
Optimal Vertex Cover for the Small-World Hanoi NetworksStefan Boett
her∗Physi
s Department, Emory University, Atlanta, GA 30322; USAAlexander K. HartmannInstitut für Physik, Universität Oldenburg, D-26111 Oldenburg; Germany(Dated: Mar
h 31, 2011)The vertex-
over problem on the Hanoi networks HN3 and HN5 is analyzed with an exa
t renor-malization group and parallel-tempering Monte Carlo simulations. The grand 
anoni
al partitionfun
tion of the equivalent hard-
ore repulsive latti
e-gas problem is re
ast �rst as an Ising-like 
anon-i
al partition fun
tion, whi
h allows for a 
losed set of renormalization group equations. The �owof these equations is analyzed for the limit of in�nite 
hemi
al potential, at whi
h the vertex-
overproblem is attained. The relevant �xed point and its neighborhood are analyzed, and non-trivialresults are obtained both, for the 
overage as well as for the ground state entropy density, whi
hindi
ates a non-trivial stru
ture of the solution spa
e. Using spe
ial hierar
hy-dependent operatorsin the renormalization group and Monte-Carlo simulations, stru
tural details of optimal 
on�gura-tions are revealed. These studies indi
ate that the optimal 
overages (or pa
kings) are not relatedby a simple symmetry. Using a 
lustering analysis of the solutions obtained in the Monte Carlosimulations, a 
omplex solution spa
e stru
ture is revealed for ea
h system size. Nevertheless, in thethermodynami
 limit, the solution lands
ape is dominated by one huge set of very similar solutions.I. INTRODUCTIONWe study the vertex-
over problem [1, 2℄ on the re
ently introdu
ed set of Hanoi networks [3�5℄[42℄. An optimalvertex 
over attempts to �nd the smallest set of verti
es in a graph su
h that every edge in the graph 
onne
ts toat least one vertex in that set. It is one of the 
lassi
al NP-hard 
ombinatorial optimization problems dis
ussed inRef. [6℄. The problem is equivalent to a hard-
ore latti
e gas [7℄, were any pair of parti
les must be separated by atleast an empty latti
e site. The vertex-
over problem has attra
ted re
ently a lot of attention in physi
s, be
ause onensembles of Erd®s-Rény random networks [8℄, phase transitions in the stru
ture of the solution lands
ape were foundthat 
oin
ide with a polynomial-exponential 
hange of the running time of exa
t algorithms [1, 2℄.During the last de
ade, alternative ensembles of random networks have attra
ted the attention of physi
ist. Wellknown-examples are Watts-Strogatz small-world networks [9℄ and s
ale-free networks [10�13℄. These networks exhibitmore stru
ture and des
ribe the behavior of real networks mu
h better [14℄. Also, physi
al systems whi
h live on thesemore 
omplex network/latti
e stru
tures behave di�erently 
ompared to regular latti
es or purely random networks,e.g., the pure Ising model [15, 16℄.Hanoi networks mimi
 the behavior of small world systems without the usual disorder inherent in the 
onstru
tion ofsu
h networks. Instead, they attain these properties in a re
ursive, hierar
hi
al manner that lends itself to exa
t real-spa
e renormalization [17℄. These networks do not possess a s
ale-free degree distribution; they are, like the originalSmall Worlds, of regular degree or have an exponential degree distribution. These Hanoi networks have a more�physi
ally� desirable geometry [18℄, with a mix of small-world links and a nearest-neighbor ba
kbone 
hara
teristi
of latti
e-based models [4℄.For the vertex-
over problem 
onsidered here, or the equivalent hard-
ore latti
e gas, it is di�
ult to �nd metri
stru
tures with a non-trivial solution. For instan
e, hyper-
ubi
 latti
es are bipartite graphs whi
h always havean obvious unique and trivial solution without any 
on�i
ts. Of the planar latti
es, the triangular one is 
ertainto exhibit imperfe
t solutions (i.e., there will be edges requiring multiple 
overings for any solution), but any su
hsolution is translationally invariant and 
an be easily enumerated, leading to a vanishing entropy density. Similarly,a fra
tal latti
e like the Sierpinski gasket, say, only has trivial solutions of that sort. Both of these examples aredis
ussed in Fig. 1. In 
ontrast, we �nd an extensive ground-state entropy here, similar to the anti-ferromagnet ona triangular latti
e [19℄. Yet, our ground states do not appear to be the result of any symmetry relation. Thus, thestudy of the vertex-
over problem on the Hanoi networks a�ords simple, analyti
ally tra
table examples of 
overagesthat have nontrivial entropy densities. In fa
t, analyti
ally we found merely an approximate algorithm to generate
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Figure 1: Vertex 
overing for a triangular latti
e (left) and a Sierpinski gasket (right). In both 
ases, the optimal 
overage(large dots) is imperfe
t (i.e., some edges possess double 
overings). Yet, these solutions are either unique, as for the Sierpinskigasket, or possess a �nite symmetry, su
h as the possible translations on the triangular latti
e, both 
ases leading to a vanishingentropy density. For both latti
es it is easily seen that the asymptoti
 
overage is 2

3
. In 
ase of the triangular latti
e, the unit
ell (dashed red box) 
ontains two verti
es 
ompletely and shares eight verti
es half with other 
ells, i.e., it has e�e
tively

2 + 8

2
= 6 verti
es of whi
h 1 + 6

2
= 4 are 
overed. The unit 
ell in the Sierpinski gasket 
ontains 3 + 3

2
verti
es of whi
h thethree fully 
ontained ones must be 
overed.(and enumerate) the set of all solutions whose 
ardinality we 
an determine at any �nite system size by exa
trenormalization.Using Bran
h-and-Bound algorithms, we enumerate exa
t solutions[2℄. But due to the exponentially growingrunning time of this exa
t algorithm, we are restri
ted to rather small system sizes. Hen
e, for most of our numeri
alstudies performed here, we use Monte Carlo simulations [20℄ to generate the solutions and 
lustering algorithms toelu
idate their 
orrelations [21℄.Previous work [7℄ has fo
used on averaged properties on lo
ally tree-like (mean-�eld) networks using the repli
amethod, unearthing interesting phase transitions for the problem. Thus far, there are only few investigations intothe statisti
al me
hani
s of the vertex-
over problem on more 
omplex networks. In a study of randomly 
onne
tedtetrahedra [22℄, glassy behavior was observed. When introdu
ing degree-
orrelations, it was found that the vertex-
over problems be
omes numeri
ally harder [23℄.This paper is organized as follows: we review in the next Se
tion the properties of the Hanoi networks, and inSe
. III we brie�y re
ount the relevant theory for a thermodynami
 study of vertex 
over in terms of a hard-
orelatti
e gas. In Se
. IV, we develop the renormalization group treatment of the latti
e gas, with most of the te
hni
aldetails deferred to an Appendix VII, and its appli
ation to the Hanoi networks HN3 and HN5. It follows a detailednumeri
al study of the problem in Se
. V. We �nish with our 
on
lusions and an outlook for future work in Se
. VI.II. GEOMETRY OF THE HANOI NETWORKSEa
h of the Hanoi networks possesses a simple geometri
 ba
kbone, a one-dimensional line of sites 0 ≤ n < N =

2k + 1 sites [3, 4℄. Most importantly, all sites are 
onne
ted to their nearest neighbors, ensuring the existen
e of the
1d-ba
kbone. To generate the small-world hierar
hy in these networks, 
onsider parameterizing any integer n (ex
eptfor zero) uniquely in terms of two other integers (i, j), i ≥ 1, via

n = 2i−1 (2j + 1) . (1)Here, i denotes the level in the hierar
hy whereas j labels 
onse
utive sites within ea
h hierar
hy. For instan
e, i = 1refers to all odd integers, i = 2 to all integers on
e divisible by 2 (i. e., 2, 6, 10,...), and so on. In these networks,aside from the ba
kbone, ea
h site is also 
onne
ted with some of its neighbors within the hierar
hy. For example, weobtain a 3-regular network HN3 (best done on a semi-in�nite line) by 
onne
ting �rst the ba
kbone, then 1 to 3, 5to 7, 9 to 11, et
, for i = 1, next 2 to 6, 10 to 14, et
, for i = 2, and 4 to 12, 20 to 28, et
, for i = 3, and so on, as
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Figure 2: Depi
tion of the 3-regular network HN3 on a semi-in�nite line. Note that HN3 is planar.depi
ted in Fig. 2. Previously [3℄, it was found that the average 
hemi
al path between sites on HN3 s
ales as
dHN3 ∼

√
l (2)with the distan
e l along the ba
kbone.While HN3 is of a �xed, �nite degree, there exist generalizations of HN3 that lead to new, revealing insights intosmall-world phenomena [3, 4, 24℄. For instan
e, we 
an extend HN3 in the following manner to obtain a new networkof average degree 5, hen
e 
alled HN5. In addition to the edges in HN3, in HN5 we also 
onne
t ea
h site in level i(i ≥ 2, i.e., all even sites), to (higher-level) sites that are 2i−1 sites away in both dire
tions. Note that Eq. (1) impliesthat the nearest neighbors of a site i within its hierar
hy have a distan
e of 2 × 2i−1. The resulting HN5 networkremains planar but now sites have a hierar
hy-dependent degree, as shown in Fig. 3. To obtain the average degree, weobserve that 1/2 of all sites have degree 3, 1/4 has degree 5, 1/8 has degree 7, and so on, leading to an exponentiallyfalling degree distribution of P {α = 2i + 1} ∝ 2−i. Then, the total number of edges L in a system of size N = 2k + 1as shown in Fig. 3 is

2L = 2 (2k + 1)+

k−1∑

i=1

(2i + 1) 2k−i = 5× 2k − 4, (3)where the expression outside the sum refers to the spe
ial 
ase of those three verti
es at the highest levels, k − 1 and
k. Any other 
hoi
e of �boundary 
onditions� may vary the o�set in Eq. (3) but not the average degree, whi
h is

〈α〉 =
2L

N
∼ 5. (4)In HN5, the end-to-end distan
e is trivially 1, see Fig. 3. Therefore, we de�ne as the diameter the largest of theshortest paths possible between any two sites, whi
h are typi
ally odd-index sites furthest away from long-distan
eedges. For the N = 33 site network depi
ted in Fig. 3, for instan
e, that diameter is 5, measured between site 3 and19 (starting with n = 0 as the left-most site), although there are many other su
h pairs. It is easy to show re
ursivelythat this diameter grows as

dHN5 = 2 ⌊k/2⌋+ 1 ∼ log2 N. (5)Other variants of the Hanoi networks are 
on
eivable. For instan
e, a non-planar version has been designed [25, 26℄,but that network happens to possess only a unique, alternating 
overing of 1
2 and is not 
onsidered here.III. VERTEX-COVER PROBLEM AS A HARD-CORE LATTICE GASVertex 
over is a well-known NP-hard 
ombinatorial problem [6, 27, 28℄ that 
onsists of �nding a minimal 
overingof the verti
es of a network in su
h a way that ea
h edge is 
overed at least on
e. Formally, for a graph G = (V, E),V being the set of verti
es and E ⊂ V (2) being the set of edges, a vertex 
over V ′ is a subset of V with the propertythat for ea
h (undire
ted) edge {i, j} ∈ E either i ∈ V ′ or j ∈ V ′. A minimum vertex 
over Vmin is a vertex 
over ofminimum 
ardinality |Vmin|.
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Figure 3: Depi
tion of the planar network HN5, 
onsisting of an HN3 
ore (bla
k lines) with the addition of further long-rangeedges (shaded lines). Note that sites on the lowest level of the hierar
hy have degree 3, then degree 5, 7, et
, 
omprising afra
tion of 1/2, 1/4, 1/8, et
., of all sites, whi
h makes for an average degree 5 in this network. (There is no distin
tion madebetween bla
k and shaded lines in our studies here.)As has been shown in Ref. [7℄, it 
an be formulated alternatively as a hard-
ore repulsive latti
e gas problem. In thisformulation, the un
overed verti
es of the 
overing problems 
orrespond to the a
tual gas parti
les. These parti
leshave a hard-
ore repulsion su
h that they 
an not o

upy neighboring latti
e sites, i.e., they 
annot simultaneous viefor the same edge. Interpreting these parti
les as the voids of the 
overing problem implies that no edge may be leftun
overed on both ends. A

ordingly, all properties of the minimum 
over problem derive from the ground state ofthe latti
e gas at its highest pa
king.The grand 
anoni
al partition fun
tion for su
h a latti
e gas is generi
ally given by
Ξ (µ) =

∑

x0={0,1}

. . .
∑

xN={0,1}

exp

{
µ

N∑

i=1

xi

} ∏

<i,j>

(1− xixj) , (6)where the produ
t extends over all edges of the graph and exerts the hard-
ore repulsive 
onstraint. The 
hemi
alpotential µ is provided to regulate the density as gas parti
les get pa
ked into the system. Sin
e maximal density ofthe gas implies minimal 
overage of all edges, we are looking for the 
on�gurations in the limit µ→∞ of the gas.The quantities [7℄ we seek are the thermodynami
 limit (N →∞) of the o

upation density for the latti
e gas,
ν (µ) =

1

N

〈
N∑

i=1

xi

〉

µ

=
1

N

∂

∂µ
ln Ξ (µ) , (7)and the entropy density of su
h 
on�gurations,

s (ν (µ)) =
1

N

(
1− µ

∂

∂µ

)
ln Ξ (µ) . (8)As has also been shown in Ref. [7℄, one 
an extra
t the 
orresponding properties of the minimal vertex 
overage fromthese in the µ→∞ limit. For the 
overage density, this 
orresponds simply to the void density of the gas,

cmin = 1− lim
µ→∞

ν (µ) , (9)and the entropy density of optimal 
overages is simply equal to that for the latti
e gas:
sV C (cmin) = s (ν = 1− cmin) . (10)Due to the hierar
hi
al stru
ture of the Hanoi networks, we will also introdu
e level-spe
i�
 
hemi
al potentials µi,for example, to extra
t information about the 
overage with respe
t to the level of the hierar
hy (i.e., the range itssmall-world edge attain) that a vertex may reside in. The 
orresponding derivations are presented in the Appendix.Throughout, we will �nd it often 
onvenient to express the 
hemi
al potentials as an a
tivity variable,

mi = e−µi (1 ≤ i ≤ k) , (11)su
h that µi →∞ 
orresponds to the somewhat more tra
table limit mi → 0.



5IV. RG FOR THE HARD-CORE LATTICE GAS ON HANOI NETWORKSThe renormalization group (RG) as applied to the latti
e gas problem develop here 
ontains a few novel features.Thus, we have to elaborate to a signi�
ant extend on the pro
edure. Although the RG will ultimately heavily rely onpro
edures used for Ising spin models, initially we will have to rewrite the grand 
anoni
al partition fun
tion of thelatti
e gas in an appropriate form. To this end, the purpose of the �rst step of the RG � already eliminating half ofall sites � is to generate the initial 
onditions for the subsequent 
anoni
al partition fun
tion analysis, in whi
h theusual 
oupling variables depend in a 
ompli
ated way on the 
hemi
al potential µ instead of a temperature, and theapparent �spin� variables are in fa
t Boolean, xi ∈ {0, 1}.We have to rewrite the generi
 partition fun
tion in Eq. (6) for the spe
ial 
ase of the Hanoi networks. To a

essmore details of the solutions, we will take the opportunity to generalize to the 
ase of a hierar
hy-spe
i�
 
hemi
alpotential µi for 1 ≤ i ≤ k, where N = 2k +1 is the size of the system. (For the RG, it is natural to 
onsider the Hanoinetwork with an open boundary both at node 0 and at node 2k; for a system with periodi
 boundaries on a loop, bothof these nodes would be
ome identi
al and N = 2k would be the size of the system. Of 
ourse, either 
hoi
e resultsin identi
al thermodynami
 averages.)First, we rewrite the hard-
ore repulsive fa
tor in Eq. (6) as separate produ
ts, one for the long-range edges andthe other for the ba
kbone edges,
∏

<i,j>

(1− xixj) =




K∏

i=1

2k+1−i∏

n=1

(
1− x2i−1(n−1)x2i−1n

)





k−1∏

i=1

2k−i−1∏

l=1

(
1− x2i−1(4l−3)x2i−1(4l−1)

)

 . (12)The 
ase K = 1 
orresponds to HN3, with a simple, one-dimensional line of edges 
onne
ting all sites in the ba
kbonesequentially. In turn, for HN5 we set K = k, referring with ea
h i > 1 to the layers of those edges that 
onne
t alongthe ba
kbone only every se
ond site, every fourth site, every eight site, et
., as shown in Fig. 3. Note that in Eq. (12)we have used the de
omposition of the sites in the network implied by the renumbering in Eq. (1).By the same token, we re-order the summation in Eq. (6) as

∑

x0

eµi(0)x0 . . .
∑

xN

eµi(N)xN =
∑

x0

m−x0

i(0) . . .
∑

xN

m−xN

i(N) , (13)
=

∑

x0,x
2k−1 ,x

2k

m
−x0−x

2k−1−x
2k

k




k−1∏

i=1

2k−i−1∏

l=1

∑

x2i−1(4l−3)

∑

x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i


 ,where we have simpli�ed the notation on the sums to mean∑x =̂

∑
x∈{0,1}. Of 
ourse, Eq. (13) has to be understoodin an operator sense, i.e., the summations extend to all site-variables that mat
h the indi
ated index. Here, we havealso allowed for a site-spe
i�
 
hemi
al potential. It is our goal to extra
t lo
al pa
king information, not for ea
hsite, but for all verti
es within a spe
i�
 hierar
hy, where i(n) refers to the 
hemi
al potential in the i-th level thatthe vertex n is asso
iated with a

ording to Eq. (1). Naturally, the sites at the highest level k of the hierar
hy(x0, x2k−1 , x2k) require a spe
ial 
onsideration.In this parameterization of the indi
es, the produ
ts in Eq. (13) 
an be 
ombined with those of the se
ond fa
tor inEq. (12). Both refer to the small world edges in all levels of the hierar
hy and are naturally expressed in a hierar
hy-
onform manner. Hen
e, we �nd for the grand-
anoni
al partition fun
tion de�ned in Eq. (6) on a Hanoi networkwith k levels in the hierar
hy:

Ξ
(k)
K (m1, . . . , mk) =

∑

x0,x
2k−1 ,x

2k

m
−x0−x

2k−1−x
2k

k SK (m2, . . . , mk−1)
2k−2∏

j=1

Θ
(
m1, x2(2j−2), x2(2j−1), x2(2j)

)
, (14)where we have de�ned the operator for the weighted summation on HN3 and HN5, respe
tively,

SHN3 ≡
k−1∏

i=2

2k−i−1∏

l=1

∑

x2i−1(4l−3)

∑

x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i

(
1− x2i−1(4l−3)x2i−1(4l−1)

)
,

SHN5 ≡
k−1∏

i=2

2k−i−1∏

l=1

∑

x2i−1(4l−3)

∑

x2i−1(4l−1)

m
−x2i−1(4l−3)−x2i−1(4l−1)

i

(
1− x2i−1(4l−3)x2i−1(4l−1)

)
×

(
1− x2i−1(4l−4)x2i−1(4l−3)

) (
1− x2i−1(4l−3)x2i−1(4l−2)

) (
1− x2i−1(4l−2)x2i−1(4l−1)

) (
1− x2i−1(4l−1)x2i−1(4l)

)
.



6Note that these operators only sum over all even-indexed variables (i.e., i ≥ 2). To obtain a renormalizable form forthe partition fun
tion it is ne
essary to tra
e over the lowest level i = 1 of the hierar
hy, i.e., to eliminate all odd-indexvariables. For both, HN3 and HN5, this results in an identi
al stru
ture, de�ned as
Θ
(
µ1, x2(2j−2), x2(2j−1), x2(2j)

)
=

∑

x4j−3

∑

x4j−1

m
−x4l−3−x4l−1

1 (1− x4j−3x4j−1) (15)
(1− x4j−4x4j−3) (1− x4j−3x4j−2) (1− x4j−2x4j−1) (1− x4j−1x4j) ,

= 1 + eµ1
(
1− x2(2j−1)

) (
2− x2(2j−2) − x2(2j)

)
.In Appendix VIIA, we show how to re
ast Θ in an Ising-like form with a su�
ient number of renormalizable param-eters. We 
an simplify the grand partition fun
tion in Eq. (14) further by 
ombining the produ
ts and writing

Ξ(k) (m1, . . . , mk) =
∑

x0,x
2k−1 ,x

2k

m
−x0−x

2k−1−x
2k

k




k−2∏

i=2

2k−i−2∏

l=1

∑

x2i(4l−3)

∑

x2i(4l−1)




2k−3∏

l=1

ζl
1

(
x4(2l−2), x4(2l−1), x4(2l)

)
,(16)where the expli
it expression for ζl

1 is also derived in Appendix VIIA for both, HN3 and HN5, whi
h allows us todrop the subs
ript label. In either 
ase, the RG re
ursion equations now result from imposing the re
ursive relationbetween hierar
hies,
ζl
i+1

(
x2i+1(2l−2), x2i+1(2l−1), x2i+1(2l)

) (17)
=

∑

x2i(4l−3)

∑

x2i(4l−1)

ζ2l−1
i

(
x2i(4l−4), x2i(4l−3), x2i(4l−2)

)
ζ2l
i

(
x2i(4l−2), x2i(4l−1), x2i(4l)

)
,that are derived in Appendix VIIA. There, Figs. 15-16 also provide a graphi
al representation of Eq. (17).A. Analysis of the RG Re
ursionsWe �nd that the RG re
ursions that follow from the previous dis
ussion, and whi
h are given expli
itly in Eqs. (52)for HN3 and in Eqs. (54) for HN5 for the hard-
ore latti
e gas model, only have two trivial �xed points. There is astable low-density one for all µ <∞, i.e., m > 0, and an unstable �xed point at full-pa
king for µ = ∞, i.e., m = 0.Note that in this part of the analysis we are 
on
erned with global properties, and thus, ignore di�eren
es betweenthe hierar
hi
al level by setting mi ≡ m throughout.1. Analysis for HN3The limit m→ 0 of the re
ursions in Eqs. (52) for initial 
onditions given in Eqs. (50) in Appendix VIIA is di�
ultto handle. Ex
ept for κ1, all other parameters are either diverging or vanishing in Eqs. (18) for that limit. To a
hievea 
learer pi
ture, we evolve the re
ursions on
e and obtain

η2 ∼
24

5
, γ2 ∼

8

3
, C2 ∼

m2

8
, κ2 ∼

15

8
, λ2 ∼

25

24
, ∆2 ∼

4

25m
. (18)In fa
t, further revolutions in the re
ursions seems to preserve this pi
ture: Ci s
ales with a rapidly growing power of

m, while all other parameters and ∆̄i = m∆i be
ome �nite for m = 0 at any order i. Thus, we repla
e ∆ by ∆̄ andsubsequently set m→ 0 in Eqs. (52) yielding
Ci+1 ∼

mγiC
2
i

2
, γi+1 ∼ γiηiκi, ηi+1 ∼

4κi

(1 + κi)
2 ,

κi+1 ∼ λi

(1 + κi)

κi

, λi+1 ∼
(1 + κi)

2

4κi

, ∆̄i+1 ∼
2κ2

i ∆̄i(
2 + γiκ2

i ∆̄i

)
(1 + κi)

2 . (19)At its 
ore, the two re
ursions for κ and λ have be
ome independent of all the others. The m = 0 �xed-point itself isthen dominated solely by the stationary solution of their re
ursions in Eqs. (19),
κ∗ =

1

2
2
3 − 1

, λ∗ =
1

2
2
3

(
2

2
3 − 1

) . (20)
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Figure 4: Plot of the value of κi after the i-th RG-step for m = 10−2, 10−4, 10−6, and 10−8 (left to right). At a lengths
ale ξ (m) = 2i with i = −
3

4
log2 m, the behavior of κi 
rosses over from the value at the unstable m = 0 �xed point,

κ∗ = 1/
“

22/3
− 1

”

= 1.70 . . ., to the stable m = 1 (µ = 0) �xed point at whi
h κ∗ = 1.Ergo, one �nds a 
onstant solution for η∗ = 4κ∗/ (1 + κ∗)2 = 1/λ∗ and the re
ursion γi+1 ∼ γi (κ∗/λ∗) with thesolution γi ∼ γ02
2i
3 whi
h diverges for large i. The situation for ∆̄i is more subtle. Numeri
s 
learly indi
ates itsde
ay, but this 
ould o

ur 
onsistently in two ways. First, if it were to de
ay su
h that γi∆̄i still in
reases, thenEq. (19) suggests ∆̄i+1 ∝ 1/γi, but that would render γi∆̄i 
onstant: a 
ontradi
tion. Alternatively, if both, ∆̄i and

γi∆̄i de
ay, then ∆̄i+1 ∼ ∆̄i [κ∗/ (1 + κ∗)]
2, yielding ∆̄i ∼ 2−

4i
3 in a 
onsistent manner. Numeri
al studies verify thatthe latter solution is indeed realized.From the terms dropped in the m→ 0 limit, we 
an extra
t a 
ross-over s
ale as follows: A
hieving the limit m→ 0implied that the widely o

urring term mγi in Eqs. (52) was 
onsidered small enough to be dis
arded with respe
t toterms of order unity. Hen
e, identifying ξ =

√
2i(m) as the 
orrelation length within the small-world metri
 suppliedby Eq. (2), using γi(m) ∼ 1/m yields 2i(m) ∼ m− 3

2 or
ξ ∼ e

3
4µ (21)as the diverging length below whi
h the systems orders for an 
orrespondingly diverging 
hemi
al potential, µ→∞.Indeed, say, for m = 10−4 we �nd numeri
ally that the solution veers o� the unstable �xed point just below the

i = 10th iteration, and Fig. 4 demonstrates the 
orre
tness of Eq. (21) for any small m.2. Analysis for HN5The analysis for HN5 is surprisingly subtle. Although the �xed point analysis for HN3 above required the singularlimit m → 0 as part of the 
onsideration, after the appropriate res
aling of the parameters with m, the subsequentapproa
h pro
eeds in a familiar fashion. HN5 obs
ures this approa
h with an additional layer of 
omplexity, resultingfrom strong alternating e�e
ts order-to-order in the RG, as the numeri
s reveals. Of 
ourse, the initial 
onditionshere are identi
al to those for HN3 in Eqs. (50), with the same pathologies in the m → 0 limit. But whereas thoseproblems were essentially 
ured for HN3 after one RG-step and res
aling, see Eqs. (18), here we �nd
C2 ∼

m2

2
, γ2 ∼ 2, η2 ∼

8

9
, κ2 ∼

3

8m
, λ2 ∼

9

8
, ∆2 ∼

8

9
, (22)



8and
C3 ∼

m5

16
, γ3 ∼

16

9m
, η3 ∼ 16m, κ3 ∼

9

16
, λ3 ∼

1

16m
, ∆3 ∼ 16m, (23)et
. This alternation between regular and singular behavior of ea
h of the parameters persists thereafter. Leaving there
ursion for Ci aside for now, we noti
e that for even indi
es, γ2n, η2n, mκ2n, λ2n, and ∆2n remain �nite for m→ 0,but for odd indi
es, this is true for mγ2n−1, η2n−1/m, κ2n−1, mλ2n−1, and ∆2n−1/m. De�ning γ̄2n−1 = mγ2n−1,

η̄2n−1 = η2n−1/m, κ̄2n = mκ2n, λ̄2n−1 = mλ2n−1, and ∆̄2n−1 = ∆2n−1/m, it is useful to rewrite the re
ursions inEqs. (54) separately for even and odd index. In fa
t, the limit m→ 0 on its expli
it appearan
e 
an now be taken toget
γ2n = η̄2n−1 (2 + γ̄2n−1) , γ̄2n−1 = η2(n−1)

(
2 + mγ2(n−1)

)
→ 2η2(n−1),

η2n = γ̄2n−1
2 + γ̄2n−1

(1 + γ̄2n−1)
2 , η̄2n−1 = γ2(n−1)

2 + mγ2(n−1)(
1 + mγ2(n−1)

)2 → 2γ2(n−1),

κ̄2n = λ̄2n−1
(1 + γ̄2n−1)

2

2 + γ̄2n−1
, κ2n−1 = λ2(n−1)

1 + mγ2(n−1)

2 + mγ2(n−1)
→ 1

2
λ2(n−1), (24)

λ2n =
(1 + γ̄2n−1)

2

γ̄2n−1 (2 + γ̄2n−1)
, λ̄2n−1 =

1 + mγ2(n−1)

γ2(n−1)

(
2 + mγ2(n−1)

) → 1

2γ2(n−1)
,

∆2n = γ̄2n−1
2 + γ̄2n−1

(1 + γ̄2n−1)
2 , ∆̄2n−1 = γ2(n−1)

2 + mγ2(n−1)(
1 + mγ2(n−1)

)2 → 2γ2(n−1).Note that for the limit m → 0 we only assumed that mγ2(n−1) ≪ 1 for n → ∞ on the right-hand set of theserelations, whi
h provides a 
orrelation length from the 
ross-over nco = n (m) at γ2nco
∼ 1/m. Inserting the right-setof equations on the left then yields

γ2n = 4γ2(n−1)

(
1 + η2(n−1)

)
, η2n = 4η2(n−1)

1 + η2(n−1)(
1 + 2η2(n−1)

)2 , (25)
κ̄2n =

1 + 2η2(n−1)

4γ2(n−1)

(
1 + η2(n−1)

) , λ2n =

(
1 + 2η2(n−1)

)2

4η2(n−1)

(
1 + η2(n−1)

) , ∆2n = 4η2(n−1)

1 + η2(n−1)(
1 + 2η2(n−1)

)2 .These interla
ing re
ursions now have a simple �xed point, whi
h derives from the only non-trivial solution of theself-
ontained η-equation:
η∗ =

√
3

2
. (26)From this follows the equally stationary value

∆∗ =
1

λ∗
=

4η∗ (1 + η∗)

(1 + 2η∗)
=

3 +
√

3

2
, (27)but we also �nd the asymptoti
ally s
aling

γ2n ∼ γ0

[
2
(
2 +
√

3
)]n
∝ 1

κ̄2n

. (28)This provides the 
orrelation length estimate
ξ = 2nco ∼ exp

{
µ

log2

[
2
(
2 +
√

3
)]
}

. (29)B. Coverage and EntropyTo understand the most pertinent features of the problem, su
h as the optimal pa
king (or 
overage) and its entropy,we have to 
onsider the asymptoti
 behavior of the renormalization group parameter Ci, related to the growth of



9the overall energy-s
ale, in Eq. (19) for the initial 
ondition in Eq. (18). Clearly, the partition fun
tion at any �nitesystem size is a polynomial in eµ, i.e., in powers of m−1. Both of these quantities, 
overage and entropy, derive fromthe most divergent power in m to be found in Ξ. To wit, we 
an write for m→ 0

Ξ(k) ∼
(
σm−α

)2k [
1 + am + bm2 + . . .

]
. (30)Then, it is ∂µ ln Ξ = −m∂m ln Ξ ∼ 2kα, and we �nd from Eqs. (7-8):

ν = α,

s = lnσ,for N →∞ at m = 0.Eq. (16) provides the grand 
anoni
al partition fun
tion Ξ(k) for 2k site-o

upation variables in terms of an Ising-like 
anoni
al partition fun
tion Z(k−1) for only 2k−1 (Boolean) spin variables. While Ξ(k) only depends on thehierar
hi
al 
hemi
al potentials mi, ostensibly Z(k−1) depends on a tuple ~A1 of renormalizable 
ouplings, see Eq. (55)in Appendix VIIA, in addition to any expli
it dependen
e on mi. Of 
ourse, the 
ouplings themselves are merely afun
tion of the 
hemi
al potentials, ~A1 = ~A1 (m1), through the RG initial 
onditions in Eq. (50). Step-by-step in theRG, the 
ouplings transform a

ording to Eq. (56) ea
h time the system size halves, whereas the partition fun
tionstays invariant. Hen
e, we 
an expand on Eq. (16) and write
Ξ(k) (m1, . . . , mk) = Z(k−1)

(
~A1 (m1) , m2, . . . , mk

)
,

= Z(k−2)
(

~A2 (m1, m2) , m3, . . . , mk

)
,

= . . . , (31)
= Z(1)

(
~Ak−1 (m1, . . . , mk−1) , mk

)
,where Z(1) is simply a rudimentary Hanoi network 
onsisting of just three verti
es.1. Results for HN3Spe
ializing this dis
ussion for HN3, we �nd for the rudimentary partition fun
tion Z(1) in this 
ase

Z(1) = C−1
k−1

∑

x0

∑

x
2k−1

∑

x
2k

m
−(x0+x

2k−1+x
2k)

k γ
− 1

2 [(x0+x
2k−1)+(x

2k−1+x
2k)]

k−1

η
− 1

2 (x0+x
2k)

k−1 κ
−(x0x

2k−1+x
2k−1x

2k)
k−1 λ

−x0x
2k

k−1 ∆
−x0x

2k−1x
2k

k−1 . (32)For a uniform 
hemi
al potential, mi ≡ m for all i, one �nds that for m → 0 the partition fun
tion is dominatedoverwhelmingly by the renormalized value of Ci, i.e.
ln Ξ(k) (µ) = lnZ(1)( ~Ak−1 (m) , m) ∼ − lnCk−1. (33)Rewriting the re
ursion for Ci in Eq. (19) in this form yields

lnCi+1 = 2 lnCi + ln
(mγi

2

)
∼ 2 lnCi +

2i

3
ln 2 + ln

(mγ0

2

)
, (34)whi
h is easily summed up to give

lnCk−1 = 2k−3 [lnC2 + ln (2mγ0)] . (35)With C2 ∼ m2, as listed in Eq. (18), we get
1

2k
ln Ξ(k) ∼ − 1

2k
lnCk−1 ∼ −

3

8
ln (m)− 1

8
ln (4γ0) , (36)and 
omparison with Eq. (30) produ
es an exa
t predi
tion for the maximal pa
king fra
tion of the latti
e gas,

ν (µ→∞) =
3

8
, (37)
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Figure 5: Plot of the 
overage νV C (left) and its entropy density sV C (right) for the vertex-
over problem on HN3 for the �rstfew system sizes N = 2k + 1 with k = 2, . . . , 5 (top to bottom at m = 1) as a fun
tion of m.Table I: Listing of the �rst few values of σ and sV C de�ned in Eqs. (30,10) for HN3 of size N = 2k. The sequen
e for the totalnumber of optimal 
on�gurations, σ2
k , soon develops non-trivial prime fa
tors. The entropy density for the 
overage sV C onlyslowly 
onverges to its numeri
al limit.

k σ2
k

sCV = ln σ2 1 03 7 0.2432394 37 0.2256825 718 0.2055156 193284 0.1901867 8651040480 0.1787578 11491993035377280000 0.171438... ... ...
∞ 0.160426(1)i.e., for the minimal fra
tion of verti
es needing 
over in HN3, it is

cmin =
5

8
. (38)Note that the m-dependen
e of C2 and of the re
ursion for Ci in Eqs. (19) are 
ru
ial for this result, whereas γi isindependent of m and, hen
e, be
omes irrelevant here. In turn, unfortunately, the entropy density depends not onlyon the asymptoti
 form for γi but on the non-trivial integration 
onstant γ0, whi
h 
an not be determined from theasymptoti
 behavior of the RG-�ow; it is a global property of that �ow and 
ould depend on all its details. But theresult suggest, at least, that for HN3, unlike for some of the other latti
es mentioned in the introdu
tion, the entropydensity does not vanish but attains a non-trivial value. In fa
t, using the re
ursions in Eqs. (52) for arbitrary m andtaking the m→ 0 limit only in the end, we 
an exa
tly determine the 
onstants σ de�ned in Eq. (30) for the �rst fewvalues of k, see Tab. I. In turn, �nite-size extrapolation from the numeri
al evolution of the RG-�ow up to k = 25levels (i.e., system size N = 225) for a �nite but small value of m = 10−40, we predi
t that sV C(cmin) = 0.160426(1).(Any variation of m over 10 de
ades does not a�e
t the extrapolation at this a

ura
y.) For smaller system sizes weplot the 
overage and the entropy density for the entire range of the 
hemi
al potential in Fig. 5. In Appendix VIIB,we will des
ribe how to evaluate derivatives of the partition fun
tion, su
h as those leading to ν and s, within theRG-s
heme. There, we also develop a method to probe the fra
tional 
overage for ea
h level of the hierar
hy; thoseresults are plotted in Fig. 6.In Appendix VIIC, we will derive a partial set of re
ursion to approximate the number of solutions given in Tab. I.Our failure to obtain a 
losed set of su
h equations (and an asymptoti
 predi
tion) indi
ates the non-trivial origin ofthe entropy density. Here, we just plot the exa
t solutions for k = 3 and 4 for illustration in Figs. 7 and 8. As thenumeri
al results in Se
. V indi
ate, the optimal pa
king of the latti
e gas at any �nite size N = 2k + 1 
ontains forany k ≥ 3 exa
tly 3× 2k−3 + 1 parti
les.
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Figure 6: Plot of the relative 
overage per level 2iνi on HN3 for various system sizes N = 2k + 1 with k = 7, 12, 17, 22, and26, plotted also on a relative level-s
ale i/k at m → 0. Asymptoti
ally, in large systems, all verti
es in higher levels i appearto be just 50% pa
ked (or 
overed), whi
h is minimally ne
essary to 
over the one small-world edge 
onne
ting su
h verti
es.(Of 
ourse, ea
h level 
ontains half as many verti
es as any previous and thus 
ontributes ever less to the overall 
overage.)This pa
king may well be random as su
h verti
es are far separated between the higher levels. A signi�
antly lower pa
king(higher 
overage) is attained only at an ever small fra
tion of the lowest levels to a

ount for the overall pa
king fra
tion of 3

8(
overage 5

8
).

Figure 7: Depi
tion of perfe
t 
overings of HN3 for k = 3. Of all seven solutions, we omitted those three obtained by re�e
tionfrom these. Light-
olored sites belong to the vertex 
over, dark-
olored sites mark parti
les with hard-
ore repulsion thatprevents nearest-neighbor o

upation.

Figure 8: Depi
tion of perfe
t 
overings of HN3 for k = 4. Of all 37 solutions, we omitted those 17 obtained by re�e
tion fromthese. Light-
olored sites belong to the vertex 
over, dark-
olored sites mark parti
les with hard-
ore repulsion that preventsnearest-neighbor o

upation.
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Figure 9: Plot of the 
overage νV C (left) and its entropy density sV C for the vertex-
over problem on HN5 for the �rst fewsystem sizes N = 2k + 1 with k = 2, . . . , 5 (with alternating behavior) as a fun
tion of m. Ea
h entropy drops noti
eably inthe m → 0 limit. 2. Results for HN5For HN5, we �nd that the rudimentary partition fun
tion Z(1) is like that for HN3 in Eq. (39), ex
ept for additionalrepulsive terms:
Z(1) = C−1

k−1

∑

x0

∑

x
2k−1

∑

x
2k

m
−(x0+x

2k−1+x
2k)

k γ
− 1

2 [(x0+x
2k−1)+(x

2k−1+x
2k)]

k−1

η
− 1

2 (x0+x
2k)

k−1 κ
−(x0x

2k−1+x
2k−1x

2k)
k−1 λ

−x0x
2k

k−1 ∆
−x0x

2k−1x
2k

k−1 (39)
(1− x0x2k−1) (1− x2k−1x2k) (1− x0x2k) .Hen
e, Eq. (33) again applies, putting the fo
us on the analysis of the re
ursion for Ci, whi
h in its even and oddversion reads

C2n =
γ̄2n−1

2 + γ̄2n−1
C2

2n−1, C2n−1 =
mγ2(n−1)

2 + mγ2(n−1)
C2

2(n−1). (40)With the results from Se
. IVA2 at hand, when put together in the limit m→ 0, both re
ursions 
ombine into
C2n ∼ mC4

2(n−1) {Aγ2n} . (41)The term in parentheses, even though it grows exponentially with n, 
an be ignored be
ause it does not depend on
m. It is again easy to sum up the logarithm of this equation (for odd values of k, in this 
ase) to get

1

2k
lnCk−1 ∼

1

8
lnC2 +

1

12
lnm ∼ 1

3
lnm, (42)with C2 ∼ m2 from Eqs. (22). As for Eq. (36), this implies for the maximal pa
king fra
tion of hard-
ore gas parti
les,

ν (µ→∞) =
1

3
, (43)i.e., for the minimal fra
tion of verti
es needing 
over in HN5, it is

cmin =
2

3
. (44)In parallel to Se
. IVA1, we 
an only obtain the 
onstants σ de�ned in Eq. (30) for the �rst few values of k, seeTab. II. By the same pro
edure as for HN3 above, we predi
t here that sV C(cmin) = 0.11983(1). For smaller systemsizes we plot the 
overage and the entropy density for the entire range of the 
hemi
al potential in Fig. 9. Fig. 10illustrates the strong alternating behavior between su

essive levels, here in form of their relative 
overage.
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Figure 10: Plot of the relative 
overage per level 2iνi on HN5 for various system sizes N = 2k +1 with k = 7, 12, 17, 22, and 26,plotted also on a relative level-s
ale i/k at m → 0. In an alternating fashion levels attain an interla
ed higher or lower relativepa
king (lower or higher 
overage), whi
h varies very little between the levels and seems to 
onverge to nontrivial values. Noti
ethat the apparent 
losing of the gap at the highest levels results from the numeri
al evaluation of the RG re
ursions at verysmall but still �nite 
hemi
al a
tivity (here, m = 10−9) .Table II: Listing of the �rst few values of σ and sV C de�ned in Eqs. (30,10) for HN5 of size N = 2k. The sequen
e for σ2
ksoon develops non-trivial prime fa
tors. The entropy density for the 
overage sV C alternates and only slowly 
onverges to itsnumeri
ally determined limit.

k σ2k

sV C = ln σ2 2 0.1732873 7 0.2432394 6 0.1119855 159 0.2204796 1350 0.1126237 21268575 0.131818... ... ...
∞ 0.11983(1)V. MONTE CARLO SIMULATIONSWe performed Monte Carlo simulations of the latti
e gas by using the grand 
anoni
al ensemble in Eq. (6). Toa
hieve a fast 
onvergen
e of the Markov 
hains, we used the Metropolis-Coupled Markov-Chain Monte Carlo (MC)3approa
h [29℄, also termed later Parallel Tempering [30℄ in the physi
s 
ommunity. The idea of (MC)3 is to performMonte Carlo simulations for n independent repli
as studied at di�erent values of the 
hemi
al potential µ = µ1, . . . , µnwith µ1 = 0 < µ2 < . . . < µn. One allows that the repli
as are ex
hanged via two-repli
a Metropolis steps, su
h thatan overall detailed balan
e is a
hieved. Details of the Monte Carlo moves are give in previous works, e.g. Ref. [31℄.The parameters for the simulations performed for this work are shown in Tab. III.

N n µmax tMCS17 5 6 2 × 10433 5 6 2 × 10465 8 6 4 × 104129 10 7 1 × 105257 17 8 1 × 105513 21 8 2 × 1051025 33 10 1 × 1062049 53 30 2 × 107Table III: Parameters of the (MC)3 simulations: N : system size, n: number of di�erent values of the 
hemi
al potential µ,
µmax: maximum value of µ, tMCS: total number of Monte Carlo sweeps, where in ea
h sweep ea
h variable is on average allowedto �ip on
e and n − 1 times a repli
a ex
hange is attempted.



14A. Monte Carlo Simulation ResultsFor 
omparison with the analyti
 
al
ulations, we start showing the numeri
al results for the density of parti
les.In Fig. 11, the resulting largest density ν, measured at the highest value of the 
hemi
al potential µ, is shown as afun
tion of system size N for HN3 and HN5, respe
tively. To extrapolate to in�nite system size, we have �tted [32℄the data to power laws of the form
ν(N) = ν∞ + b ·N−c . (45)

10 100 1000
N

0.35

0.4

0.45

0.5

ν

HN3
fit

10 100 1000
0.32

0.33

0.34

0.35

0.36

0.37

0.38

HN5
fit
1/3

Figure 11: Highest density ν of the latti
e gas on Hanoi networks found in Monte Carlo simulation as a fun
tion of system size
N . Main plot: HN3, inset: HN5. The solid lines represent �ts to powers laws a

ording to Eq. (45), see Tab. IV. The dasheshorizontal line in the inset marks the value 1/3.The resulting values are displayed in Tab. IV. Note that for HN5, we �tted only even powers k, sin
e odd powersresult in highest densities of ν = 1

3 exa
tly. The resulting values ν∞ agree pre
isely with the analyti
al results
3
8 (HN3) and 1

3 (HN5), respe
tively. Also the 
oe�
ients des
ribing the �nite-size 
orre
tions seem to be rationalnumbers b = 5
8 , c = −1 (HN3) and b = 1

3 , c = −1 (HN5). They 
an be understood in the following way, e.g., for HN3:The number of nodes is N = 2k +1, i.e, exa
tly one more than a power of two. The number of o

upied nodes for thehighest density is exa
tly 3
8 of the 2k nodes plus one extra node, i.e., Nν(N) = 3

8 2k +1 = 3
8 (2k +1)+ 5

8 whi
h resultsin ν(N) = 3
8 + 5

8 N−1. In a similar way, the s
aling for the HN5 graphs 
an be explained, where N is not divisible bythree.
ν∞ b cHN3 0.3750000(2) 0.62500(2) -1.00000(1)HN5 (k even) 0.333333(7) 0.3333(1) -1.0000(1)Table IV: Result of power law �ts to the ν(N) data show in Fig. 11 a

ording to Eq. (45). Note that for HN5, only the datafor even powers k where used.Next, we want to go beyond the analyti
al 
al
ulations by studying the properties of the solution lands
ape via



15sampling 
on�gurations of highest density. Hen
e, one must ensure that 
on�gurations exhibiting the same statisti
alweight in Eq. (6) are sampled with the same probability or frequen
y. For many systems exhibiting 
omplex solutionlands
apes, this is quite an e�ort [33�36℄.To a
hieve unbiased sampling here, we stored always a 
on�guration of highest density of a repli
a visiting thehighest value µmax of the 
hemi
al potential, whenever that repli
a previously had visited the value µ = 0 in the(MC)3 s
heme. One says, the repli
a has �performed a round trip�. This means, before a repli
a is stored next time,it must again di�use to µ = 0 and ba
k to the highest value of µ [37℄. Typi
al round-trip times range from around20 for N = 17 to around 20000 for N = 2049. To test whether this pro
edure yields unbiased sampling, we studiedsmall systems of size N = 33, where all solutions 
an be enumerated in prin
iple. For both systems, HN3 and HN5,we sampled 106 
on�gurations of highest density and 
ounted how often ea
h 
on�guration was found. The resultinghistograms appear very �at, see in Fig. 12. Hen
e the sampling seems to work very well, at least for Hanoi graphs.
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Figure 12: Histogram how often ea
h 
on�guration of highest density was sampled during the (MC)3 simulation of a N = 33node graph for HN3 (main plot) and for HN5 (inset). The total number of sampled 
on�gurations was 106 in both 
ases.Next, we study the 
on�guration-lands
ape of the hard-
ore latti
e gas at the highest density. For this purposewe took, for ea
h value N of the system size, a set of K = 200 randomly sampled 
on�gurations of highest density.We applied a 
lustering algorithm to ea
h set, to generate a hierar
hi
al tree (�dendrogram�) representation su
h that�similar� 
on�gurations are grouped 
loser to ea
h other than less similar 
on�gurations. As measure of similaritybetween two 
on�gurations {x(α)
i }, {x(β)

i }, we simply use the normalized Hamming distan
e
d({x(α)

i }, {x
(β)
i }) =

1

N

∑

i

δ
x
(α)
i ,x

(β)
i

. (46)We applied the 
lustering algorithm of Ward [21℄, whi
h was applied to the analysis of phase-spa
e stru
tures alreadybefore [31, 36, 38℄, see Ref. [38℄ for details. The resulting dendrograms are shown in Fig. 13. The 
on�gurations arelo
ated at the leafs of the dendrogram, at the top of ea
h dendrogram. Arranging the 
on�gurations from left to right asthey appear in a dendrogram, a 
ertain order of the 
on�gurations is given. Note that the order is not unique, sin
e forany node of the tree, the two subtrees 
an be ex
hanged without 
hanging the 
lustering. Nevertheless, ex
hanging twosubtrees has no e�e
t on the �nal results. Note that any set of ve
tors 
an be 
lustered and represented hierar
hi
allyin this way, also a set of random 0/1 ve
tors.
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HN5, N=2049HN5, N=33

Figure 13: Distan
e-distan
e matri
es for sets of K = 200 randomly sampled highest-density 
on�gurations. The 
olumns androws are labeled by 
on�gurations, the order of the 
on�gurations in the rows and 
olumns is the same and was obtained viaa 
lustering approa
h (see text). The 
lustering stru
ture is visible by the trees (�dendrograms�) whi
h are shown below thematri
es. The entries of ea
h matrix are normalized hamming distan
es between di�erent 
on�gurations, shown in gray s
ale(bla
k: distan
e 0, white: distan
e 1).Whether this hierar
hi
al 
lustering represents the original lands
ape stru
ture well, 
an be investigated in thefollowing way: One draws the matrix of Hamming distan
es by using the order of the 
on�gurations to order therows and 
olumns of the matrix. If, e.g., on takes a set of suitable large random 0/1 ve
tors, the resulting matri
eswould appear basi
ally grey, showing that the order imposed by the 
lustering is arti�
ial in this 
ase. In Fig. 13 theHamming-distan
e matri
es are shown for a 
ouple of sample systems. For both 
ases, HN3 and HN5, at small systemsizes, a 
omplex blo
k-diagonal stru
tures is visible, su
h that ea
h visible blo
k exhibits a similar substru
ture. This



17gives the impression of a 
omplex hierar
hi
al organization of the 
on�guration spa
e. Nevertheless, when going tolarger system sizes, the matri
es exhibit mu
h less 
ontrast, whi
h strongly indi
ates that for N → ∞ the solutionlands
ape will be similar to a set of random ve
tors, i.e., without any 
omplex organization.This result is supported when 
omputing the 
opheneti
 
orrelations, whi
h measure the 
orrelation between theHamming distan
es d and the distan
es dc along the dendrogram
K ≡ [d · dc]− [d][dc] , (47)where [. . .] is the average over pairs of 
on�gurations. Note that dc is the sum of the Hamming distan
es along a pathin the tree 
onne
ting a pair 
on�gurations, respe
tively.
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Figure 14: The 
opheneti
 
orrelations in Eq. (47) as a fun
tion of system size for HN3 (main plot) and HN5 (inset). The solidline displays the fun
tion K(N) = 3.25N−0.68 .The resulting 
opheneti
 
orrelation K as a fun
tion of system size is displayed in Fig. 14. For both 
ases, HN3and HN5, K de
reases strongly as fun
tion of system size, taking the di�eren
e between even and odd powers k forHN5 into a

ount. For HN3, the data is 
ompatible with a power law K(N) = 3.25N−0.68. Hen
e, in the limit ofin�nite system sizes, the hierar
hi
al stru
ture imposed by the 
lustering is not 
orrelated to the a
tual Hammingdistan
es. This shows that the lands
ape of highest-density 
on�gurations appears to be simple for both HN3 andHN5, in strong 
ontrast to the vertex-
over/latti
e gas problem on random graphs [31℄.VI. CONCLUSIONSWe have su

eeded in obtaining the optimal vertex 
overage or pa
king fra
tion for the Hanoi networks HN3 andHN5 using the renormalization group. Our Monte Carlo simulations allowed us to 
on�rm those results and extendsthem to any �nite size. We 
an also obtain the entropy to arbitrary a

ura
y, and show that it is extensive and likelynon-trivial in the sense that there is no simple generator to provide or related the set of all optimal 
on�gurations,a remarkable result for su
h a simple, planar network. Even more remarkable, for ea
h given size, the set of allpossible solutions has a 
omplex hierar
hi
al stru
ture, as visible from 
lustering the states and 
onsidering distan
e-distan
e matri
es. Nevertheless, analyzing the 
opheneti
 
orrelations shows that in the thermodynami
 limit, a setof random-ve
tor-like solutions dominates entropi
ally and makes the solution lands
ape thermodynami
ally simple.



18While there are no phase transitions in this problem, the Hanoi networks would allow to study analyti
ally aninteresting per
olation transition when 
onsidering an interpolation between their one-dimensional ba
kbone alone (asimple bipartite latti
e with just two perfe
t solutions of 1/2 
overage) and the full network (with an extensive set offrustrated optimal solutions of 
overage 5/8 for HN3 or 2/3 for HN5) by adding the small-world edges with a probability
p. As a novel te
hni
al feat, we derive the renormalization group equations for hierar
hy-dependent observables toobtain, for instan
e, the 
overage provided by ea
h level of the hierar
hy in the network. Here, these observablesmerely reveal that higher levels of the hierar
hy be
ome very uniform (even if alternating) in 
overage, while most ofthe interesting stru
ture resides with the majority of variables at a few lowest levels, in a

ordan
e with the numeri
alstudy of the ultrametri
 relation between solutions. But similar te
hniques might be useful to provide insights intothe �pat
hy� nature of ordering on whole 
lasses of hierar
hi
al networks in other problems [12, 25, 26, 39, 40℄.A
knowledgmentsSB gratefully a
knowledges support from the NSF under grant DMR-0812204 and from the Fulbright Kommissionfor a resear
h grant to visit Oldenburg University, where he is deeply indebted to the Computational Theoreti
alPhysi
s group for their kind hospitality. AKH enjoyed dis
ussions with Thomas Neuhaus. The simulations wereperformed on the GOLEM 
luster of the University of Oldenburg.VII. APPENDIXA. Determining the RG-Re
ursion EquationsIn the derivation of the re
ursive form of the partition fun
tion in Se
. IV, we pi
k up from Eq. (15) to transform
Θ into the Ising-like form

Θ (µ1, x, y, z) = 1 + eµ1 (1− y) (2− x− z) .

= exp

{
2I +

1

2
G [(x + y) + (y + z)] +

1

2
H (x + z) + K (xy + yz) + Lxz + Dxyz

}

= C−2
1 γ

− 1
2 [(x+y)+(y+z)]

1 η
− 1

2 (x+z)
1 κ

−(xy+yz)
1 λ−xz

1 ∆−xyz
1 , (48)where we have de�ned the 
onvenient �a
tivity� parameters

C = e−I , γ = e−G, η = e−H ,

κ = e−K , λ = e−L, ∆ = e−D. (49)Eq. (48) mat
hes Eq. (15) for the 
hoi
e of
C1 =

m1

2 + m1
, γ1 =

2 + m1

m1
, η1 =

m1 (2 + m1)

(1 + m1)
2 ,

κ1 =
1 + m1

2 + m1
, λ1 =

(1 + m1)
2

m1 (2 + m1)
, ∆1 =

m1 (2 + m1)

(1 + m1)
2 , (50)(with m1 = e−µ1), whi
h serves as the initial 
onditions for the renormalization group �ow, both, for HN3 and HN5.In terms of these renormalization group parameters one 
an then show for HN3 that the �se
tional� partitionfun
tions ζ have to be written as

ζl
i (x, y, z) =

∑

a

∑

b

C−2
i m−a−b

i+1 γ
− 1

2 [(x+a)+(a+y)+(y+b)+(b+z)]
i η

− 1
2 [(x+y)+(y+z)]

i

κ
−(xa+ay+yb+bz)
i λ

−(xy+yz)
i ∆

−(xay+ybz)
i (1− ab) , (51)

= C−1
i+1γ

− 1
2 [(x+y)+(y+z)]

i+1 η
− 1

2 (x+z)
i+1 κ

−(xy+yz)
i+1 λ−xz

i+1 ∆−xyz
i+1 ,where we have depi
ted the tra
ing operation graphi
ally in Fig. 15. This operation requires for HN3 to express the
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Figure 15: Depi
tion of the graph-lets asso
iated with the se
tional partition fun
tion ζl

i in Eq. (51) during one RG step onHN3. The step 
onsists of tra
ing out odd-labeled variables xn±1 (taking a

ount of the hard-
ore 
onstraint relevant at thislevel) in the top 
artoon and expressing the renormalized 
ouplings (γ′, η′, κ′, λ′, ∆′) , in the bottom 
artoon in terms of theold 
ouplings (γ, η, κ, λ, ∆). To save spa
e, the one-point 
ouplings (�bond magnetizations� [41℄) γ and η have been omitted.These 
artoons summarize the 
al
ulation indi
ated by Eqs. (51-52).renormalized quantities at i + 1 in terms of those at i with the RG re
ursions
Ci+1 =

mi+1γiC
2
i

2 + mi+1γi

, γi+1 = γiηiκi

2 + mi+1γi

2 + mi+1γiκi

,

ηi+1 = κi

(2 + mi+1γi) (2 + mi+1γiκi)

(1 + κi + mi+1γiκi)
2 , κi+1 = λi∆i

(2 + mi+1γiκi) (1 + κi + mi+1γiκi)

(2 + mi+1γi) (1 + κi∆i + mi+1γiκ2
i ∆i)

, (52)
λi+1 =

(1 + κi + mi+1γiκi)
2

κi (2 + mi+1γi) (2 + mi+1γiκi)
, ∆i+1 =

(2 + mi+1γi)
(
1 + κi∆i + mi+1γiκ

2
i ∆i

)2

∆i (2 + mi+1γiκ2
i ∆i) (1 + κi + mi+1γiκi)

2 .For HN5, we obtain 
orrespondingly:
ζl
i (x, y, z) =

∑

a

∑

b

C−2
i m−a−b

i+1 γ
− 1

2 [(x+a)+(a+y)+(y+b)+(b+z)]
i η

− 1
2 [(x+y)+(y+z)]

i (53)
κ
−(xa+ay+yb+bz)
i λ

−(xy+yz)
i ∆

−(xay+ybz)
i (1− ab) (1− xa) (1− ay) (1− yb) (1− bz) ,

= C−1
i+1γ

− 1
2 [(x+y)+(y+z)]

i+1 η
− 1

2 (x+z)
i+1 κ

−(xy+yz)
i+1 λ−xz

i+1 ∆−xyz
i+1 ,a pro
edure that is graphi
ally depi
ted in Fig. 16. Those extra repulsion terms in HN5 then lead to dramati
allysimpler RG-re
ursions than Eq. (52):

Ci+1 =
mi+1γiC

2
i

2 + mi+1γi

, γi+1 = ηi

2 + mi+1γi

m
, ηi+1 =

mi+1γi (2 + mi+1γi)

(1 + mi+1γi)
2 , (54)

κi+1 = λi

(1 + mi+1γiκi)

(2 + mi+1γi)
, λi+1 =

(1 + mi+1γi)
2

mi+1γi (2 + mi+1γi)
, ∆i+1 =

mi+1γi (2 + mi+1γi)

(1 + mi+1γi)
2 .For the dis
ussion in Appendix VIIB, it is useful to de�ned the �ve
tor� of renormalizable parameters,

~Ai (m1, . . . , mi) = (Ci, γi, ηi, κi, λi, ∆i) , (55)whi
h at ea
h level of the RG i depends impli
itly through the renormalized parameters on the �rst i values of the
hemi
al potentials, as in Eq. (18) for the initial 
ase i = 1, for example. In the analysis, we will symboli
ally refer tothese renormalization group equations formally as a (non-linear) operator,
~Ai+1 (m1, . . . , mi+1) = ~Rmi+1

[
~Ai (m1, . . . , mi)

]
, (56)highlighting the fa
t that the RG-transforms depend expli
itly on the parameters mi+1.



20

Figure 16: Depi
tion of the (exa
t) RG step on HN5. This step is identical to that for HN3 in Fig. 15 aside from the additionalhard-
ore repulsive terms between xn±2 and xn (top) that is relevant for the 
urrent RG-step, and between xn−2 and xn+2(bottom) whi
h 
ontributes at the next level of the RG.B. Hierar
hi
al O

upationFor later use, we follow 
onvention in de�ning the Ja
obian matrix derived from a formal derivation of the renor-malization group equations as de�ned in Eqs. (55,56),
←→
W
(

~Ai

)
=

∂ ~Ai+1

∂ ~Ai

=
∂ ~Rµi+1

(
~Ai

)

∂ ~Ai

=
∂ (Ci+1, γi+1, ηi+1, κi+1, λi+1, ∆i+1)

∂ (Ci, γi, ηi, κi, λi, ∆i)
. (57)Using the fundamental statement for the grand partition fun
tion Ξ(k) of the unrenormalized system (or the freeenergy f (k) = 2−k ln Ξ(k), instead) in terms of the renormalized partition fun
tions Z(i<k) in Eq. (31), we 
an �nd forthe spe
i�
 o

upation in the i-th level of the hierar
hy

νi (~µ) =
1

2k

〈
2k−i∑

j=1

x2i(2j−1)

〉
=

∂f (k)

∂µi

= −2−kmi

d

dmi

ln Ξ(k), (58)impli
itly de�ning the hierar
hy-spe
i�
 
hemi
al potential mi = eµi in form of the ve
tor
~m = (m1, m2, . . . , mk) . (59)Applying su
h a derivative to the sequen
e in Eq. (31), we obtain for 1 ≤ i < k

d

dmi

ln Ξ(k) (m1, m2, . . . , mk) =
d

dmi

lnZ(1)
[
~Ak−1 (m1, . . . , mk−1) , mk

]
,

=
∂ lnZ(1)

[
~Ak−1, mk

]

∂ ~Ak−1

◦ d ~Ak−1

dmi

. (60)We 
an understand the progression of derivatives in Eq. (60) from the result in Eq. (56),
d ~Al

dmi

=
d

dmi

~Rml

[
~Al−1 (m1, . . . , ml−1)

]
, (61)

=





∂ ~Rmi

∂mi

[
~Ai−1 (m1, . . . , mi−1)

]
, i = l,

←→
W
(

~Al−1

)
◦ d ~Al−1(m1,...,ml−1)

dmi
, i < l,

0, i > l,using from Eq. (57) the matrix
←→
W
(

~Al

)
=

∂ ~Rml+1

∂ ~A

[
~Al (m1, . . . , ml)

]
. (62)Note that the distin
tion between the impli
it and expli
it derivative in Eq. (61) results from the expli
it o

urren
eof mi, just that on
e in the i-th RG step in the re
ursions, and that afterwards the parameters being renormalized



21depend impli
itly on mi. Thus, appli
ation of the relation in Eq. (61), repeatedly for all l > i and on
e �nally for
l = i, yields

d

dmi

ln Ξ(k) (m1, . . . , mk) (63)
=

∂ lnZ(1)

∂ ~A

(
~Ak−1, mk

)
◦←→W

(
~Ak−2

)
◦←→W

(
~Ak−3

)
◦ . . . ◦←→W

(
~Ai

)
◦ ∂ ~Rm

∂m

[
~Ai−1 (m1, . . . , mi−1)

]
.Now it is easy to set all 
hemi
al a
tivities equal, mi = m f. a. 1 ≤ i ≤ k, irrespe
tive of whi
h hierar
hy was targeted,to get

d

dmi

ln Ξ(k) (m1, . . . , mk)

∣∣∣∣
mi≡m

(64)
=





∂ ln Z(1)

∂ ~A

(
~Ak−1, m

)
◦←→W

(
~Ak−2

)
◦←→W

(
~Ak−3

)
◦ . . . ◦←→W

(
~Ai

)
◦ ∂ ~Rm

∂m

(
~Ai−1

)
, 1 ≤ i < k,

∂ ln Z(1)

∂m

(
~Ak−1, m

)
, i = k.We 
an relate this pro
edure ba
k to that for the total o

upation de�ned in Eq. (7) using a uniform m. To thisend, we de�ne an extended ve
tor of parameters with expli
it m-dependen
e
~A′

i =
(

~Ai, m
)

= (Ci, γi, ηi, κi, λi, ∆i, m) . (65)Then,
d

dm
~A′

i =

(
d

dm
~Ai,

dm

dm

)
, (66)

=

(
←→
W
(

~Ai−1

)
◦ d

dm
~Ai−1 +

∂ ~Rm

∂m

(
~Ai−1

)
, 1

)
,

=
←→
W ′
(

~Ai−1

)
◦ d

dm
~A′

i−1,with the new, extended Ja
obian matrix
←→
W ′
(

~Ai−1

)
=

[
∂ ~Ai

∂ ~Ai−1
, ∂ ~Ai

∂m

∂m

∂ ~Ai−1
, ∂m

∂m

]
=

[ ←→
W
(

~Ai−1

)
, ∂ ~Rm

∂m

(
~Ai−1

)

0, 1

]
. (67)A

ording to Eqs. (7,58) it is ν =

∑k
i=1 νi, so

d

dm
ln Ξ(k) (m) (68)

=

k∑

i=1

d

dmi

ln Ξ(k) (m1, . . . , mk)

∣∣∣∣
mi≡m

,

=
∂ lnZ(1)

∂m

(
~Ak−1, m

)
+

∂ lnZ(1)

∂ ~A

(
~Ak−1, m

)
◦

k−1∑

i=1

←→
W
(

~Ak−2

)
◦←→W

(
~Ak−3

)
◦ . . . ◦←→W

(
~Ai

)
◦ ∂ ~Rm

∂m

(
~Ai−1

)
,

=
∂ lnZ(1)

∂m

(
~Ak−1, m

)
+

∂ lnZ(1)

∂ ~A

(
~Ak−1, m

)
◦

◦
[
←→
W
(

~Ak−2

)
◦
[
. . .

[
←→
W
(

~A2

)
◦
[
←→
W
(

~A1

)
◦ ∂ ~Rm

∂m

(
~A0

)
+

∂ ~Rm

∂m

(
~A1

)]
+

∂ ~Rm

∂m

(
~A2

)]
. . .

]
+

∂ ~Rm

∂m

(
~Ak−2

)]
,

=
∂ lnZ(1)

∂m

(
~A′

k−1

)
+

∂ lnZ(1)

∂ ~A

(
~A′

k−1

)
◦
←→
W ′
(

~Ak−2

)
◦
←→
W ′
(

~Ak−3

)
◦ . . . ◦

←→
W ′
(

~A1

)
◦ ∂ ~A′

0

∂m
,where the last line follows from Eqs. (66-67). [Note that ∂ ~A′

0

∂m
= (0, 1).℄



22Table V: Distin
t 
lasses (see text) of solutions for HN3 for ea
h system size N = 2k + 1. For ea
h k, the total 
ount adds upto the number of solutions given in Tab. I
k (011) (110) (101) (111)3 1 1 3 24 3 3 10 215 30 30 138 5206 4140 4140 22440 162564C. Counting Optimal Pa
kingsIn this se
tion, we will attempt to determine a set of re
ursions to 
ount the number of optimal pa
kings in HN3.In the end, we merely su

eed in providing a rigorous lower bound on the entropy density. This exer
ise is interestingin its own right as it highlights the surprising 
omplexity in the stru
ture of vertex 
overs or parti
le pa
kings on thisnetwork. The key ingredients to provide su
h an approa
h originates with the depi
tions of the solutions for k = 3and 4 in Figs. 7-8, and with the observation, in Se
. V, that at ea
h �nite system size N = 2k +1, exa
tly 3×2k−3 +1parti
les 
an be maximally pa
ked into the network. Let us imagine we would try to assemble the k = 4 solutionsfrom those of size k = 3: We would have to join any two solutions at one end-point and add a long link between theirrespe
tive mid-points; the merging-point be
omes the new mid-point and the respe
tive open end-points remain justthat. In the pro
ess (k − 1)→ k, we have to remove a single parti
le overall, as

2
[
3× 2(k−1)−3 + 1

]
− 1 = 3× 2k−3 + 1. (69)In this 
onstru
tion, it appears that only the state of mid- and end-points is relevant, whi
h we 
an denote as(

n0nN
2
nN

) with ni ∈ {0, 1}, depending on whether that site is (1) or is not (0) o

upied by a parti
le. For instan
e,the four solutions in Fig. 7 would be labeled (110) , (111) , (101) , (101), from left to right, then top to bottom, to whi
hwe would have to add the re�e
tion (011). In fa
t, a glan
e at Fig. 8 suggests these are the only four possibilitiesrealized. We have dire
tly enumerated these 
lasses in Tab. V.To 
onstru
t solutions of size k from those at size k − 1, we 
onsider all 16 pairings of these 
lasses, whi
h wesymbolize by
̂(

n0nN
4
nN

2

)(
nN

2
n 3N

2
nN

)
k−1
→
(
n0nN

2
nN

)
k
, (70)where the over-bra
ket 
orresponds to the extra long-range edge added to 
onne
t the two former mid-points, pro-hibiting them to be simultaneously o

upied. With that, we �nd these rules:1. Merging two end-points into a new mid-point is possible(a) at no 
ost, when both are empty, i.e., ̂(xx0)(0xx)k−1 → (x0x)k, making a new mid-point that is empty, or(b) at the expense of one parti
le otherwise, i.e., ̂(xx0)(1xx)k−1, ̂(xx1)(0xx)k−1, or ̂(xx1)(1xx)k−1 →

(x1x)k.[43℄2. Linking the two mid-points with an edge is possible(a) at no 
ost, when at least one of the two mid-points is empty, or(b) at the expense of one parti
le, either from the left or right mid-point, if both mid-points are o

upied.The merger 
an only pro
eed when exa
tly one parti
le gets expanded, due to Eq. (69). Hen
e, the 
ombinations1(a)2(b) and 1(b)2(a) are allowed. The 8 permissible mergers that are left exa
tly map these four 
lasses intothemselves:
[1.] ̂(011)(101)k−1 → (011)k [3.] ̂(101)(011)k−1 → (101)k [6.] ̂(101)(101)k−1 → (111)k

[2.] ̂(101)(110)k−1 → (110)k [4.] ̂(110)(101)k−1 → (101)k [7.] ̂(101)(111)k−1 → (111)k

[5.] ̂(110)(011)k−1 → (101)k [8.] ̂(111)(101)k−1 → (111)k (71)



23It seems straightforward now to dedu
e the re
ursions for the number of 
on�gurations in ea
h 
lass, from one size tothe next. We de�ne the 
ardinality for ea
h set as xk ≡ |(011)k| ≡ |(110)k|, yk ≡ |(101)k|, and zk ≡ |(111)k| to obtainfrom the rules in Eq. (71):
xk = xk−1yk−1, (72)
yk = 2fk−1xk−1yk−1 + 2gk−1x

2
k−1,

zk = y2
k−1 + 2yk−1zk−1,with the initial 
onditions provided by Tab. V: x3 = 1, y3 = 3, z3 = 2. The re
ursions for xk and zk are exa
t,as is illustrated evolving Tab. V from one row to the next. The re
ursion for yk, though, 
an only provide a lowerbound on its growth. The fa
tors of two in front of both terms arises from Eq. (71), as map [3.] and [4.] provide two
ontributions to the �rst while map [5.], in applying rule 2(b), gives us two ways of removing a parti
le in the se
ondterm. The �fudge fa
tors� fk, gk arise be
ause in ea
h of these 
ases (and only these!) the parti
le removal eliminates
onstraints on other parti
les in the respe
tive sub-graph, opening the door for an undetermined number of further
ombinations from less-than-optimally pa
ked sub-graphs. All we know is that these fa
tors are larger than unity,but they 
ould vary with k to an unbounded size. For further analysis, we assume that they 
an be approximated,at least, by 
onstants, f and g. Then, we divide the se
ond by the �rst re
ursion in Eq. (72) to �nd yk/xk ∼ λfor k → ∞, with λ ≡ f +

√
f2 + 2g ≥ 1 +

√
3. It is then easy to obtain asymptoti
ally yk ∼ λxk ∼ (λx3)

2k−3 and
zk ∼ 2k−3 (λx3)

2k−3

(1 + z3/y3). The total number of optimal pa
kings is then Ωk ≥ 2xk +yk +zk ∼ zk, whi
h redu
esto the entropy density
sk ∼

ln Ωk

2k
≥ 1

8
ln (λx3) ≥

ln
(
1 +
√

3
)

8
≈ 0.1256, (73)using x3 = 1 and the lowest value of λ. While this is a poor lower bound, it nonetheless establishes the extensivityof the solution-spa
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