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We study the distribution of the minimum free energy (MFE) for the Turner model of pseudoknot
free RNA secondary structures over ensembles of random RNA sequences. In particular, we are
interested in those rare and intermediate events of unexpected low MFEs. Generalized ensemble
Markov-chain Monte Carlo methods allow us to explore the rare-event tail of the MFE distribution
down to probabilities like 10−70 and to study the relationship between the sequence entropy and
structural properties for sequence ensembles with fixed MFEs. Entropic and structural properties
of those ensembles are compared with natural RNA of the same reduced MFE (z-score).

I. INTRODUCTION

Biopolymers such as DNA, RNA or proteins are
heteropolymers meaning that they consist of differ-
ent types of monomers connected through a “back-
bone” in a linear order. In the case of RNA,
which is considered here, the monomers (called
“nucleotides”) consist of one out of four nitroge-
nous bases (adenine (A), cytosine (C), guanine (G)
or uracil (U)), a ribose sugar, and a phosphate
connected through phosphodiester bonds. The se-
quences of bases are referred as “primary struc-
ture”

In the last two decades fundamental knowledge
about RNA has be achieved, in particular the fact
that the transport of genetic information (via mes-
senger RNA, or mRNA), where the relevant de-
scription is the primary structure, is only one out
of many functions of RNA.

Nowadays it is well established that RNA also
work as catalyst [1, 2] and regulator [3]. In par-
ticular in biochemical processes in the ribosomes
so called ribosomal RNA (rRNA) plays a leading
role in the translation process [4]. In a recent re-
view [5] Bartel discussed the regulatory functions
of so called microRNA. They are a non-coding
RNA meaning that they are not translated di-
rectly to proteins. Instead, they bind to the tran-
scribed mRNA and prevent it from beiing trans-
lated (posttranscriptional gene silencing or RNA
interference).

Together with the change of the viewpoint of
RNA playing an active biochemical role instead

of a passive information carrier, the spacial con-
formation of the molecule has become of particu-
lar interest, because, in analogy to proteins, the
three-dimensional structure, or tertiary structure,
determines the molecule’s function. Interestingly,
the RNA structure prediction problem (the pre-
diction of higher order structures from primary se-
quences) is conceptional simpler than protein fold-
ing, because the formation of secondary structures
(the topology of the folded molecule in terms of
paired bases) is energetically separated from the
full three-dimensional structure [6]. This implies
that the primary structure determines the sec-
ondary structure and, in contrast to the protein
folding problem, the tertiary structure can then
be seen as a perturbation to the secondary struc-
ture. For this reason the RNA secondary structure
is already a meaningful description of the molecule.

Physically, RNA secondary structures can be
seen as a disordered system (e.g. physical systems
with random interaction) with rugged free-energy
landscape [7–12]. In this context the sequence is
considered as a random object and each particu-
lar realization induces a Gibbs-ensemble of possi-
ble structures. The low-temperature properties of
the simple “pair-energy model” [13, 14], is suitable
to understand the fundamental low-temperature
properties of RNA. The energy landscape in such
systems depends strongly on the sequence, and
there is much evidence, that its ruggedness is due
to the randomness [8].

However, from the biological point of view, the
folding process is much more complex than de-
scribed by those simplified models, and more so-
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phisticated free-energy models had been intro-
duced. Much effort had been made to adjust the
parameters in order to increase accuracy in the
secondary-structure prediction. Fortunately effi-
cient algorithms for RNA secondary-structure pre-
diction are not only available for the pair-energy
model [13–15], but also for more realistic mod-
els [16] which, equipped with empirical free-energy
parameters, are able to predict structures to an
accuracy of 60 − 90% in terms of correctly pre-
dicted base pairs [17]. Those algorithms neglect
so called pseudoknots (see below) which is harm-
less in the case of RNA secondary structures. The
software have been made available in the public do-
main. Two popular implementations are the pro-
gram mfold, maintained by Michael Zuker [18] and
the vienna package [19], maintained by Ivo Ho-
facker.

It turned out that the consideration of RNA
sequences as purely random objects is not valid
for natural biological sequences. In most cases,
natural sequences have a lower minimum free en-
ergy than random sequences drawn from ensem-
bles with similar statistical properties as the nat-
ural one (for example the same composition) [20–
23]. Higgs has illustrated that natural tRNA se-
quences have a lower minimum free energy than
purely random ones with the same composition [20]
and also that the probability to find the minimum
free energy (among all states) is larger for natural
sequences at realistic physiological temperatures.

In the case of mRNA this issue has been dis-
cussed controversially. Where Seffens and Digby
found evidence that natural mRNA are more sta-
ble than random ones [22], Workman and Krogh
found contrary results [21] when considering ran-
dom sequences with the same dinucleodic distri-
bution as natural mRNA. This could be explained
by the strong dependency of free-energy contribu-
tions on small local structures in the neighborhood
of stacked base pairs [21, 23].

Another important observation [17, 20, 22] is
that the minimum free energy is strongly corre-
lated with the C + G content of the sequence.

The evidence that a natural RNA sequence has
a lower free energy than purly random ones was
obtained by measuring the so called z-score of
the minimum free energy of the natural sequence
against the random ensemble. This quantity mea-
sures the distance of the observed free energy value
Gmin from the mean µ of the free-energy distribu-
tion over an ensemble in terms of standard devia-
tions σ,

z-score :=
Gmin − µ

σ
. (1)

The free-energy distribution is determined by a
randomization of the natural sequence [20–23].

Here, we approach the problem from a differ-
ent direction. Instead of comparing natural RNA
against a reference ensemble characterized by the
statistical properties (like the composition) we
keep the (normalized) free energy fixed and com-
pare entropic properties of natural RNA sequences
against those of microcanonical sequence ensem-
bles.

For example, one may ask how likely natural se-
quences are modeled by an i.i.d. (identically and
independent distributed) sequence with uniform
composition (each letter occurs with equal prob-
ability) given that the random and the natural
sequences have the same minimum free energy
(MFE). Since each sequence in a microcanonical
ensembles occurs equally likely, one may check how
likely a natural sequence is compatible with a max-
imum entropy principle.

To address this problem we have generated ran-
dom sequences in generalized ensembles where
each MFE occurs equally likely. This allows us
to access the tail of the MFE distribution and to
analyze properties of rare events by reweighting
techniques. These techniques have been recently
applied to study the tails of distribution of proper-
ties of random objects for several models [24–30].

Furthermore we compare these rare-event prop-
erties to those of natural rRNA sequences taken
from a current database.

The article is organized as follows. We introduce
the sequence and structure models in Sec. II. The
simulation and analysis method are discussed in
Sec. III followed by the results in Sec. IV.

II. MODELS

A. Sequence models

The space of RNA sequence is the set of all
possible sequences of length L over the alphabet
Σ = {A, C, G, U}. This space will be denoted as
ΣL.

For random sequences we have chosen a simple
model of i.i.d. sequences. This means each letter
a ∈ Σ occurs with a fixed probability fa (fa =
1/ |Σ| = 1/4 ∀a ∈ Σ here) independent of the
other letters and of the position in the sequence.
Hence the sequence a occurs with probability

p(a) = p(a1, . . . aL) =

L
∏

i=1

fai
=

1

|Σ|L
.



3

Later on, we shall compare composition of nat-
ural RNA sequences against compositions of se-
quences in microcanonical ensembles. For this pur-
pose we used the Bhattacharyya distance measure
(BDM) [31–33] for two distributions p and q which
is defined as

B(p||q) =
∑

i

√

p(i) ·
√

q(i). (2)

The BDM measure fulfills the properties

• 0 ≤ B(p||q) ≤ 1,

• B(p||q) = 1, if and only if p = q, and

• B(p||q) = B(q||p).

This allows one to measure the distance of
an observed normalized composition f̂(a) =
1
L

∑L
j=1 δa,aj

of a given sequence a = a1 . . . aL to

a “null” distribution f0(a)

B̂ = B(f̂ ||f0) =

|Σ|
∑

a=1

√

f̂(a)
√

f0(a).

The BDM alone does not provide a statistical in-
terpretation in the spirit of a statistical hypothesis
test [34]. Such statistical tests address significance
of a certain observation with respect to a refer-
ence model. Under the assumption that the em-

pirical distribution f̂ is described asymptotically
by f0, the BDM deviates from 1 more likely for
short sequences than for longer ones. In classical
statistics one usually relies on so called p-values
to assess the significance of a certain observation
which allows for a statistical interpretation. That
is the probability that an observed event (charac-
terized by a test statistic, i.e. the BDM here) is
at least as extreme as one would expect under the
conditions of a null model. In the case of the in-
terpretation of the BDM, the null model is given
by an uniform histogram and the p-value of an ob-
served BDM B̂0 is the probability that a BDM of
B̂0 or smaller occurred by pure chance under the
assumption that the null model is true. A p-value
for a given B̂0, sample size and number of bins
can be determined numerically [35] by generating
independent histograms with fixed L and |Σ| ac-
cording to the null model (e.g. an uniform compo-
sition) and counting the fraction of events, where

the BDM is smaller than B̂0. However, in our case
the p-values might be very small, which means that
the interesting events occur very unlikely. There-
fore we implemented to method Wilbur’s method
[36] to compute very low p-values in combination
with the BDM measure. Note that this method
is very similar to successive umbrella sampling to
compute free energy differences [37].

Hairpin Loop

Unpaired

Stack

Internal Loop

Multi−Loop

FIG. 1: RNA secondary-structure elements. Dots in-
dicate bases, the backbone is illustrated by the solid
line and and hydrogen bonds by broken lines. Each
secondary structure can be decomposed into different
elements.

B. RNA secondary structures

A secondary structure S of a = a1 . . . aL ∈ ΣL

is a set of pairings pairs {(i1, j1), . . . , (iN , jN )},
where each ik, jk ∈ {1, . . . , L} and ik < jk. N =
|S| denotes the number of pairs. In the following,
we frequently just write “structure”, when we re-
fer to secondary structures. The state space of all
possible structures for a given realization a will be
denoted as Sa.

For any two pairs i < j and k < l there are
in principle three possible cases of order, choosing
i < k without loss of generality. They are either
nested (i < k < l < j), separated (i < j < k < l),
or crossing, also known as pseudoknot (i < k < j <
l). In most studies of RNA secondary structures,
it is assumed that pseudoknots occur on a differ-
ent energy scale and hence are rather an element
of the tertiary structure [6], thus being neglected.
This means only nested or separated pairs are con-
sidered here.

Generally one may decompose every secondary
structure into different elements (see Fig. 1). Of
particular interest are stacks, i.e. a set of consecu-
tive base pairs (i, j), (i+1, j−1), . . . , (i+n, j−n),
where n is the size (or length) of the stack. They
are important, because on one side, they stabilize
the molecule, on the other side they decrease the
entropy for loop formation.

A free-energy model assigns each structure S ∈
Sa of a given realization a ∈ ΣL a free en-
ergy G(S, a). Note that the entropy contribu-
tions to the free energy do not arise from fluctu-
ations of the structure. Instead they arise from
the teritiary structure and are thus implicit in the
model. Hence, the actual parameters of a free-
energy model are obtained usually from measure-
ments. Finding the structure S0 that minimizes
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the free energy among all possible structures is re-
ferred as the RNA folding problem. Due to the pla-
narity of RNA secondary structures, when omit-
ting pseudoknots, this can be done in polynomial
time O(L3) using transfer matrix (called dynamic
programming in computer science) methods [13–
15].

C. The Turner free-energy model

In order to predict the secondary structure of
natural biological sequences, complex models that
account for different free-energy contributions from
different loop types have been developed in the last
two decades.

We used the vienna package, which provides an
implementation of the Turner free-energy model
[16, 17]. It incorporates hundreds of parameters
which had been adjusted over the years. The
model involves the entropic contributions for gen-
eral loops

∆Gloop = −T∆S37,loop

and a special Gibbs free-energy contribution for
stacks

∆Gstacks = ∆H37,stack − T∆S37,stack

(H denoting the enthalpy). The resulting mini-
mum free energy of a sequence a is denoted by
Gmin(a). The parameters had been determined
experimentally (mainly via absorbance versus tem-
perature melting curves [17, 38, 39]) at the stan-
dard physiological temperature 37◦C and a given
salt concentration and then improved by compari-
son of predicted structures with those known from
phylogenetic analysis [40].

The free energy contributions of certain struc-
ture elements usually depend on the type, size and
partially on the base composition. Since multi-
loops (loops that are bounded by more than two
base pairs) are treated effectively and the size of
loops are only considered up to a fixed length, the
free-energy minimization algorithm is still of cubic
time complexity.

III. SIMULATION AND REWEIGHTING

METHOD

A. Importance sampling

Importance sampling is a general technique to
reduce the variance in the estimation of expecta-
tion values [41]. In this framework, “interesting”

events are generated more often by sampling from
a different distribution and correcting for this bias
afterward. This results in a more accurate esti-
mate with a reasonable number of samples. Let
q : ΣL → [0, 1] be an alternative distribution over
the state space of sequences satisfying q(a) > 0,
whenever for the distribution of interest p(a) > 0.
Any expectation value with respect to p of an ob-
servable A(a) can be estimated as

〈A(a)〉p =
∑

a

A(a) · p(a)

=
∑

a

A(a)
p(a)

q(a)
· q(a)

≈
1

z

n
∑

i=1

A(ai)
p(ai)

q(ai)
(3)

where each of the n samples ai (1 ≤ i ≤ n) is drawn
from the sampling distribution q and z is the nor-

malization constant z =
∑n

i=1
p(ai)
q(ai)

. The variance

in estimator Eq. 3 is reduced when the weights q

are chosen such, that the probability mass p(ai)
q(ai)

is

large in the region of interest [41].
In order to probe the MFE distribution over

the sequence space ΣL, in particular to access the
rare-event tail we used the Wang-Landau sam-
pling method [42] to estimate generalized ensemble
weights. In the second stage the sequence space is
explored with Monte-Carlo simulations with fixed
weights.

The quantity of interest is the probability of the
MFE of random sequences

P (Gmin) =
∑

a∈ΣL

p(a) δGmin,Gmin(a), (4)

where δGmin,Gmin(a) = 1 if Gmin is the MFE of the
sequence a and 0 otherwise.

Via importance reweighting it is also possible
to determine mean values of observable depending
on the deviation from the mean of the MFE dis-
tribution. This means, one considers ensembles,
where more probability mass is put in either tail
of the distribution. For this purpose one can either
choose certain free-energy intervals to define such
ensembles, or, in order to avoid binning effects and
to obtain better statistics, define canonical-like en-
sembles with a certain inverse “temperature” Θ,
where expectation values are defined as

〈A〉Θ ≈
1

zΘ

n
∑

i=1

A(Gi
min)

q([Gi
min])

· e−ΘGi
min, (5)

with zΘ =
∑n

i=1 e−θGi
min/q([Gi

min]). As a first step
the temperature is tuned such that the expecta-
tion value of the free energy equals a desired value
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Gmin = 〈Gi
min〉Θ and then the “canonical” aver-

age of the quantity of interest 〈A〉Θ is computed.
By choosing different values of Θ one may probe
the entire free-energy range that has been sampled
(Θ < 0 probes the right tail above the mean and
Θ > 0 the left one) and relate 〈A〉Θ to 〈Gmin〉Θ via
Θ, for the sake of simplicity denoted as A(Gmin)
below.

B. Markov chain Monte Carlo of sequences

As in any Markov chain Monte Carlo (MCMC)
method, the procedure employs an ergodic Markov
chain whose stationary distribution converges to-
wards the sampling distribution q. Let N(a) ⊂ ΣL

denote the neighborhood of a if each b ∈ N (a) can
be generated from a by one of the following oper-
ations

a) substitution at position k,

b) insertion at position k with left shift,

c) insertion at position k with right shift,

d) deletion at position k with left shift,

e) deletion at position k with right shift.

For the operation a) we replace the letter ak with a
letter a ∈ Σ. The operation b) involves a left shift
of the sequence a1 . . . ak (ai is replaced by ai+1)
and an replacement of the letter ak by a new letter
and so on. Note that all sequences in N (a) have
the same length and each operation involves a re-
placement of an existing letter with a newly drawn
one, in case a) by a direct substitution and in the
cases b)-e) indirectly via a shift operation, i.e., by
deleting the first or last letter of the sequence.

In each step of the simulation a new state b ∈
N (a) is proposed from the neighborhood of the
current state a. This proposal is accepted with
the Metropolis criterion [43]

α (a → b) = min

{

1,
q(b)

q(a)

}

. (6)

If the detailed balance condition is fulfilled the
chain converges to the stationary distribution q.
For the model of i.i.d. sequence, detailed balance
can be assured by drawing all new letters according
to the probabilities fa (a ∈ Σ) [24, 28].

C. Generalized ensemble Metropolis

sampling

In the spirit of multicanoical or generalized en-
semble methods [44], q should be chosen in such a

way, that all realizations (from very high MFEs
that sit far above the mean down to very low
MFEs) occur with high probability in the sim-
ulation. Ideally, the distribution P (Gmin) is al-
ready known. In that case one can choose q as
q(a) = q(Gmin(a)) ∝ 1/P (Gmin(a)) which yields
a “flat histogram” of MFEs over the entire range
(denoted as qflat in the following).

There are several ways to approximate qflat it-
eratively. Here, we use the Wang-Landau method
[42] because of its ease of use. Firstly an energy
range of interest is chosen. The algorithm basi-
cally employs a histogram H(Gmin) and weights
q(Gmin) defined on the desired range (we have
chosen a bin size of 1 kcal/mol). Furthermore,
a real valued parameter φj > 1 is used in each
iteration j. At each time step i the weights q
are modified by q(Gi

min)/φj → q(Gi
min), where

Gi
min denotes the MFE of the sequence ai. Fur-

thermore the histogram H is updated by one:
H(Gi

min) + 1 → H(Gi
min). This is continued un-

til an “approximately flat histogram” is achieved.
Let H(Gmin) the average number of counts over
the energy range. A possible flatness criterion
might be that all H(Gmin) counts exhibit at least

ǫWLH(Gmin), where ǫWL can be 0.8 for example.
Once the histogram is “flat”, φ is decreased by

the rule
√

φj → φj+1 and all entries of the his-
togram H are set to 0 while q is kept for the next
iteration j + 1.

Due to the decreasing rule
√

φj → φj+1 the
modification factor φ converges towards 1. The
simulation is stopped, when φ reaches a value
which is close to 1. It turned out that in our
case the range from φ0 = exp(0.1) ≈ 1.105 to
φfinal = exp(0.0002) ≈ 1.0002 has been proven
valuable.

Since detailed balance is violated explicitly the
convergence of the algorithm can not be proven.
For this reason one should always perform a simu-
lation with φ = 1 for data production, which is in
fact the standard Metropolis algorithm with fixed
weights q.

IV. RESULTS

A. The minimum-free-energy distributions of

the Turner model

In this section we discuss the resulting MFE dis-
tributions obtained for the RNA sequences using
the vienna package. Before presenting the results
of the rare-event simulation, first the scaling prop-
erties of the mean, standard deviation and the
skewness [34] are discussed.



6

Informal spoken, the skewness measures how
much probability mass is located at either side of
the mean. A positive (negative) value indicates the
distribution to have more mass on the right (left)
tail. It is defined as

skewness :=
µ3

σ3
,

where µ3 =
〈

(〈X − 〈X〉)3
〉

is the third moment

about the mean and σ =

√

〈(X − 〈X〉)2〉 the stan-

dard deviation of the distribution.
For this purpose it is sufficient to consider

only data generated by simple sampling (ran-
domly drawn i.i.d. sequences without importance
sampling) which allows us to sample considerable
larger sequences (up to L = 1280) than for the
rare-event simulations. The sample size varied be-
tween 10, 000 for the smallest (L = 40) and 1300
for the largest system. The result is shown in Fig.
2.

The first moments 〈Gmin〉L and the standard de-
viation σ scale in analogy to previous studies [22]
as

〈Gmin〉L = c1 · L + c0 , σ[Gmin]L = d ·Lν . (7)

The resulting fit-parameters of a least-χ2 fit are
summarized in Tab. I and will be used in Sec. IV C.

The small skewness differs from other models
with quenched disorder and long range interac-
tion. For example, the long-range spin-glass ex-
hibits ground-state energy distribution that can be
described by a modified Gumbel distribution [26],
i.e., a skewed distribution. Also for the ground-
state-energy distribution of the pair-energy model
introduced in [13–15], we found a different behav-
ior (results not shown here). For this model we
found positive skewed distributions.

For small sequences and not too small temper-
ature, the skewness is much more negative. In all
cases the skewness approaches 0 for large system
sizes, which means that the distributions are es-
sential symmetric in the high probability region.
This can also be seen in the inset of Fig. 3, where
the unscaled free-energy distributions for different
temperatures are shown.

c0 c1 d ν

T=37 ◦C 8.9(4) 0.331(2) 0.51(1) 0.511(5)

T=0 ◦C 10.6(5) 0.691(4) 0.75(1) 0.498(3)

T=−100 ◦C 17.8(7) 1.842(5) 1.29(2) 0.494(3)

TABLE I: Fit parameters of a least square fit of the
mean and standard deviation of the MFE distributions
to the functional form Eq. 7.
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FIG. 2: Skewness of the minimum free-energy distri-
bution over an random ensemble of i.i.d. sequences for
different temperatures as a function of sequence length.
Insets: scaling of the first moments and widths of these
distributions with sequence length.

Since the computation of the minimum free en-
ergy is still of O(L3) time complexity, the system
sizes for the generalized ensemble simulation are
restricted to relatively short sequences (in com-
parison to what can been achieved by simple sam-
pling).

We used system sizes from L = 20 up to L = 160
[51]. Typically 10 Wang-Landau iterations (start-
ing with φ0 = 0.1) where enough to achieve a
suitable guess for the generalized ensemble simula-
tions.

The main plot of Fig. 3 displays the MFE distri-
butions obtained by the generalized ensemble sim-
ulation in a logarithmic scale. Note that using
the Wang-Landau approach the distribution can
be easily accessed in a region with probabilities as
small as 10−70. Clearly, the distributions dif-
fer from a Gaussian distribution, which one
would obtain for an energy function which is
the sum of independent contributions. For
the RNA secondary structures, in particular
due to the existence of pseudo knots, each
pair has a strong influence on the feasibil-
ity of other pairs, explaining the long tail of
the MFE distribution observed. The shape of
the distributions at different temperatures differ
slightly. Interestingly the one for lower tempera-
ture seems to be more symmetric, which is again
in contrast to other models like the distribution of
finite-temperature alignments that is discussed in
Ref. [30]. A simple explanation for the asym-
metry of the distribution will be given in the
next section.
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FIG. 3: Raw minimum-free-energy distributions at dif-
ferent temperatures for the largest system L = 160.
The inset shows the same data with linear scale.
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FIG. 4: Rescaled free-energy distributions at T =
37◦C for different system sizes. The inset shows the
same data with linear scale.

In order to better understand the finite-size ef-
fects, the rescaled distributions for different sys-
tem sizes and T = 37◦ are shown in Fig. 4. For
large probabilities and for the short tail the distri-
butions collapse quite well. In the long tail some
effects show up. Long sequences seem to have a
given rescaled free energy less likely than short se-
quences (for intermediate values of the rescaled free
energy (Gmin − µ)/σ).

B. Entropy and thermodynamics of rare

events

For the pair-energy model [7] we observed (not
shown here), that the sequence composition is uni-
form in the left tail and highly nonuniform in the
far right tail. This can be understood by entropic
arguments: In order to achieve a low energy the
sequence requires to have many complementary
bases. Ideally the second half of the sequence con-
sists of complementary partners of the first one in
the same linear order. In this case the ground-
state is just a single stack of size L/2. Such se-
quences exhibit an uniform composition, because
one may choose the letters of the first half freely.
In contrast, for a large ground-state energy, the
sequence composition requires a huge amount of
non-complementary bases, because the presence of
a certain letter requires its complementary partner
to occur rarely in the sequence.

In the same spirit, we analyzed the sequence en-
sembles that are biased towards very rare events
of the MFE distribution. Here, in contrast to the
simplified pair-energy model, the observed letter
distributions were nonuniform in both tails, which
is shown in the bottom of Fig. 5.

Also in Fig. 5 the functional dependence of

B(f̂ ||f0) with f0(a) = 1/|Σ| ∀a ∈ Σ on Gmin

is shown. That means for each sample ai the em-

pirical composition f̂ i and the corresponding value

of the BDM Bi ≡ B(f̂ i||f0) was estimated. Then
the canonical averages for different Θ’s were de-
termined using Eq. 5 and identified with Gmin, as
explained in Sec. III A.

Close to the mean of the distribution the value
B is also close to 1 as would be also expected
from simple sampling. Far in the left tail the value
shrinks, what is also supported by the form of the
histograms that are shown in the bottom of the fig-
ure. In the right tail also nonuniform compositions
are observed, implying B to deviate from 1.

The plots in Fig. 5 are labeled with the medi-
ans of the p-values of a BDM test of the observed
microcanonical sequence ensembles (depending on
Gmin) against an uniform letter composition.

Note, that to determine the histograms and the
p-values we used binned free-energy intervals in-
stead of the reweighting procedure. For that pur-
pose the free energy range was divided into 50 bins
for the largest system L = 160.

Sequences at the left end of the distribution
essentially only consist of the bases C and G.
This pair forms three hydrogen bonds, which ex-
plains why the resulting structures are very stable
[17, 20, 22].



8

-25 -20 -15 -10 -5 0 5

(Gmin - µ)/σ

0.8

0.9

1

<
B

>

L = 40
L = 60
L = 80
L = 120
L = 160

A U C G
0.0

0.5

1.0

A U C G A U C G A U C G

T =  37 °C

5 ×10
-28

p-value: p-value: p-value: p-value:
10

-9
0.72 2 × 10

-8

FIG. 5: top: Observed BDM as a function of the
rescaled minimum free energy, for different system
sizes. Nonuniform compositions are found in both
tails. Vertical lines indicate the rescaled minimum-
free-energy range of the selection of natural rRNA se-
quences (see Sec. IVC)
bottom: Histograms of observed compositions in dif-
ferent bins (L = 160), very far and far from the mean
on the left side, close to the mean and far in the right
tail. The medians of the corresponding p-values for
the BDM-test (against a perfectly uniform composi-
tion) are written in the plots of the histograms.

The composition in the right tail seems to be
unexpected at the first glance, in particular as it
not only describes the average composition, but it
also turned out that individual sequences in this
region have a similar empirical letter frequency.
Even though there are many A − U Watson-Crick
pairs available, the minimum free energy is rela-
tively large. This is so because a loop needs to be
closed by a stable pair, ideally by C − G.

The presence of Cs without the complementary
partner G seems to destabilize the structure which
can be supported by the following simple com-
puter experiment on a sequence of length L = 160.
First the sequence is initialized as AL/2UL/2, yield-
ing a low minimum free-energy structure (Gmin =
−63.50kcal/mol) consisting of a single large stack.
Then the sequence is modified by randomly replac-
ing letters with Cs. The minimum free energy in-
creases rapidly with the concentration of C’s and
reaches Gmin = 0, when approximately every third
letter is modified. On the other side, when repeat-
ing the experiment by replacing the letters with
G instead of C a much higher fraction of replace-
ments (approximately 70%) is necessary in order
to achieve Gmin = 0.

By looking in the standard free-energy refer-
ence material, which was summarized by Mathews

et.al. [17], this effect can be explained by penalty
terms to the overall free energy for certain unsta-
ble secondary-structure motives. Noticeable are so
called “olgio-C loops” and “tandem mismatches”
(see Table 6. and Table 11. in ref. [17]). Olgio-C
loops are hairpin-loops, in which all unpaired bases
are C. Tandem mismatches are internal loops with
two unpaired bases on each strand. Free-energy
contributions of loops of this kind have different
values depending on the types of the mismatches
(unpaired letters) and on closing base pairs. Some
combinations have negative contributions others
have positive penalties. Cases, where tandem mis-
matches are closed by A−U pairs and that contain
C − A, C − U or C − C mismatches are penal-
ized most. A + U rich sequences that are “dot-
ted” with C are entropically more favorable than
sequences that contain only few complementary
letters, which is the condition to achieve a large
ground-state energy in the pair-energy model.

By the same entropic arguments we may also ex-
plain the fact that the tail for large MFEs is shorter
than the one for low MFEs. In particular a MFE,
of 0 is achieved with larger probability than the
minmal possible MFE, because it is more likely to
find a composition where one letter occurs rarely
and the remaining equally likely (see composi-
tion histograms in Fig. 5), than a compostion
where two letter occur equally likely and the re-
maining ones very rarely.

The thermodynamics of rare sequences can be
studied by looking not only at the sequences and
values of the free energy but also at properties
of the minimum-free-energy structures, which are
also reported by the program RNAfold. Fontana
et. al. [45] studied various of such quantities us-
ing simple sampling of random RNA sequences and
compared the statistics of this ensembles with nat-
ural RNA sequences. One quantity that was con-
sidered in [45] is the distribution of stack sizes over
the ensemble of MFE structures. Please remember
that the stack size is the number of consecutive
base pairs minus one, see Sec. II B. This is also
used here in the biased ensembles.

Three typical structures that occur in the bi-
ased sequence ensemble are shown in Fig. 6. The
underlying sequence of structure A has a typical
C + G rich composition, which occurs in the left
tail of the MFE distribution. Large stabilizing
stacks are characteristic for those sequences. Such
structures are typical examples for so called pre-
curson miRNA, pre-miRNA which are produced
by from the primary transscript before leaving the
nucelus. Although these structures are most sta-
ble, for some biological functions, they lack of im-
portant structural elements. The sequence with B
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FIG. 6: Reweighted stack-size distribution as a func-
tion of Gmin for L = 160 and typical structures in the
generalized ensemble. The dotted line show the aver-
aged stack-size distribution for the collection of natural
rRNA sequences discussed in Sect IVC.

as minimum-free-energy structure was drawn from
the rare event tail on the right side and consists of
large loops, that are usually very unstable. More
attractive is structure C, which has a free-energy
of 2.0 standard deviations below the mean of the
minimum-free-energy distribution.

Reweighted stack-size distributions (based on
the method described in Sec. III A) for three values
of the MFE is also shown in Fig. 6. In the ensemble
of large minimum free energies only short stacks
occur. For those sequences that have an extremely
low minimum free energy, stack sizes on all length
scales occur equally likely. Additionally a strong
peak for stack sizes that are of the order of the
half of the sequence length is observed. This re-
flects the observation of structure A, where a large
stack is interrupted by a small internal loop.

Interestingly, the difference between the biologi-
cal interesting free-energy range (slightly below the
mean) and the extreme unstable region is not sig-
nificant. However deviations up to nstack = 15
become not as unlikely as for those sequences from
the far right tail of the MFE distribution. The
loop-size distribution (note shown here) seems to
be a better description in order to characterize
differences between the right tail and sequences
from the left tail in an intermediate probability
range, whereas the stack-size distribution distin-
guishes better very rare events from the left tail
and typical sequences.

The mean stack size and the width of the stack-
size distribution as function of the Gmin is shown
in the upper row of Fig. 7. The left plots indi-
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FIG. 7: Top: mean and width of the stack-size distri-
bution normalized to sequence length as a function of
the rescaled minimum free energy.
Bottom: Scatter plot of the mean and width of
the stack-size distributions of 2078 natural rRNA se-
quences (see Sec. IVC) taken from the SilvaDB [46].

cate that only a small fraction of sequences have
minimum free-energy structures that consist of a
single stack in the order of the sequence length.
Fontana et.al. [45] observed that the mean stack
size converges to a length independent value of ap-
proximately 3 base pairs. By studying the width
of the stack size distribution one also learns that
the greatest variety of stack lengths occurs in very
rare sequences.

Both, the composition of the sequences and the
stack-size distribution is discussed under the view-
point of natural biological sequences in the follow-
ing.

C. Comparison between random and natural

RNA sequences

The distribution of random RNA sequences al-
lows one to gain more insight in the question in
which sense natural RNA sequences differ from
random i.i.d. sequences. Under the viewpoint of
rare events in the sequence space we want to study
thermodynamic and entropic aspects for natural ri-
bosomal RNA sequences. For that purpose we ran-
domly selected 2078 large subunit rRNA sequences
from different species up to lengths L = 1000 from
the SILVA database [46]. First of all, the mini-
mum free energies of all sequences were obtained.
In order to make the values of sequences of differ-
ent lengths more comparable the MFE values have
been rescaled by subtracting the average value and
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FIG. 8: (a) Dependence of the p-values of Bhat-
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on the rescaled minimum free energy using 2078 nat-
ural rRNA sequences (dots) taken from the SilvaDB
[46]. The thin vertical dashed line indicates gmin = µ.
The thick (non-linear) dashed line marks the median
of the p-value of natural rRNA sequences. The solid
Line indicates the median of the p-value of the random
sequence model in the generalized ensemble (L=160).
(b) The p-values of a Bhattacharyya test of the com-
position of the natural sequences against compositions
that occur at the same rescaled minimum free energies
in the random sequence model. The thick dashed line
indicates the median. The observed p-values are much
smaller towards large free energies.
(c) The observed frequencies of G + C as a function of
minimum free energy.

then dividing by the standard deviation which are
given by the scaling relations Eq. 7, using the fit
parameters that are listed in Tab. I.

These rescaled free energies are the z-scores, see
Eq. (1), with respect to the i.i.d. sequence ensemble
for each sequence. Even for the simple assumption
of uniform letter frequencies here, one observes (see
Fig. 7 and Fig. 8) that most of the sequences are
located below the mean in agreement with previous
observations [17, 20–22].

In a similar way as for the random sequence en-
semble, we performed Bhattacharyya test against
an uniform letter distribution f0(a) = 1/|Σ| for
each individual sequence and we found the rela-
tionship between p-values of the test and rescaled
free energy energy as it is shown in Fig. 8(a).

Natural sequences that have a minimum free en-
ergy below the mean down to about 5 standard
deviations (a z-score of −5), exhibit intermediate
and large p-values (dots in Fig. 8(a)). This indi-
cates that there is some evidence that all letters
of those sequences occur (more or less) equally fre-

quently. However in this region there are also re-
alizations with relatively small p-values (down to
∼ 10−9), but these values are large, in comparison
to sequences that are more than 5 standard de-
viations below the mean, where p-values down to
∼ 10−26 occur. Since the distribution of p-values
is broad, we included their medians as a function
of the rescaled free energy (dashed line).

Sequences above the mean are also very unlikely
modeled by an uniform i.i.d. letter distribution
which is also indicated by very small p-values of
the natural sequences. We compared this with the
random sequence model by calculating the depen-
dence of the median of the p-values as function of
deviation of the free energy from the mean, which
is shown as solid lines in Fig. 8(a). The qualitative
behavior resembles those of natural sequences. Nu-
merical deviations are probably due the fact that
the largest system for the random-sequence model
was L = 160, whereas the natural sequences are
explicitly longer.

The stabilizing effect of C − G pairs shows up
in the clear correlation between free energies and
C + G content, as shown in Fig. 8(c). In addition,
the mean of the C + G content of the random en-
semble, shown by lines, tells us that the random
model is suitable to explain low free energies due
stabilizing C − G pairs over a broad free energy
range, as it is also observed in previous studies
of natural RNA [17, 20, 22]. In order to support
this argument, the statistical test of the sequence
composition of the collection of natural sequences
was repeated under the assumption of a differ-
ent null hypothesis. That is the assumption, that
the composition of a natural biological sequence is
given by the mean composition of the random se-
quence model given the same rescaled MFE (called
“microcanonical ensemble” here). Note that the
histograms in Fig. 5 are 4 out of 50 different refer-
ence compositions. The test was performed by us-
ing frequency tables, obtained by binning the MFE
range for L = 160 into 50 bins. These the empiri-
cal frequencies of the natural sequences were tested
against those distributions. The corresponding p-
values, see Fig. 8 (b), show a significant increas-
ing of the values for low free energies in compari-
son to the original test against a perfectly uniform
composition. Hence, for MFEs below the mean,
the composition of the sequences in the rare-event
simulations give a fairly good description of the
composition of natural RNA with the same MFE.
On the other side, for large free energies, no such
observation could be made. Hence the assertion,
that low free energies are strongly related to the
C + G content, is further confirmed.

At this point a few statements about the approx-
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imation of this test should be made. It is assumed
that the composition is determined by the rescaled
free energy alone and not on the sequence lengths
(expect the scaling of the mean and the width).
The sequence lengths are much larger for the col-
lection of natural sequences. This assumption be-
comes reasonable, when comparing Fig. 5 with the
scatter plot in Fig. 8. The rescaled free energies of
the natural sequences (z-scores) range from −10 to
5. At least in the left tail, the finite size effects of
the BDM are relatively small for lengths L > 120
in the biological relevant range of the rescaled free
energies.

Note that the free energy parameters rely on the
nearest neighbor model [47]. This means the C+G
content alone is only the leading effect to obtain a
low free energy.

Obviously, natural sequences with relatively
large MFEs do not compare well with random se-
quence model in terms of composition. In the lat-
ter one A + U + C rich sequences are entropically
favorable.

Regarding the stack sizes we find, in agreement
with [45], no correlation between the value of the
MFE and mean and standard deviation of the
stack-size distribution, as shown in the bottom in
Fig. 7. The biological relevant free-energy region
is above the sequence length dependent threshold
value, where stacks sizes are of the order of the
sequence length. Also the maximum of the stan-
dard deviation, where the greatest variety of stack
sizes is expected, sits below this region. From
Fig 6, where we compare the normalized
averaged stack-size distribution of all natu-
ral rRNA sequences (dotted lines) with the
reweighted stack-size distribution from the
simulations, and from Fig 7 we also learn
that finite size effects lead the normalized
stack size 2nstack/L to be length dependent.
Larger normalized stack-sizes seem to be
more probable for shorter sequences. Quali-
tatively, the shape of the averaged stack-size
distribution for natural rRNA agrees with
the ones for intermediate low (say less than
10 standard deviations below the mean) or
positive free energies.

In analogy, we also checked for a possible corre-
lation between the minimum free energy and other
thermodynamic quantities, for example a measure
for the non-extensive character of the free energy
[10, 48, 49]. That is the difference between free en-
ergy of the entire sequence and the sum of the free
energies of the first and the second half of the se-
quence, when it is broken exactly in the middle,
∆Gmin = Gmin(r1, . . . rL) − Gmin(r1 . . . , rL/2) −
Gmin(rL/2+1 . . . , rL). Again, ∆Gmin is largest for

very low free energies, but in the biological rele-
vant region it remains small and is not correlated
to the free energy of natural sequences. Also the
mean loop size of structures of natural sequences
does not correlate with the minimum free energy
(not shown).

V. DISCUSSION AND OUTLOOK

To our knowledge, we have presented the first
Monte-Carlo study of the rare-event tail of the
MFE distribution of RNA secondary structures
down to very small probabilities (≈ 10−70).

Large-deviation properties of random RNA se-
quences are discussed. We illustrated how they
can provide an additional classification of “ran-
domness” of natural RNA sequences.

Properties of large deviations can be explained
by entropic and thermodynamic arguments (Sec.
IVB). As an entropic measure on the sequence
level, the Bhattacharyya distance measure was
used in order to discriminate observed sequences
against the null-model with perfectly uniform com-
position, which is expected in the high probabil-
ity region close to the mean. For the pair-energy
model, the composition is uniform, even in the far
left tail (low energies), whereas the composition
deviates significantly from an uniform distribution
in the right tail.

For the free-energy model, nonuniform compo-
sitions occur in both tails. The leading effect for
stable structures in the left tail (low MFEs) is due
to G + C rich sequences. The destabilizing effect
of A + U + C rich sequences are responsible for
unexpected large MFEs. These sequences are en-
tropically favorable over such sequences that have
many non-complementary bases.

In comparison to natural biological sequences,
G + C rich sequences also have the lowest mini-
mum free energies, whereas many A + U + C rich
sequences are not found. One expects that all se-
quences in a microcanonical-like ensemble occur
equally likely, due to the maximum entropy prin-
ciple. ¿From the statistical tests of the natural
sequences against those in the microcanonical en-
semble one, which agree very well in our study con-
strained on low minimum free energies, one may
infer that natural sequences are (more or less) com-
patible with entropy maximization. For large free
energies this assumption seems not to be the case.

There is a plenty of room for further studies of
the z-score statistics from this microcanonical per-
spective. Even though, at least in the left tail,
the p-values have increased significantly when go-
ing from the uniform null distribution to the one



12

obtained from microcanonical ensemble, they are
still relatively small. For example, the median of
p-values changes from 10−20 to 0.02 for the free-
energy bin (Gmin − µ)/σ ≈ −10. One may change
the sequence model from i.i.d. to model dinucleodic
distribution, like in Ref. [21] or even more compli-
cated shuffling procedures [50]. Possibly one would
observe even larger p-values in the left tail. Even-
tually these models allow one to better describe
the microcanonical sequences from the right tail
as well. Similarly one may also modify the test
statistics from the BDM to more complicated de-
scriptions like Markov sequences instead of an i.i.d.
model.

In a future work, it would also be of interest
to not only look at rRNA as biolgical examples.
Those sequences are essentially characterized by

small MFE. In contrast, for pre-miRNA we would
expect even smaller MFEs as their structures ex-
hibits typically a very long stacks, similar to the
structure A in Fig 6.
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