, the

length of local alignments is also in the order of the query length even for random non-homologous

sequences. This is referred as “linear phase”.

Sardiu, Alves and Yu [35] studied the statistics of global alignments in the linear and logarithmic phase.

They could classify the distribution to be either different types of the Tracy-Widom distribution [36] in the

linear phase, or an exponential distribution in the logarithmic phase.

In the sense that those alignments that are responsible for the deviations from the Gumbel form can be

seen as global alignments, it is rather a crossover to aforementioned Tracy-Widom distribution than to a

“Gaussian” distribution as it was previously termed [14, 15]. For large score values this distribution scales

with an exponent which is smaller than 2 (in the case of (β = 2)-Tracy-Widom distribution with
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P (s∗) ∼ exp[−s∗3/2], [36]) with s∗ := s− s0. Hence we also tried to fit a modified Gumbel distribution

with a correction term λ2 |s− s0|3/2. This fits the data quite well, but we have obtained a much larger χ2

value. For LQ = LS = 400 we observed an reduced χ2 of ≈ 0.4 for an parabolic correction and ≈ 3 for the

Tracy-Widom correction. The heuristic approximation Eq. (10) seems to be useful for practical purposes.

This was further supported by a fit, where the exponent was considered as free parameter, i.e. λ2 |s− s0|γ .

For (RQGS) and LQ = LS = 400 we obtained γ = 2 within the errorbars, where the initial value for the fit

procedure was set to γ = 3/2. Note that for a more direct comparison with Ref. [35], we would have to

consider reparameterized alignment scores which would also imply different importance sampling

distributions. Another integral difference to our work is that Sardui et. al. studied the statistics of a

simplified alignment model where the score matrix is modeled by a single probability.

The modified Gumbel statistics affect a possible ranking of database search results only slightly (it does

not change if both sequences were of equal length). Nevertheless, the threshold of significant hits is shifted

towards lower scores, especially if one is interested in intermediately strong homological relationships. To

illustrate this, we used BLAST to receive homologs of our four example proteins from the current

Swissprot database. We considered the first 1000 hits, ignoring all results with LS > 800 because this was

beyond the lengths under consideration in the simulations. The scores were recomputed via the

Smith-Waterman algorithm for (RQGS) and via the position specific Smith-Waterman algorithm for

(FQPS), and we computed the corresponding p-values from our empirical data. For subject sequence

lengths that are not directly governed by our simulation directly we used interpolated fit parameters.

Next, we considered the number of hits below E-value thresholds based on three statistics, the BLAST

statistics, the statistics of the (RQGS) model and finally the model of (FQPS). We treat the E-value as the

product of number of entries in the database times p-value. The results are shown in Figure 6. In the

search of homologs with relatively small E-value thresholds of ∼ 10−15 classical methods such as the

compositional adjustment as it is implemented in the BLAST algorithm, are sensitive enough to

discriminate significant hits against random ones. However, in applications one possibly wish to refine a

BLAST result set by filtering sequences below a certain critical E-value. If this value is in the order of

magnitude 10−15 (or below) one would possibly miss relevant hits when using the classical statistics.

Therefore we suggest to use the rare-event statistics after retrieving the data. This yields an accurate

threshold value which can be used as further filter criterion. When the original BLAST statistics is used

for that purpose one would possibly miss a large fraction of hits. We also detected a clear difference

between the models (FQPS) and (RQGS) could be detected. With (RQGS) for transmembrane proteins
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one would possibly miss some hits during post-processing.

To investigate the impact of dissimilar query and subject lengths LQ and LS on the parameters of the

modified Gumbel distribution, we vary LS and consider the parameters λ and λ2 as functions of the ratio

LS/LQ (see Figure 7). The large gap between the values of λ for the two different models reflects the

qualitative difference of the shape in the high probability regime. We see that in the (RQGS) model, λ is

virtually independent of query and sequence length. However, in model (FQPS), λ varies with each

individual query, as has to be expected. For λ2 one has to distinguish between LS < LQ and LS > LQ. In

the first case, λ2 decreases, which is not surprising, since the correction term describes a finite-size effect

and should vanish for increasing sequence lengths.

Once the target length exceeds the query length, the search space is still growing, but the finite length of

the query enforces target size independent edge effects.

For the (HMM), we approximate the score distribution within each class (number of helices= n). The

shape of the distributions clearly agrees with the curvature for (RQGS) and (FQPS), and the modified

Gumbel distribution could be fitted (see Figure 8) when the number of helices was not too small. This is

indicated by a large reduced χ2 value for distributions with a small number of helices. Also a visual

inspection of the fit to the data supports this argument.

The rare-event tail shows clear differences between the different sub-classes of the model over several orders

of magnitude. In Figure 9 the dependency of the fit parameters on the respective sub-class of the model

(Figure 9a and Figure 9b) as well as the dependency on the ratio LS/LQ (Figure 9c and Figure 9d) is

shown. Note that for distributions that are not well described via Eq. (10), we only fitted the data in the

high probability region. Those data points are left out in the plot for λ2 in Figure 9b and are connected by

dotted lines in Figure 9a.

In analogy to (RQGS) and (FQPS), the curvature remains constant when LS > LQ. Regarding the

dependence on the number of helices, the curvature decays with increasing number of transmembrane

regions and then approaches an approximate constant value. Numerical values are provided in the

Appendix for reference.

Concluding Discussion

We have presented a simple universal method to accurately sample the far right tail of the score

distribution of various sequence comparison algorithms. It appears to be the first method that is applicable

to all classical local alignment statistics, query-specific and position-dependent score statistics, HMM
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calibration, statistics of normalized alignments, and many more. We need no initial parametric

assumptions, but can a posteriori fit the observed distribution to an appropriate parametric form. Here we

observed that for the (FQPS) model, the Gumbel distribution should be replaced by a more negatively

curved one.

The method has a disadvantage: Because of the high number of samples required for non-parametric

estimation of the distribution, it can presently not be used in on-line database search web services, such as

a BLAST server. For example, generating the 16,777,216 samples for Figure 5 (LQ = LS = 348) took

approximately 16 hours on an Intel Pentium 4 with 3.4GHz.

This is not as bad as it seems, though: Both the implementation and the design of the Markov chain have

much room for improvement, e.g. we can choose different neighborhoods N(x) and optimize the weights in

the generalized ensemble [37, 38].

While this still prohibits interactive use, we see a lot of potential for our method to provide an improved

version of the hmmcalibrate tool [19] and to explore the statistics of normalized sequence alignment [4].

During the preparation of this manuscript we came aware of a new related importance sampling method

which is suitable for efficient p-value computations for alignment statistics [39]. So far this method was

applied to i.i.d. sequences but it should be possible to extend it to more complex model as well.
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Appendix: Modified Gumbel Parameters

Table 3 and Table 4 show numerical values for the parameters λ, λ2 and K of the modified Gumbel

distribution Eq. (10). These are visualized in Figures 7 and 9 in the body of the paper.

Figures
Figure 1 - Bipartite scoring scheme

Bipartite scoring scheme for the detection of homologous transmembrane proteins from Ref. [20]. The

figure represents the Smith-Waterman alignment matrix and indicates which scoring matrix is used for
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which query positions (rows): In transmembrane helices, a transmembrane-specific scoring matrix is used.

For p-value computations, the query is assumed fixed or generated by the TMHMM and the subject is

assumed a random i.i.d. sequence drawn from the distribution of amino-acid frequencies of the database.

Figure 2 - Monte Carlo moves used in the simulation

(a) substitution, (b) insertion with left shift, (c) insertion with right shift,(d) deletion with right shift and

(e) deletion with left shift.

Figure 3 - The layout of the HMM for transmembrane proteins

The layout of the HMM for transmembrane proteins according to Sonnhammer et.al. [22]. Each box

corresponds to a group of states. For example the helix-core block consists of 25 internal states. Line type

of boxes represent different emission probabilities. For more details we refer the reader to the original

publication.

Figure 4 - Dynamics of the Wang-Landau algorithm

Typical time evolution of the histogram of visited states when starting with different initial guesses. The

model parameters are RQGS with LQ = LS = 348. The weights have been updated dynamically with

modification factor φ = exp(0.1) ≈ 1.105. (a) w(s) = 1 for all s. The Markov chain converges relatively

slowly. (b) w(s) ≈ 1/Prob(S = s|LQ = 348, LS = 200) has been used as an initial guess. The histogram

becomes flatter within remarkable less computational effort. Inset: a detailed balance simulation (φ = 1

during the simulation of 1, 048, 576 steps) with initial weights that are close to the inverse target

distribution. Though the histograms are not “flat”, each score value on the interval [23, 500] has been

visited. The estimate from this data can be used in a longer production run.

Figure 5 - Score distributions for (RQGS) and (FQPS) models

Score distributions for (RQGS) (classical) and (FQPS) models where the subject length equals the query

length. In order to compare the shape, the distributions have been shifted by the center s0. (a): Linear

view; all distributions from the (RQGS) agree outside the tails (only two lengths are shown). The shape of

the (FQPS) distributions is more variable.

(b): Logarithmic view; significant differences between the two models appear in the tail of the distribution.

High scores are more probable for the (FQPS) alignment. Furthermore the curvature, i.e. the deviation
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from the Gumbel form, is much larger for (FQPS) than for the classical model.

Figure 6 - Number of hits as a function of the threshold

Number of BLAST hits as a function of E-value threshold considering different statistics: the original

BLAST statistics as well as (RQGS) and (FQPS) statistics. The E-value of the rare-event statistics was

approximated by the p-value times database size in terms of number of sequences.

Figure 7 - Fit parameters for (RQGS) and (FQPS) models

Dependence of the modified Gumbel parameters on the subject/query length ratio LS/LQ. The vertical line

corresponds to Figure 5, where LS = LQ. (a): λ describes the bulk of the distribution (see Figure 5a) left).

For LS > LQ, λ varies only slightly in the subject length.

(b): The parameter λ2 characterizes the curvature of the pmf in the tail (see Figure 5b). Large differences

between (RQGS) and (FQPS) show up in the case where LS > LQ. λ2 becomes subject-length independent

for LS > LQ.

Figure 8 - Score distributions for different alignment models

Score distributions for different alignment models (i.i.d., fixed query and TMHMM) with LS = LQ = 348.

The distributions for the (HMM) have been obtained from the joint distribution.

Figure 9 - Fit parameters for different alignment models

Fit parameters for score distributions P (S|# of helices) for the (HMM) with a fixed query length LQ = 348

and various subject lengths LS .

Both shape parameters λ and λ2 decrease with increasing number of helices. The dependency on the

subject length is stronger for λ2 than for λ. For LS > LQ the dependency of λ2 on the subject length is

only of marginal order. The bars show the distribution of the number of transmembrane helices obtained

by direct simulations of the (HMM).

(c),(d): The LS/LQ dependency of λ and λ2 extracted from the same data as (a),(b). The lines are guide

to the eyes only. Dashed lines show the corresponding scaling behavior for the (FQRS) and (RQGS)

models. The result for n = 2, that has been obtained from the high probability regions (see text), is

indicated by dotted lines.
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Algorithms
Algorithm 1 - Metropolis-Hastings update

MetropolisHastingsUpdate(x, y, z, p, s, n, w)

Input: Sequences x, y, a hidden state sequence z,

the null probability p(x, y) = fquery(x) · f subject(y), the score s = S(x, y), the sub-class n and weights w

Output: Possibly new values for x,y,z,p,s,n.

1: Draw (x′, y′) ∈ N(x, y)

2: compute z′ := V (x) using V and determine the corresponding class n′;

3: compute p′ := fquery(x′) · f subject(y′);

4: compute s′ := S(x′, y′) using A.

5: Compute α :=
w[s′,n′]·p′·Px′,x

w[s,n]·p·Px,x′
. ⊲ Designed such that p(x′, y′) · P(x′,y′),(x,y) = p(x, y) · P(x,y),(x′,y′)

6: With probability min{1, α}: Let (x, y, z, p, s, n)← (x′, y′, z′, p′, s′, n′)

7: return (x, y, z, p, s, n)

The general Metropolis-Hastings update. It is assumed that the following are available: a sequence space

X , null distributions fquery(·) and f subject(·) with efficient computation of fquery(x) and f subject(y) for any

x, y ∈ X , neighborhoods N (x, y) with proposal distributions P(x,y),(x′,y′) for each x, y and a way to draw

samples from P(x,y),·, a scoring algorithm A : X × X → Z with x, y 7→ S(x, y) and optionally a Viterbi-like

algorithm V that determines the most probable path and assigns any x ∈ X to a certain class n.

Algorithm 2 - Wang-Landau sampling

WangLandau(w, φ, φfinal, N)

Input: Initial guess w[s, n], initial and final modification factors φ, φfinal, number of samples for

production run N

Output: Histogram of visited scores, H(s, n):= number of samples with score s and class n and weights

used in the production run w(s, n) for all s and n

1: ⊲ Initialize and estimate w[s, n]

2: Pick any x, y ∈ X and compute its null probability p := f query(x) · f subject(y);

3: compute s := S(x, y) using A;

4: compute z := V (x) using V and determine corresponding class n;

5: while φ > φfinal do

6: H [s′, n′]← 0 for all possible score values s′ and classes n′
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7: while H [s′, n′] is not flat do

8: (x, y, z, p, s, n)← MetropolisHastingsUpdate(x, y, z, p, s, n, w);

9: H [s, n]← H [s, n] + 1; w[s, n]← w[s, n]/φ;

10: end while

11: φ← √φ

12: end while

13: ⊲ Obtain N samples from q and their score counts / histogram

14: H [s′, n′]← 0 for all possible score values s′ and classes n′

15: for i = 1..N do

16: H [s, n]← H [s, n] + 1

17: repeat

18: (x, y, z, p, s, n)← MetropolisHastingsUpdate(x, y, z, p, s, n, w);

19: until mixing has occurred

20: end for

21: return counts H , weights w.

General sequence similarity score sampling framework. For general requirements see also Algorithm 1.

Tables
Table 1 - Monte Carlo operations
operation resulting sequence

substitution of D at position 5 LGQIDTAE

insertion of D at position 5 with left shift GQIWDTAE

insertion of D at position 5 with right shift LGQIDWTA

deletion at position 5 with left shift LGQITAED

deletion at position 5 with right shift DLGQITAE

Valid Monte Carlo operations for input sequence s = LGQIWTAE (indexing starts with 1). In order to obtain

sequences of the same length as s, in the case of a deletion a character (D) to be appended at the border

has to be specified.

Table 2 - A selection of transmembrane proteins
ID AC Description Organism Length
OPSD HUMAN P08100 Rhodopsin H. sapiens 348
AGTR2 HUMAN P50052 type-2 angiotension II receptor H. sapiens 363
YXX5 CAEEL Q18179 putative neuropeptide Y receptor C. elegans 455
ADA1A HUMAN P35348 Alpha-1A adrenergic receptor H. sapiens 466

A selection of transmembrane proteins. ID: UniProt identifier; AC: accession number.
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Table 3 - Fit parameters for (FQPS) and (RQGS)
FQPS corresponding RQGS

LQ LS λ 104λ2 K λ 104λ2 K

P08100 50 0.3016 ±0.40% 7.5741 ±0.77% 0.0654 ±3.34%

348 100 0.1747 ±0.19% 3.2202 ±0.32% 0.0132 ±1.49% 0.2829 ±0.17% 3.6884 ±0.36% 0.0463 ±4.09%

200 0.1617 ±0.09% 1.7968 ±0.18% 0.0100 ±1.31% 0.2685 ±0.15% 1.8498 ±0.40% 0.0315 ±2.77%

300 0.1478 ±0.14% 1.3962 ±0.21% 0.0059 ±2.20% 0.2664 ±0.14% 1.1900 ±0.47% 0.0292 ±3.49%
320 0.1466 ±0.15% 1.3775 ±0.28% 0.0056 ±2.33% 0.2674 ±0.11% 1.1059 ±0.51% 0.0295 ±2.05%

348 0.1432 ±0.22% 1.4131 ±0.33% 0.0051 ±2.69% 0.2681 ±0.10% 0.9909 ±0.43% 0.0307 ±2.18%

360 0.1426 ±0.17% 1.4322 ±0.22% 0.0047 ±3.17% 0.2678 ±0.10% 0.9883 ±0.42% 0.0302 ±2.49%

400 0.1418 ±0.10% 1.4201 ±0.17% 0.0047 ±1.43% 0.2648 ±0.12% 1.0238 ±0.50% 0.0248 ±3.89%

500 0.1399 ±0.26% 1.4517 ±0.35% 0.0043 ±3.94% 0.2638 ±0.17% 1.0248 ±0.65% 0.0255 ±5.65%
600 0.1405 ±0.16% 1.4392 ±0.20% 0.0047 ±2.87% 0.2650 ±0.14% 0.9917 ±0.74% 0.0245 ±3.85%

P50052 50 0.3024 ±0.85% 7.4294 ±1.70% 0.0657 ±6.19%
363 100 0.1795 ±0.16% 3.1869 ±0.26% 0.0132 ±1.42% 0.2818 ±0.25% 3.6993 ±0.55% 0.0458 ±3.44%

200 0.1660 ±0.18% 1.8701 ±0.30% 0.0096 ±1.98% 0.2698 ±0.21% 1.8027 ±0.58% 0.0341 ±4.60%

300 0.1550 ±0.22% 1.3995 ±0.36% 0.0066 ±2.97% 0.2643 ±0.14% 1.2232 ±0.42% 0.0273 ±3.55%

330 0.1512 ±0.12% 1.4130 ±0.23% 0.0057 ±1.30% 0.2654 ±0.18% 1.0822 ±0.68% 0.0274 ±5.32%

363 0.1509 ±0.18% 1.3881 ±0.27% 0.0057 ±3.53% 0.2687 ±0.24% 0.9676 ±1.00% 0.0332 ±7.75%
380 0.1489 ±0.12% 1.4138 ±0.19% 0.0051 ±1.17% 0.2651 ±0.30% 0.9806 ±1.28% 0.0270 ±11.76%

400 0.1474 ±0.20% 1.4335 ±0.32% 0.0048 ±3.27% 0.2634 ±0.15% 0.9773 ±0.75% 0.0271 ±11.41%

500 0.1471 ±0.08% 1.4350 ±0.16% 0.0049 ±1.13% 0.2613 ±0.21% 0.9998 ±1.05% 0.0226 ±7.60%

600 0.1457 ±0.28% 1.4640 ±0.54% 0.0046 ±3.24% 0.2662 ±0.15% 0.9498 ±0.79% 0.0250 ±7.76%

Q18179 50 0.3008 ±0.70% 7.6673 ±1.23% 0.0625 ±5.34%

455 100 0.1798 ±0.33% 3.7190 ±0.59% 0.0103 ±2.84% 0.2845 ±0.16% 3.5814 ±0.35% 0.0485 ±2.86%

200 0.1723 ±0.16% 1.9839 ±0.32% 0.0087 ±1.50% 0.2685 ±0.14% 1.8391 ±0.49% 0.0302 ±3.81%
300 0.1609 ±0.25% 1.4302 ±0.40% 0.0059 ±4.49% 0.2632 ±0.16% 1.2382 ±0.53% 0.0262 ±4.69%

420 0.1569 ±0.27% 1.3665 ±0.52% 0.0050 ±2.90% 0.2636 ±0.17% 0.8441 ±0.59% 0.0222 ±9.17%

450 0.1590 ±0.25% 1.3225 ±0.61% 0.0052 ±2.86% 0.2611 ±0.13% 0.8203 ±0.43% 0.0209 ±4.93%

455 0.1548 ±0.26% 1.4038 ±0.52% 0.0049 ±2.76% 0.2655 ±0.12% 0.7670 ±0.49% 0.0246 ±8.35%

480 0.1557 ±0.38% 1.3664 ±0.67% 0.0051 ±7.10% 0.2610 ±0.10% 0.7929 ±0.41% 0.0197 ±6.70%
500 0.1521 ±0.45% 1.4145 ±0.77% 0.0044 ±5.30% 0.2615 ±0.17% 0.7783 ±0.62% 0.0204 ±5.09%

600 0.1540 ±0.25% 1.3886 ±0.43% 0.0043 ±3.72% 0.2596 ±0.14% 0.7706 ±0.60% 0.0174 ±5.71%

P35348 50 0.3046 ±0.61% 7.3443 ±1.17% 0.0668 ±4.85%

466 100 0.1809 ±0.18% 3.1996 ±0.28% 0.0135 ±2.06% 0.2839 ±0.22% 3.6314 ±0.49% 0.0465 ±2.49%

200 0.1625 ±0.12% 1.8687 ±0.18% 0.0079 ±1.63% 0.2696 ±0.15% 1.8030 ±0.48% 0.0315 ±3.97%

300 0.1643 ±0.10% 1.2089 ±0.15% 0.0086 ±2.23% 0.2620 ±0.13% 1.2472 ±0.47% 0.0241 ±5.52%

400 0.1510 ±0.24% 1.2641 ±0.39% 0.0051 ±2.76%
450 0.1521 ±0.33% 1.2357 ±0.55% 0.0050 ±5.39% 0.2647 ±0.16% 0.7874 ±0.67% 0.0246 ±3.93%

466 0.1485 ±0.17% 1.2982 ±0.35% 0.0046 ±2.93%

480 0.1517 ±0.23% 1.2359 ±0.34% 0.0056 ±5.27% 0.2609 ±0.25% 0.7981 ±1.25% 0.0207 ±9.36%

500 0.1492 ±0.22% 1.2845 ±0.35% 0.0048 ±3.64% 0.2668 ±0.09% 0.7124 ±0.49% 0.0265 ±6.00%

600 0.1509 ±0.28% 1.2383 ±0.40% 0.0050 ±3.86%

Fit parameters λ, λ2 and K of the modified Gumbel distribution for (FQPS) and (RQGS).
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Table 4 - Fit parameters for (FQPS) and (RQGS)
HMM n=0 HMM n=1

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.2890 ±0.85% 49.4722 ±7.27% 0.2310 ±9.32% 21.4600 ±66.56%

200 0.2894 ±2.84% 50.0796 ±24.47% 0.2274 ±1.74% 20.1017 ±13.25%

300 0.2895 ±2.69% 53.3472 ±24.00% 0.2240 ±4.86% 17.8934 ±37.22%

348 0.2988 ±3.24% 72.2356 ±30.15% 0.2234 ±2.39% 16.8704 ±18.79%
360 0.2895 ±1.79% 51.9056 ±16.04% 0.2220 ±2.14% 16.3757 ±16.52%

400 0.2859 ±3.49% 48.4496 ±31.10% 0.2232 ±2.40% 17.5141 ±18.94%

500 0.2912 ±6.63% 54.0687 ±61.22% 0.2182 ±2.39% 14.7371 ±19.10%

600 0.2901 ±3.38% 51.9412 ±31.74% 0.2180 ±2.59% 14.2439 ±20.86%

HMM n=2 HMM n=3

LQ LS λ 104λ2 K λ 104λ2 K

348 150 0.1968 ±0.70% 2.9247 ±1.37% 12.0400 ±6.48% 0.1767 ±0.44% 2.6797 ±1.01% 7.4435 ±3.72%

200 0.1947 ±2.12% 9.8704 ±14.29% 0.1795 ±0.46% 2.3586 ±0.92% 8.5733 ±3.87%
300 0.1937 ±3.60% 9.9597 ±25.32% 0.1863 ±0.41% 2.0008 ±0.94% 11.7859 ±5.63%

348 0.1888 ±3.19% 8.1338 ±22.42% 0.1876 ±0.32% 1.9328 ±0.89% 12.1223 ±3.83%

360 0.1926 ±3.17% 9.7957 ±22.82% 0.1853 ±0.27% 1.9530 ±0.65% 10.8640 ±2.65%

400 0.1934 ±1.05% 9.9321 ±8.22% 0.1757 ±1.64% 7.1756 ±11.58%

500 0.1919 ±1.61% 9.3630 ±12.32% 0.1783 ±0.98% 7.7945 ±7.18%
600 0.1912 ±1.70% 9.3303 ±13.25% 0.1768 ±1.01% 7.4165 ±8.19%

HMM n=4 HMM n=5

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1732 ±0.47% 2.2119 ±1.14% 7.4991 ±6.08% 0.1710 ±0.38% 2.0698 ±0.92% 8.1950 ±3.70%

200 0.1686 ±0.28% 2.1187 ±0.72% 6.4162 ±3.14% 0.1657 ±0.39% 1.8231 ±1.14% 6.9148 ±3.82%

300 0.1682 ±0.36% 1.9635 ±0.79% 6.5436 ±4.22% 0.1599 ±0.37% 1.7836 ±0.79% 5.4451 ±3.85%

348 0.1685 ±0.35% 1.9408 ±0.74% 7.3851 ±3.34% 0.1580 ±0.28% 1.7930 ±0.68% 5.3049 ±2.61%

360 0.1678 ±0.42% 1.9421 ±0.92% 6.5775 ±4.07% 0.1605 ±0.23% 1.7481 ±0.50% 5.7512 ±2.89%
400 0.1662 ±0.18% 1.9782 ±0.40% 6.4164 ±2.32% 0.1587 ±0.28% 1.7828 ±0.73% 5.4513 ±2.57%

500 0.1693 ±0.24% 1.9047 ±0.51% 7.0735 ±2.11% 0.1587 ±0.16% 1.7957 ±0.40% 5.4770 ±2.31%

600 0.1693 ±0.17% 1.8994 ±0.39% 7.1112 ±2.06% 0.1575 ±0.29% 1.8330 ±0.58% 5.2125 ±2.68%

HMM n=6 HMM n=7

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1663 ±0.49% 2.1403 ±1.04% 7.9392 ±5.83% 0.1646 ±0.30% 2.1396 ±0.65% 8.7088 ±4.21%

200 0.1614 ±0.25% 1.7767 ±0.65% 6.7568 ±2.30% 0.1574 ±0.41% 1.7687 ±1.17% 6.5219 ±3.81%

300 0.1551 ±0.28% 1.5986 ±0.80% 5.2551 ±3.18% 0.1514 ±0.26% 1.4638 ±0.62% 5.0238 ±4.34%
348 0.1531 ±0.20% 1.5993 ±0.55% 4.9132 ±2.71% 0.1482 ±0.33% 1.4755 ±0.77% 4.4535 ±4.13%

360 0.1536 ±0.34% 1.6036 ±1.02% 4.9160 ±3.41% 0.1490 ±0.39% 1.4479 ±0.93% 4.6858 ±3.28%

400 0.1537 ±0.27% 1.5713 ±0.62% 4.9524 ±3.05% 0.1494 ±0.24% 1.4328 ±0.70% 4.6867 ±2.08%

500 0.1519 ±0.23% 1.6229 ±0.67% 4.6812 ±2.14% 0.1472 ±0.29% 1.4706 ±0.63% 4.2881 ±2.50%

600 0.1489 ±0.15% 1.7148 ±0.33% 4.2283 ±2.16% 0.1460 ±0.18% 1.5193 ±0.49% 4.2679 ±1.74%

HMM n=8 HMM n=9

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1595 ±0.47% 2.2162 ±1.01% 7.5355 ±4.01% 0.1603 ±0.23% 2.1517 ±0.48% 8.0273 ±2.17%
200 0.1534 ±0.55% 1.8019 ±1.46% 5.9224 ±5.25% 0.1508 ±0.14% 1.7854 ±0.28% 6.3535 ±1.89%

300 0.1473 ±0.47% 1.3916 ±1.24% 4.8483 ±4.01% 0.1413 ±0.12% 1.4118 ±0.35% 4.2141 ±1.43%

348 0.1458 ±0.32% 1.3409 ±0.85% 4.6141 ±3.69% 0.1398 ±0.10% 1.3281 ±0.33% 3.9661 ±1.44%

360 0.1469 ±0.34% 1.2868 ±0.90% 4.9271 ±2.73% 0.1400 ±0.16% 1.2888 ±0.43% 4.0126 ±1.79%

400 0.1440 ±0.34% 1.3591 ±1.05% 4.0064 ±3.48% 0.1382 ±0.25% 1.2954 ±0.67% 3.7257 ±2.14%
500 0.1433 ±0.29% 1.3382 ±0.85% 3.9952 ±2.70% 0.1352 ±0.14% 1.3472 ±0.42% 3.1780 ±1.68%

600 0.1416 ±0.33% 1.3760 ±0.94% 3.7782 ±3.14% 0.1359 ±0.13% 1.3399 ±0.38% 3.3536 ±1.49%

HMM n=10 HMM n=11

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1552 ±0.14% 2.2225 ±0.30% 6.7936 ±2.08% 0.1455 ±0.14% 2.3813 ±0.15% 4.9660 ±3.82%

200 0.1459 ±0.22% 1.8336 ±0.37% 5.7585 ±3.30% 0.1417 ±0.17% 1.8428 ±0.35% 5.1264 ±2.07%

300 0.1370 ±0.22% 1.4024 ±0.56% 3.8087 ±1.79% 0.1324 ±0.27% 1.3842 ±0.68% 3.2129 ±2.79%

348 0.1353 ±0.15% 1.2962 ±0.38% 3.5507 ±1.68% 0.1316 ±0.22% 1.2518 ±0.69% 3.1546 ±1.94%
360 0.1343 ±0.13% 1.2830 ±0.36% 3.4674 ±1.39% 0.1297 ±0.25% 1.2737 ±0.52% 2.9445 ±2.81%

400 0.1334 ±0.16% 1.2602 ±0.38% 3.2164 ±1.71% 0.1302 ±0.20% 1.2160 ±0.56% 2.9704 ±1.59%

500 0.1307 ±0.16% 1.3013 ±0.46% 2.8331 ±1.22% 0.1280 ±0.30% 1.2426 ±0.86% 2.7433 ±2.73%

600 0.1305 ±0.23% 1.3097 ±0.56% 2.8239 ±1.82% 0.1257 ±0.22% 1.2908 ±0.55% 2.4921 ±1.79%

The table shows the fit parameters of the score distribution Prob(S = s| # of helices = n) for 1 ≤ n ≤ 11

for LQ = 348 and different subject lengths. For entries, where λ2 is left out, a suitable fit (with a small

reduced χ2 value) to the modified Gumbel distribution Eq. (10) was not possible and only the Gumbel

parameters of the high probability region are shown.

26



Q
u
ery

 seq
u
en

ce

TM

TM

Database subject sequence

BLOSUM

Use SLIM in these rows

Use BLOSUM in these rows

SLIM

BLOSUM

Other

Other

Other

Figure 1



a) b)

c)

d)

e)

L G Q I T EA

D

W G Q I T EAW

D

L

G Q I T AWL

D

E

G Q I T EA

D

L W

G Q I T AL E

D

W

Figure 2



globular

globular

globularloop

loop

loop

cap

cap

cap

cap

helix core

helix core

membranecytoplasmic side non−cytoplasmic side

Figure 3



0 100 200 300 400 500

s

0.000

0.002

0.004

0.006

0.008

0.010

0.012

H
(s

)/
t M

C

t
MC

 = 65,536

t
MC

 = 262,144

t
MC

 = 1,048,576

t
MC

 = 524,288

(a)

0 100 200 300 400 500

s

0.000

0.005

0.010

0.015

0.020

0.025

H
(s

)/
t M

C

0 100 200 300 400
0.000

0.005

0.010

initial guess from L
S
 = 400

initial guess from L
S
 = 320

t
MC

 = 8,192

t
MC

 = 32,768

t
MC

 = 65,563

t
MC

 = 131,072

initial guess from L
S
 = 200

(b)Figure 4



-10 0 10 20 30 40 50

s* = s - s
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12
P

(s
*)

Q18179 (L
Q
=L

S
=455)

P50052 (L
Q
=L

S
=363)

P35348 (L
Q
=L

S
=466)

P08100 (L
Q
=L

S
=348)

L
Q
=L

S
=466

L
Q
=L

S
=348

RQGS

FQPS

(a)

0 100 200 300 400 500 600 700 800

s* = s - s
0

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

P
(s

*)

Q18179 (L
Q
=L

S
=455)

P50052 (L
Q
=L

S
=363)

P35348 (L
Q
=L

S
=466)

P08100 (L
Q
=L

S
=348)

L
Q
=L

S
=466

L
Q
=L

S
=348 RQGS

FQPS

(b)Figure 5



10
-60

10
-45

10
-30

10
-15

0

200

400

600

800

1000

n
u

m
b

e
r 

o
f 

h
it
s

10
-75

10
-60

10
-45

10

10
-60

10
-45

10
-30

10
-15

threshold

0

200

400

600

800

1000

BLAST
RQGS

FQPS

10
-75

10
-60

10
-45

10

P08100

L
Q
=348

P50052

L
Q
=363

P35348

L
Q
=466

Q18179

L
Q
=455

Figure 6



0.50 1.00 1.50

L
S
 / L

Q

0.15

0.20

0.25

0.30

0.35

λ
P08100  (L

Q
=348)

P50052  (L
Q
=363) 

Q18179  (L
Q
=455)

P35348  (L
Q
=466)

FQPS

RQGS

(a)

0.5 1.0 1.5

L
S
 / L

Q

1×10
-4

2×10
-4

3×10
-4

4×10
-4

λ
2

P08100  (L
Q
=348)

P50052  (L
Q
=363) 

Q18179  (L
Q
=455)

P35348  (L
Q
=466)

FQPS

RQGS

(b)Figure 7



0 100 200 300 400 500

s* = s - s
0

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

P
(s

*)

P(s* | fixed query)
P(s* | i.i.d. model )
P(s* | # of TM helices )

11 TM helices

1 TM helix

L
Q
 = L

S

no TM helix

Figure 8



0.05

0.10

0.15

0.20

0.25

0.30

λ

L
S
 = 348

L
S
 = 360

L
S
 = 500

L
S
 = 600

0 1 2 3 4 5 6 7 8 9 10

# of helices

L
Q
 = 348

0.05

0.10

0.15

0.20

0.25

0.30

λ

L
S
 = 150

L
S
 = 200

L
S
 = 300

(a)

0

1×10
-4

2×10
-4

3×10
-4

λ
2

L
S
 = 348

L
S
 = 360

L
S
 = 500

L
S
 = 600

0 1 2 3 4 5 6 7 8 9 10

# of helices

L
Q
 = 348

0

1×10
-4

2×10
-4

3×10
-4

λ
2

L
S
 = 150

L
S
 = 200

L
S
 = 300

(b)

0.5 1.0 1.5

L
S
 / L

Q

0.10

0.15

0.20

0.25

0.30

0.35

0.40

λ

HMM n = 2
HMM n = 4
HMM n = 6
HMM n = 8
HMM n = 11
FQPS P08100 

RQGS

(c)

0.5 1.0 1.5

L
S
 / L

Q

1×10
-4

2×10
-4

3×10
-4

4×10
-4

λ
2

HMM n = 4
HMM n = 6
HMM n = 8
HMM n = 11
FQPS P08100 

RQGS

(d)Figure 9


	Start of article
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

