
EPJ manuscript No.
(will be inserted by the editor)

Random number generators for massively
parallel simulations on GPU

Markus Manssen1, Martin Weigel2,3, and Alexander K. Hartmann1

1 Institute of Physics, University of Oldenburg, 26111 Oldenburg, Germany
2 Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United

Kingdom
3 Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55099

Mainz, Germany

Abstract. High-performance streams of (pseudo) random numbers are
crucial for the efficient implementation for countless stochastic algo-
rithms, most importantly, Monte Carlo simulations and molecular dy-
namics simulations with stochastic thermostats. A number of imple-
mentations of random number generators has been discussed for GPU
platforms before and some generators are even included in the CUDA
supporting libraries. Nevertheless, not all of these generators are well
suited for highly parallel applications where each thread requires its
own generator instance. For this specific situation encountered, for in-
stance, in simulations of lattice models, most of the high-quality gen-
erators with large states such as Mersenne twister cannot be used ef-
ficiently without substantial changes. We provide a broad review of
existing CUDA variants of random-number generators and present the
CUDA implementation of a new massively parallel high-quality, high-
performance generator with a small memory load overhead.

1 Introduction

In the field of computer simulations [?], the construction of suitably good and fast
pseudo-random number generators (RNGs) has been a long-standing problem [?].
This is mostly due to it being ill defined since, as John von Neumann put it, “anyone
who considers arithmetical methods of producing random digits is, of course, in a
state of sin” [?]. In other words, true random numbers cannot be produced from
purely deterministic algorithms and hence the degree to which the thus generated
sequences of numbers resemble random sequences is relative. A number of notoriously
bad RNGs had been implemented as part of standard libraries on the computer
systems available in the early days of computer simulations see, e.g., Ref. [?]. To
separate the wheat from the chaff, a number of collections or “batteries” of tests,
comparing statistical properties of pseudo-random sequences to those expected for a
true random process, have been suggested and extensively used in the past. While for
many years Marsaglia’s DIEHARD suite [?] was considered the gold standard in the
field, with the increase in computer power and the ensuing higher statistical precision
of simulations more stringent criteria have to be applied and so to today’s standards

2 Will be inserted by the editor

one would tend to require a generator to pass the SmallCrush, Crush and BigCrush
test series suggested by L’Ecuyer and coworkers in the framework of the TestU01
suite [?].

Since, by definition, a pseudo RNG sequence is the result of a deterministic al-
gorithm, for each generator one can, in principle, construct tests that show that the
resulting sequences are not truly random. While the mentioned test batteries check for
general statistical flaws of the produced numbers, passing all tests does not guarantee
that a given generator does not lead to systematic deviations when used in a Monte
Carlo simulation of a specific system. In fact, such application tests serve as additional
checks and have repeatedly helped to expose flaws in generators [?, ?]. Of particu-
lar value for such testing are non-trivial models where exact solutions are available
to allow for detecting significant deviations without the need for simulations using
other generators. A most useful example in this respect is the two-dimensional Ising
ferromagnet, for which exact expressions for finite systems can be easily computed [?].

With the increasing interest in harvesting the superior parallel performance of
graphics processing units (GPUs) for general computational purposes [?], these de-
vices have also been discovered by researchers using Monte Carlo and molecular dy-
namics simulations as convenient means of pushing the limits in studies of notoriously
difficult problems. Within a rather wide range of applications, lattice spin systems
with short-range interactions appear to benefit particularly well from the massive
parallelism of these devices [?, ?, ?, ?]. In these systems, the large-scale parallelism
of threads and blocks is typically translated into parallel updates of spins on non-
interacting sub-lattices. A similar situation, only with possibly a larger number of
arithmetic operations interspersed with the consumption of random numbers, is en-
countered for simulations of molecular and other off-lattice systems [?, ?]. To allow
for efficient scaling to the large numbers of threads required for the more and more
powerful GPU devices available, the central generation and distribution of random
numbers by dedicated CPU or GPU threads is not an option. Instead, each updating
unit requires a distinct instance of a RNG. Moreover, many calculations on GPU are
rather limited by the bandwidth than by the number and speed of available arith-
metic units [?]. To ensure good performance, RNG related accesses to the device
global memory must hence be kept at a minimum. As a consequence, random num-
ber generators for such massively parallel GPU simulations must fulfill requirements
rather different from those for the traditional, serial, CPU based simulations: (a)
it must be possible to set up a large number (thousands up to millions) of RNGs
that deliver sufficiently uncorrelated streams of random numbers and (b) to minimize
memory transfers, the generator states should be stored in local, shared memory,
which is very limited.

The problem of parallel generation of random numbers is not completely new (see,
e.g., Ref. [?]), but with the number of threads, say, in a multiple-GPU simulation
counting in the millions, it is brought to a new level. Different strategies are conceiv-
able here: (1) division of the stream of a long-period generator into non-overlapping
sub-streams to be produced and consumed by the different threads of the application,
(2) use of very large period generators such that overlaps between the sequences of the
different instances are improbable, if each instance is seeded differently, or (3) setup
of independent generators of the same class of RNGs using different lags, multipliers,
shifts etc. Note that even if a given generator produces pseudo-random sequences
of good quality (according to the standard tests), a division into sub-sequences and
the ensuing different order in which the numbers are consumed, can lead to much
stronger correlations and, hence, worse quality than for the original generator (see
the discussion in Sec. 2 below). A rather elegant solution to the problem of inde-
pendent generators was recently suggested in Ref. [?] and will be discussed below in
Sec. 7.

Will be inserted by the editor 3

The need to minimize memory transfers and hence ensure that the generator states
can be stored in shared memory seems to ask for RNGs with very small states. This
appears to rule out many of the generators popular for simulations on CPU. The
Mersenne twister [?], for instance, has a state of 624 words or about 20 kB which,
compared to the 48 kB of shared memory available to up to 1536 threads on an
NVIDIA Fermi GPU, is huge. As a rule of thumb, however, RNGs with a larger state
lead to larger periods and, in many cases, better statistical quality. To solve this
dilemma, two different strategies spring to mind: (1) the search for generators with
very small state, but good quality or (2) an attempt to share the state between the
threads of a single block and let these threads cooperate to generate many random
numbers from the same state in a vectorized call. As we will see below, attempts to use
the first approach with conventional generators generally do not lead to satisfactory
results. Notably, however, the concept of counter-based, stateless generators of Ref. [?]
discussed below seems to be an interesting exception. The concept of state sharing
is found, in general, to be more successful. In Sec. 6 below, we discuss a new and
efficient generator designed along these lines, that passes all statistical tests. Another
difference between the CPU and GPU environments concerns the number of random
numbers produced and consumed on each invocation. While it is customary for many
optimized CPU RNGs to produce and store a significant number of entries in one
(possibly vectorized) call and store the produced numbers for later consumption, this
is not feasible for GPU generators with many threads consuming numbers in parallel
and in the presence of the memory limitations mentioned above.

Although research into RNGs suitable for GPUs is still at its beginning, a number
of such implementations has been discussed previously [?,?, ?,?, ?,?,?,?,?, ?,?,?]. To
meet the design goal of a small memory footprint, we deliberately restrict our dis-
cussion to generators using up to four machine words (128 bits) of state information
per thread. This appears to be about the upper limit for reaching good performance
on the present hardware for the massively parallel applications discussed here. This
rules out a number of implementations of general-purpose generators [?], such as
XORWOW, a multiple recursive XORShift generator proposed by Marsaglia [?], im-
plemented in the cuRAND library [?] (which has 192 bits of state) as well as the
standard Mersenne twister implementation in the CUDA SDK (now superseded by
MTGP [?]). We shortly discuss these generators for completeness, however. For lack
of space, we also here concentrate on CUDA implementations and do not discuss
RNGs on ATI cards which have slightly different limitations [?]. Unless stated other-
wise, all test runs and benchmarks have been performed with the CUDA 4.0 Toolkit.
Finally, we do not here consider the generation of quasi-random numbers. In Sects. 2
and 3 below, we focus on simple generators with small states, whereas in the follow-
ing Sects. (with the exception of Sec. 7) the state-sharing approach is discussed. All
generators are benchmarked in terms of the quality of random numbers by using the
TestU01 suite, simulations of the 2D Ising ferromagnet as an application test and
GPU performance measurements.

2 Linear-congruential generators

Arguably the simplest and clearly the best understood RNGs [?] are the linear con-
gruential generators of the form

xn+1 = axn + c (mod m). (1)

To convert the resulting sequence of integers to (uniformly distributed) numbers in
the interval [0, 1], one uses the simple output function un = xn/m. If appropriate

4 Will be inserted by the editor

constants a, c, and m are chosen, the period of this class of generators is p = m.
Since for efficient implementations it is inconvenient (and usually not computationally
efficient) to make m larger than the largest integer representable in a native integer
type, one is restricted to m ≤ 264 on standard architectures. Hence, the achievable
periods are rather small to today’s standards. What is more, on theoretical grounds
it is argued that one actually should not use more than

√
p numbers out of such a

sequence [?, ?]. Indeed, for m = 232 a simulation of a 4096 × 4096 Ising system, for
instance, would use p numbers in only 256 sweeps. The choices m = 232 or m = 264

have the advantage that there is no need to perform the modulo operation explicitly
since on most modern architectures (including GPUs) integer overflows are equivalent
to taking a modulo operation. For such power of two moduli m, however, the period
of the less significant bits is even shorter than that of the more significant bits, such
that the period of the kth least significant bit is only 2k.

An advantage for the parallel calculations performed here is that one can easily
skip ahead in the sequence, observing that

xn+t = atxn + ct (mod m), (2)

where

at = at (mod m), ct =
t∑

i=1

aic (mod m). (3)

Therefore, choosing t equal to the number of threads consuming random numbers, all
threads can generate numbers out of the same global sequence (1) concurrently. This
corresponds to the sub-streams approach of parallel random number generation men-
tioned above. An alternative setup, that cannot guarantee the desired independence of
the sequences associated to individual RNG instances, however, starts from random-
ized initial seeds for each generator, without using any skip-ahead [?]. A potentially
safer approach of choosing independent constants a and c for each instance while keep-
ing m unchanged does not appear to be feasible since there are not enough multipliers
with good properties available for massively parallel simulations [?]. For our tests with
m = 232, we used a = 1664 525 and c = 1013 904 223, originally suggested in Ref. [?].
Moving on to 64-bit, and hence increasing the memory footprint to two machine
words, gives a somewhat more reasonable, but still short period p = 264 ≈ 2× 1019.
As multiplier we here chose a = 2 862 933 555 777 941 757 with provably relatively
good properties [?], where an odd offset, here c = 1442 695 040 888 963 407, needs to
be chosen to reach the maximal period.

It is well-known that unmodified LCGs have rather bad statistical properties. In
particular, plotting k-tuples of successive (normalized) numbers as points in Rk, even
for rather small k the points are found to be confined to a sequence of hyperplanes
instead of being uniformly distributed. Applying the tests of the TestU01 suite, we
find that our 32-bit generator LCG32 already fails 12 out of the 15 tests of the
SmallCrush battery, such that we did not even attempt the Crush and BigCrush
tests. The results are summarized in Table 2. In a parallel GPU code, this original
order of using the produced numbers corresponds to using skip-ahead according to
Eq. (2). The alternative approach of randomly initializing each parallel instance of the
generator with a different RNG without any skipping provisions leads to somewhat
better results as shown in the line “LCG32, random” in Table 2, such that most
SmallCrush tests are passed, but the generator fails 14 out of 144 tests in the Crush
suite. The 64-bit LCGs pass SmallCrush without failures, but have some problems
in Crush. The randomized variant of LCG64, in particular, tested with a number of
262144 threads (as would be required in a simulation of a 1024×1024 Ising ferromagnet
discussed below), fails a moderate 5 out of 196 tests in BigCrush (with an additional

Will be inserted by the editor 5

0.0

0.1

0.2

0.3

ti
m
e
in

n
s

1 30 60 90 120 150
blocks

Fibonacci

LCG64

LCG32

Fig. 1. GPU time per random number for running different implementations of pseudo
RNGs on a GTX 480 as a function of the number of grid blocks employed. The Fibonacci
generator uses r = 521 and s = 353. All thread blocks have 512 threads.

3 suspicious results also counted as failures in Table 2) and could thus almost be
considered acceptable.

In addition to the generic tests provided by TestU01, we also performed an ap-
plication test in the form of a Metropolis simulation of a zero-field, nearest-neighbor
Ising ferromagnet on the square lattice. The GPU simulation code employed has been
discussed in detail in Refs. [?,?]. It uses a double checkerboard decomposition which,
if mimicked in a serial code, would result in a specific order of using the random num-
bers. While this is only one particular example problem, its discrete nature makes
it relatively likely for flaws in the used RNGs to show up in statistically significant
deviations already of basic quantities. While some deviations have been specifically
observed for cluster updates [?], which we do not consider here (see, however, Ref. [?]),
one could argue that the Ising model is amongst the problems in lattice spin systems
that is most sensitive to RNG correlations. In particular, disordered systems that
have extra (preferably high-quality) randomness from quenched parameters in the
Hamiltonian or continuous-spin models with the resulting continuous probability dis-
tributions, are less likely to be afflicted with problems resulting from flawed RNGs.
Due to the availability of exact results for the internal energy per site e and spe-
cific heat CV on finite lattices [?], statistical significance of deviations can be easily
detected. For the generators discussed here, we used a simulation of a 1024 × 1024
system with a total of 107 sweeps after equilibration to determine e and CV at the
inverse temperature β = 0.4. As shown in Table 1 the 32-bit LCG, in particular,
leads to highly significant deviations in this example. What is more, these deviations
are aggravated in the GPU implementation by it sampling from the same random-
number sequence via skipping, but using random numbers in a different order. If, on
the other hand, the “LCG32, random” variant is used, the deviations go away. As
could be expected from the TestU01 results, the deviations produced by the 64-bit
flavor are significantly smaller and, again, disappear for the variant with random seeds
on GPU.

While the quality of pseudo-randomness is questionable, this class of generators
excels, however, in terms of its peak performance on GPU. In Fig. 1, we show the
average time for generating a normalized random number uniformly distributed in

6 Will be inserted by the editor

Table 1. Internal energy e per spin and specific heat CV for a 1024 × 1024 Ising model
with periodic boundary conditions at β = 0.4 from simulations on CPU and on GPU using
different random number generators. ∆rel denotes the deviation from the exact result relative
to the estimated standard deviation. The columns tk=1

up and tk=100
up show the average time

per spin update in ns for k = 1 single and k = 100 multi-hit updates, respectively (see text).
This test uses about 1013 or 243 random numbers.

method e ∆rel CV ∆rel tk=1
up tk=100

up

exact 1.106079207 0 0.8616983594 0
sequential update (CPU)

LCG32 1.1060788(15) −0.26 0.83286(45) −63.45
LCG64 1.1060801(17) 0.49 0.86102(60) −1.14
Fibonacci, r = 512 1.1060789(17) −0.18 0.86132(59) −0.64

checkerboard update (GPU)
LCG32 1.0944121(14) −8259.05 0.80316(48) −121.05 0.2221 0.0402
LCG32, random 1.1060775(18) −0.97 0.86175(56) 0.09 0.2221 0.0402
LCG64 1.1061058(19) 13.72 0.86179(67) 0.14 0.2311 0.0471
LCG64, random 1.1060803(18) 0.62 0.86215(63) 0.71 0.2311 0.0471
MWC, same a 1.1060800(18) 0.45 0.86161(60) −0.15 0.2293 0.0435
MWC, different a 1.1060797(18) 0.28 0.86168(62) −0.03 0.2336 0.0438
Fibonacci, r = 521 1.1060890(15) 6.43 0.86099(66) −1.09 0.2601 0.0661
Fibonacci, r = 1279 1.1060800(19) 0.40 0.86084(53) −1.64 0.2904 0.0700
XORWOW (cuRAND) 1.1060654(15) −9.13 0.86167(65) 0.04 0.7956 0.0576
XORShift/Weyl 1.1060788(18) −0.23 0.86184(53) 0.27 0.2613 0.0721
Philox4x32 7 1.1060778(18) −0.79 0.86109(65) −0.93 0.2399 0.0523
Philox4x32 10 1.1060777(17) −0.85 0.86188(61) 0.30 0.2577 0.0622

[0, 1] on fully loading a GTX 480 device with generator threads. The characteristic
zig-zag pattern results from the number of blocks being more or less commensurate
with the number of available multiprocessors on the GPU (which is 15 for the GTX 480
used for these tests). The peak performance for the LCG32 is around 58×109 random
numbers per second, whereas LCG64 yields 46×109 numbers per second. Note that for
the latter generator, we only use the 32 most significant bits and hence generate only
one random number per 64-bit calculation; on using the whole state to produce two
32-bit numbers, the nominal performance would double (but, of course, the quality
of the generated numbers would be reduced). These performance measures depend
on how many numbers are produced with one generator before the next generator
state needs to be loaded from global memory. Hence, while the performance numbers
given in Table 2 are from compute-bound calculations and thus reflect the complexity
of the arithmetic calculations to produce a new random number, in many practical
applications only a few numbers are produced before the state of a generator needs to
be written back to global memory, such that in these memory-bound cases run-times
are rather dominated by the number of fetches from global memory required to load
the generator state. This second type of performance measure is reflected in the speed
of the Ising simulation as shown in Table 1. Here, the results for updating the spins
of a tile once (k = 1) correspond to the situation that only two random numbers
are produced per state load and save operation, whereas for the simulation with
multi-hit updates (k = 100), 200 random numbers are produced per access to global
memory. The good performance and ease of implementation are plausible reasons for
this type of generators having been used in a number of recent studies with model
implementations of GPU simulations [?, ?, ?,?].

Will be inserted by the editor 7

3 Multiply with carry

Due to the less than optimal quality of random-number streams generated by LCGs, a
number of generalizations and improvements without increasing the size of the state
have been proposed. One well-known example is the multiply-with-carry approach
initially suggested by Marsaglia [?]. In the simplest case, one considers the sequence

xn+1 = axn + cn (mod m),
cn+1 = b(axn + cn)/mc.

In other words, the additive term cn in the (n + 1)st step is the carry from the
previous iteration, hence the name multiply-with-carry (MWC). As for the LCGs, a
particularly efficient generator results from taking m to be a multiple of the intrinsic
word length. We consider m = 232 here, which allows to pack the whole state (xn, cn)
in a 64-bit integer variable. For suitably chosen a, the period is found to be p = am−2
which, for a only slightly smaller than m = 232 comes close to the period p = 264 of
the 64-bit LCG. A GPU implementation of this generator was originally suggested in
the CUDAMCML photon simulator package [?] and was recently used for the Potts
model simulations reported in Ref. [?]. To achieve the full period, one requires am−1
as well as (am− 2)/2 to be prime (such that am− 1 is a safe prime) [?]. A standard
choice for a single generator instance is a = 4 294 967 118. Since these conditions on
a are sufficiently simple, it is relatively straightforward to produce a large number of
multipliers for parallel execution of RNGs with a comparable period and comparable
quality of the generated random number streams. (This is in contrast to LCGs, where
the conditions for full period are more complicated and only a few combinations of
parameters produce streams of acceptable quality [?, ?].)

We have used the batteries from the TestU01 suite to judge the quality of the
pseudo-random sequence produced by a single MWC generator. As is summarized in
Table 2 it fares marginally better than a 32-bit LCG but, in fact, worse than the 64-bit
LCG considered in the previous section. This is somewhat surprising in view of the
fact that this class of generators is often considered superior to LCGs, and the space
requirements for (xn, cn) is the same as that for the 64-bit LCG. The performance
of the well-engineered GPU implementation of Ref. [?] for the pure random-number
production comes in at only slightly below that of the 64-bit LCG with around 44×109

32-bit random numbers per second on a GTX 480.
As mentioned above, it is possible to systematically generate multipliers by finding

the largest safe prime am− 1 with a less than 232 (which is just the a = 4294 967 118
above) and then systematically working one’s way down from there towards smaller
multipliers. To check for primality one uses probabilistic tests such as the Rabin-Miller
algorithm with parameters that make the occurrence of false positives sufficiently
unlikely. There are more than 106 such multipliers for m = 232, which should be
sufficient for most applications. While the efficient generation of large numbers of
multipliers is possible using arbitrary-precision libraries such as the GNU Multiple
Precision Library, these multipliers need to be transferred to and stored in the GPU
main memory, as well as loaded by each independent thread prior to generating
random numbers. Hence, as far as memory bandwidth is concerned, it is fair to say
that the state of this generator is in fact 64 + 32 = 96 bits.

To complement the tests on pure random number generation we also studied the
Metropolis simulation of an Ising model as an application benchmark. The corre-
sponding results are collected in Table 1. Comparing the estimates of e and CV to
the exact results, we find complete statistical consistency in terms of the observed
fluctuations. For comparison, we also show the results of using the same multiplier
(but different seeds) for each generator instance, which also yields satisfactory results,

8 Will be inserted by the editor

but this setup is found to yield slightly better performance since the cooperative load
operation of the multiplier field is no longer required. The application performance
of this generator is very similar to that of the 64-bit LCG, with a moderate overhead
seen in the k = 1 case for the loading of the extra 32 bit multiplier.

The similar class of subtract-with-borrow algorithms [?] is the basis for the RAN-
LUX generator popular in high-energy physics [?]. There, additional skipping in the
random-number sequence is used to get rid of the short-ranged correlations. An imple-
mentation of this generator on ATI cards was presented in Ref. [?]. It cannot compete
in performance, however, with some of the good-quality generators discussed below.
Another generalization of the multiply-with-carry generator is possible in the form of
a multi-term lagged Fibonacci generator with additional carry. This could be imple-
mented on GPU using state sharing rather similarly to the case of the more standard
lagged Fibonacci generators discussed next.

4 Lagged Fibonacci generators

A large number of RNGs with bigger state can be written in the form of a generalized
lagged Fibonacci sequence with recursion

xn = a1xn−1 ⊗ a2xn−2 ⊗ · · · ⊗ akxn−k (mod m). (4)

Here, the operator ⊗ typically denotes one of the four operations addition +, sub-
traction −, multiplication ∗ and bitwise XOR ⊕, respectively. Since a history of at
least k steps of generated xn must be kept in memory in order to perform the recur-
sion, this class of generator effectively has state size 32k bits (assuming 32 bit wide
variables xn). In the following, we choose m = 232. While generators with ⊗ = + are
sometimes also known as multiple recursive RNGs, the choice ⊗ = ⊕ often goes un-
der the name of Tausworthe or shift register generator [?,?]. Here, we concentrate on
the most commonly considered case of generators with two terms, i.e., two non-zero
multipliers ar and as such that

xn = asxn−s ⊗ arxn−r (mod m),

which are reminiscent of the Fibonacci series Fn = Fn−1+Fn−2 that led to the name of
this class of generators. For an appropriate choice of the multipliers as and ar (as well
as the initial values) and assuming r > s, it is possible to achieve periods of p = 2r−1
for ⊗ = ⊕, p = 231(2r − 1) for ⊗ = ±, and p = 229(2r − 1) for ⊗ = ∗, respectively [?].
If the lag r is big enough, the periods can be made astronomically large. For ⊗ = +
and r = 1279 considered below, for instance, we have p = 231(21278 − 1) ≈ 10394.

As an example of this class of generators discussed in Ref. [?], we consider ⊗ = +
and use an implementation that works directly on the output variables un ∈ [0, 1] by
using floating-point arithmetic as

un = un−r + un−s (mod 1). (5)

For good quality one needs r & 100, leading to relatively large storage requirements,
but here the generation of s random numbers can be vectorized by the n threads
of a block. Hence, the ring buffer of length r + s 32-bit words is shared among the
threads of a block, leading to a state size of (r+s)/n words per thread. If one chooses
s only slightly larger than the number of threads per block (and r not too much
larger than s), only a few words per thread are consumed. A number of good choices
for the lags r and s are collected in Ref. [?]. As examples, we use here r = 521,
s = 353 and r = 1279, s = 861, respectively. Since one cannot have a large number

Will be inserted by the editor 9

of independent, “good” pairs (r, s) resulting in a reasonable state size per thread
(assuming a constant number of threads dictated by the application), division into
sub-streams is the only possible strategy for achieving independence between the
streams generated by different blocks. To this end, one can use a modified skipping
procedure similar to that discussed in the context of LCGs as outlined in Ref. [?]. In
view of the astronomic period, however, it appears safe to just seed the ring buffers
of the generators for different blocks with an independent RNG.

The quality of the thus generated streams of pseudo-random numbers crucially
depends on the choice of the lags r and s. For the example generator (5), both choices
r = 521 and r = 1279 pass the SmallCrush battery of tests, cf. Table 2. The generator
with the smaller lag fails two variants of the gap test in Crush, whereas the choice
r = 1279 passes all tests apart from a suspicious result for a random walk test in
Crush. In BigCrush, another suspicious result for a random walk test as well as a
failed variant of the gap test are found; all other tests are passed. Hence, it is safe to
say that from a theoretical perspective these generators produce random streams of
satisfactory quality if only r is chosen large enough. Regarding the Ising application
test on GPU using random seeding of the initial states of ring buffers for different
thread blocks, we find a significant deviation from the exact result for the internal
energy for the smaller lag r = 521 and full consistency for the larger lag r = 1279 for
the 10242 system at β = 0.4 considered here, cf. the corresponding entries in Table
1. The performance of the generator crucially depends on the number of threads
used per block as the number of words per thread (r + s)/n decreases as n ≤ s
approaches s. The performance results in Tables 1 and 2 are for n = 512 threads,
which is realistic for the applications considered, but somewhat unfavorable for the
r = 1279 generator. The pure RNG peak performance for either choice of r is around
23× 109 32-bit numbers per second for the GTX 480, about half of the performance
of the 64-bit LCG. While these performances are virtually identical for r = 1279 and
r = 521, we find that r = 1279 significantly slows down the Ising code as compared
to r = 521, see the performance data in Table 1. The performance of the stand-alone
generator is also illustrated in Fig. 1 as a function of the number of thread blocks
employed.

Improvements of the outlined scheme are easily conceivable. Three-term recur-
rences, for instance, are known to generate significantly improved random-number
streams already at smaller choices of the lags [?]. Alternatively, one might consider
using multiplicative lagged Fibonacci generators which have been shown to be Crush-
resistant [?]. A generator that has been widely used in spin-model simulations, in-
cluding the simulations carried out on the FPGAs of the Janus special-purpose com-
puter [?], is the following recurrence suggested by Parisi and Rapuano in Ref. [?],

xn = xn−24 + xn−55,

un = (xn ⊕ xn−61)/m,

with m = 232. This corresponds to a lagged Fibonacci generator with an additional
shift-register step to improve the quality of the output. For this specific choice of
lags, however, we find that the quality of the generated random-numbers streams is
relatively poor with two suspicious tests in SmallCrush and 8 failed tests in Crush.
In view of these results and the fact that this specific choice of lags does not appear
very suitable for vectorization with the number of cores available on the GPUs con-
sidered here, we have not attempted a GPU implementation of this specific generator.
Another popular generator, suggested in Ref. [?] and dubbed RANMAR, consists of
the combination of a two-term lagged Fibonacci and a second, arithmetic sequence.
While good at its time, it fails a number of tests already in smaller suites (partially
due to the low resolution of 24 bits) and is hence probably not appropriate any more

10 Will be inserted by the editor

for today’s applications. A GPU implementation of RANMAR on ATI cards has been
discussed in Ref. [?].

5 Mersenne twister

The very popular Mersenne twister generator [?] is based on a variant of the general
lagged Fibonacci generator concept outlined in the previous section in the form of a
twisted generalized feedback shift register generator. For the case of 32-bit numbers,
one chooses a Mersenne prime 2k − 1 and sets N = dk/32e. The generator is then
based on the recursion

xn = (xn−N |xn−N+1)A⊕ xn−N+M . (6)

Here, 1 < M < N is the additional, smaller lag and (xn−N |xn−N+1) denotes the
concatenation of the 32−r most significant bits of xn−N with the r least significant bits
of xn−N+1, where r = 32N − k. The 32× 32 bit-matrix A defines the twist operation
which is chosen in a specifically simple form that allows for an efficient implementation
in terms of shift operations. To improve the equidistribution properties, the sequence
xn is subjected to an additional tempering transformation, such that the output
sequence finally is

un = bxnT c,
where the tempering bit-matrix T is a suitably chosen combination of single-term
shifts and binary-and operations, see Ref. [?] for details. It can be shown that, if the
corresponding characteristic polynomial is primitive, this class of generators achieves
the maximal period of p = 2k − 1 [?]. The most popular choice is MT19937 with
k = 19937, leading to N = 624 and r = 31 with the additional lag M = 397. The
period is maximal with p = 219937 − 1 ≈ 4 × 106001. While the quality of these
generators is generally good, they systematically fail tests in the Crush suites related
to F2 linearity.

Without the use of state sharing, implementations of this type of generator lead to
very large states, such that they are not suitable for the type of simulations discussed
here. A smaller version of Mersenne twister with k = 607 and hence state size of
d607/32e = 19 32-bit words using an independent generator instance for each thread
has been part of the NVIDIA CUDA SDK for some time. This is still significantly
in excess of the (arbitrary) cut-off of 4 words per thread adopted here. Due to the
reduced state size and period, this generator fails some random-walk tests in addition
to the routines based on F2 linearity [?]. A variant of the Mersenne twister more
suitable for GPUs has been suggested in Ref. [?]. It uses state sharing and a somewhat
different transformation particularly suitable for GPU characteristics. Vectorization
is performed along the same lines as outlined above for the Fibonacci generator,
generating N −M numbers in one parallel sweep. The choice of the Mersenne prime
211213 − 1 favored in Ref. [?] leads to N = 351 which, ensuring M < 95, allows for
256 threads to generate numbers simultaneously. The resulting state size is hence
351/256 < 2 words per thread plus the overhead for the transformation parameters
common to each thread block. This adapted generator, dubbed MTGP, has been
included in the NVIDIA cuRAND library of random-number generators starting with
version 4.1 [?].

The Mersenne twister generator can be run with parameter sets chosen such that
distinct instances have distinct irreducible characteristic polynomials of the transition
function, at least making it plausible that these sequences are uncorrelated [?]. To this
end, a 16-bit ID is used as an input to a separate, number-theoretic code that searches
for an appropriate parameter set. It is, however, not guaranteed that such a set of

Will be inserted by the editor 11

parameters can be found. For MTGP, a different approach with 32-bit IDs is used
which, however, does not guarantee to generate distinct characteristic polynomials [?].
While this setup, in principle, allows for a large number of parallel instances, the
parameter search is found to be very time consuming such that, for instance, finding
a single parameter set for k = 11213 can take up to an hour on current hardware [?].
As a consequence, cuRAND comes with a built-in set of 64 (presumably) independent
sequences — far too few for many of the applications we are discussing here. Another
inflexibility comes through the restriction to 256 threads per block which cannot be
easily changed.

We have only benchmarked the MTGP code here, finding that it fails, as expected,
those tests in BigCrush based on F2 linearity. The performance is found to be at an
acceptable, but not outstanding 18× 109 32-bit random-number samples per second.
As the implementations available in CUDA 4.1 (which is still incomplete) and Saito’s
website are limited to 200 parameter sets, while our Ising test uses 2048 blocks, in
view of the expensive parameter search mentioned above we have not attempted the
Ising test here.

6 XORShift generators

Another class of generators proposed by Marsaglia [?] is based on the observation
that the XORShift operation, i.e., the binary XOR between a word and a shifted
version of itself, can be performed very fast on modern computers as it does not
involve integer addition, multiplication or division, and it leads to high-quality pseudo-
random sequences. Representing a word of size w as a vector of bits x = (x1, . . . , xw) ∈
{0, 1}w, a left shift can be expressed as a matrix multiplication (x1, . . . , xW)L =
(x2, . . . , xW , 0) with the left shift matrix

L =


0 0 · · · 0
1 0 · · · 0
...

.
...

0 · · · 1 0

 . (7)

If we denote by I the identity matrix, an XORShift by a positions can be writ-
ten as x(I ⊕ La), which corresponds, in C programming language, to the expression
x ^ (x << a). The recursion suggested in Ref. [?] consists of three shifts,

xn = xn−1(I ⊕ La)(I ⊕Rb)(I ⊕ Lc) =: xn−1M, (8)

where R = LT denotes the right shift and a word-size w of 32 or 64 bits is used. For an
appropriate choice of the shifts a, b and c, namely when the characteristic polynomial
P (z) = det(M−zI) is primitive, these generators attain maximal period 2w−1. While,
for w = 32 or w = 64, this is still rather low, similar transition matrices for w = 96,
w = 128 and w = 160 are also suggested [?]. The combination of the w = 160 bit flavor
with a 32-bit Weyl generator (see below) defines the XORWOW RNG implemented
in the cuRAND library [?]. While this has reasonably good properties (including a
period of 2192−232), the state of 192 bits per thread is larger than desirable. Panneton
et al. [?] criticized Marsaglia’s generators for poor quality and tried to amend them by
including more than three distinct shift operations. Brent [?]1 instead concentrated
on finding good parameter sets, for multiple recursive generators, i.e. (a, b, c) for the
above generator, by the use of heuristics.

1 Also note the summary at http://papercore.org/Brent2007.

12 Will be inserted by the editor

{

0

0

target bits

+

+

<< a mod 32

>> 32 - a mod 32

i+a/32 i+a/32+1

.. a/32-1 words ..

substate i

0 0

offset warp 0 offset warp 1

{

padding

11 zeros {

state of

32 words{ padding

11 zeros

Fig. 2. Left: left shift on a shared memory array, which stores the state of a RNG. For thread
i to update its part of the state, it needs a region of the state that spans the sub-states of
threads i + a/32 and i + a/32 + 1. Right: Padding of the state array in shared memory.
Zeros are placed in between the states of different warps to avoid the need for treating shifts
crossing the state boundary separately.

As a more space efficient approach than XORWOW with even better statistical
properties, we here suggest to use the three-shift generator (8), but for a dramatically
increased word size of w = 1024 bits. Adopting Brent’s heuristics [?], we performed a
search for a generator with maximal period 21024− 1 using Sage [?] (and particularly
the included library NTL [?]). We found a generator with the parameters a = 329,
b = 347, and c = 344, which has a primitive characteristic polynomial of weight2
475. This generator is implemented on GPU by splitting the 1024 bits of state into
a single WORD=32-bit word in each of the WARPSIZE=32 threads of a warp and using
the threads of a warp to cooperatively update the 1024-bit state. The XORShifts are
then performed in the following way. Consider, for instance, a left shift by a bits as
illustrated in the left panel of Fig. 2. The bits arriving at the part of the state at
thread i originate from the most significant bits of the word of thread i + ba/32c and
the least significant bits of the word of thread i + ba/32c+ 1. These parts need to be
shifted left and right, respectively, to be assembled to the updated word at position
i. Our full CUDA implementation is shown in Listing 1. There, NWARPS denotes the
number of warps per block and the type state_t is simply an unsigned integer. This
implementation benefits from the fact that all three shifts correspond to a WORDSHIFT=
ba/32c of 10, leading to RAND_A = a (mod 32) = 9 and accordingly RAND_B = 27 and
RAND_C = 24. Though shifts exceeding the word-size could be taken care of using
conditionals, we prefer to simply pad the shared array with WORDSHIFT+1 words of
zeros as shown in the right panel of Fig. 2. As the threads of a warp are always
in sync, explicit synchronization is not needed. However the shared array has to be
marked as volatile to make sure the compiler writes all values to shared memory and
does not simply keep them in registers instead3.

Listing 1. Kernel XORShift.

1 /*

2 * Updates the RNG state in cooperation with in -warp neighbors.

3 * Uses a block of shared memory of size

2 The weight of a polynomial is the number of non-zero terms.
3 Note that the very recently released version 4.2 of the CUDA toolkit allows for a direct

exchange of data between threads within a warp using so-called “warp shuffle” functions.
Using this feature for implementing the present generator would clearly save on shared
memory and, presumably, increase the overall performance.

Will be inserted by the editor 13

4 * (WARPSIZE + WORDSHIFT + 1) * NWARPS + WORDSHIFT + 1.

5 * Parameters:

6 * state: RNG state

7 * tid: thread index in block

8 * stateblock: shared memory block for states

9 * Returns:

10 * updated state

11 */

12 __device__ state_t rng update(state_t state , int tid ,

13 volat i l e state_t* stateblock)

14 {

15

16 /* Indices. */

17 int wid = tid / WARPSIZE; // Warp index in block

18 int lid = tid % WARPSIZE; // Thread index in warp

19 int woff = wid * (WARPSIZE + WORDSHIFT + 1) + WORDSHIFT + 1;

20 // warp offset

21 /* Shifted indices. */

22 int lp = lid + WORDSHIFT; // Left word shift

23 int lm = lid - WORDSHIFT; // Right word shift

24

25 /* << A. */

26 stateblock[woff + lid] = state; // Share states

27 state ^= stateblock[woff + lp] << RAND_A; // Left part

28 state ^= stateblock[woff + lp + 1] >> WORD - RAND_A; // Right part

29

30 /* >> B. */

31 stateblock[woff + lid] = state; // Share states

32 state ^= stateblock[woff + lm - 1] << WORD - RAND_B; // Left part

33 state ^= stateblock[woff + lm] >> RAND_B; // Right part

34

35 /* << C. */

36 stateblock[woff + lid] = state; // Share states

37 state ^= stateblock[woff + lp] << RAND_C; // Left part

38 state ^= stateblock[woff + lp + 1] >> WORD - RAND_C; // Right part

39

40 return state;

41 }

In view of the large period of the generator, we use skip-ahead to partition the
sequence into substreams to be used by different warps. For this purpose, we decided
to split the whole random number sequence into blocks of 2137 ≈ 2 × 1041 numbers,
assigning them successively to the instances. With current hardware, it appears im-
possible for any of the instances to exhaust their sub-sequences. To this end, we let
all warps start with the same state and have them skip the appropriate number of
update steps by multiplying the state with the precomputed 2137-th power of the
recursion matrix M . The matrix, included in a header, is copied to the device and
bound to a texture to perform a matrix multiplication. Starting from the resulting
states after this initialization the warps can simply continue to update normally as
shown in the previous section. If a large number of instances is seeded, we found that
this approach leads to very long kernel running times, which can lead to problems if
the used GPU is concurrently used for display purposes as well. Such problems can
be avoided by including higher powers of the block skip matrix to reduce the number
of multiplications needed. An alternative, more sloppy approach consists of simply

14 Will be inserted by the editor

seeding each generator instance with another RNG which, in view of the large period,
should also prevent any overlapping of sequences for all practical purposes.

Similar to the approach suggested in Ref. [?], we also considered a combination of
the XORShift generator with a simple Weyl sequence,

yn = (yn−1 + c) mod 2w, (9)

with an odd constant c. As for XORWOW, we chose w = 32 and c = 362 437 and,
following Brent [?], return yi

n(I⊕Rγ)+xi
n (mod 2w), where the superscript i refers to

the local state of thread i and γ = w/2. The period of the resulting generator is thus
increased to (21024 − 1)232. Brent argues that in the XORShift generator elements
with low Hamming weight (i.e., small numbers of non-zero bits) will be followed
by other low weight elements. For our generator with w = 1024, the probability
for such events is, however, astronomically small. Still, since the extra cost of the
outlined combination with a Weyl sequence is relatively small, we include it for the
measurements and tests reported below. The calculation of any state of the Weyl
generator is trivially possible in one step,

yn = (y0 + nc) mod 2w,

such that there is no need to store the state in memory in between invocations4.
To assess the statistical quality of the resulting random-number sequence, we

subjected it to the batteries in the TestU01 suite. These tests were performed for two
orders of the generated numbers, namely (a) single-thread order , feeding the sequence
generated by a single thread to the test, and (b) warp order , feeding the 32 numbers
generated by each warp in one step sequentially to the test. In both cases, we found
that all tests were passed. In addition, we tested for equidistribution directly. If we
take output values un of our generator, we expect them to fill the interval [0, 1)
uniformly. Thus if we divide the interval into 2l cells, each cell should be hit the same
number of times. More generally, vectors made of t successive numbers should evenly
fill the [0, 1)t hypercube. We implemented these tests as described in Ref. [?], finding
acceptable uniformity. As discussed by Panneton [?], there are different choices of
the matrix M in Eq. (8) leading to the same characteristic polynomial. Of the four
possible choice, we found one with rather bad equidistribution properties with the
other three being acceptable, and our choice being the best of the available options.

In terms of performance, we find the standalone generator to produce a good
18×109 uniform 32-bit random-numbers per second5. As expected from the statistical
testing, the Ising application test does not reveal any significant deviations from the
exact results, see the corresponding data in Table 1. The performance in the single-
hit and multi-hit versions of the Ising application is reasonably good, benefiting from
the small state and arithmetic simplicity of the generator. The source code of this
generator is included for future reference in the Supplementary Material of this review
article.

7 Counter-based generators

The essential complication of parallelizing random-number generators is rooted in the
fact that they are inherently recursive and thus appear to be, at first sight, intrinsically
serial. Also, it is this recursion that necessitates to store a generator state in between

4 Note that the seed of the Weyl generator is the same for all instances since the chosen
size 2137 of sub-streams is a multiple of the Weyl generator’s period 232.

5 Somewhat better results are found for version 4.1 of the CUDA Toolkit.

Will be inserted by the editor 15

Table 2. Overview of GPU random-number generators discussed in this review. The memory
footprint is measured in bits per thread. For the TestU01 results, if (too many) failures in
SmallCrush are found, Crush and BigCrush are not attempted; likewise with failures in
Crush. The performance column shows the peak number of 32-bit uniform floating-point
random numbers produced per second on a fully loaded GTX 480 device. Note that the
Philox generators, albeit occupying local memory of 4 × 32 bits for number generation, do
not require to transfer a “state” from and to global memory as long as the generator keys
are deduced from intrinsic variables such as particle numbers etc.

generator bits/thread failures in TestU01 Ising test perf.
SmallCrush Crush BigCrush ×109/s

LCG32 32 12 — — failed 58
LCG32, random 32 3 14 — passed 58
LCG64 64 None 6 — failed 46
LCG64, random 64 None 2 8 passed 46
MWC 64 + 32 1 29 — passed 44
Fibonacci, r = 521 ≥ 80 None 2 — failed 23
Fibonacci, r = 1279 ≥ 80 None (1) 2 passed 23
XORWOW (cuRAND) 192 None None 1/3 failed 19
MTGP (cuRAND) ≥ 44 None 2 2 — 18
XORShift/Weyl ≤ 54/32 None None None passed 18
Philox4x32 7 (128) None None None passed 41
Philox4x32 10 (128) None None None passed 30

invocations (and, therefore, uses up precious bandwidth for loads and stores). The
extremely simple Weyl generator discussed in the previous section appears to be a
notable exception as the one-step expression yn = (y0 + nc) mod 2w is of the form

xn = fk(n), (10)

that is, the nth number in the sequence is determined directly by applying some
function fk to the integer n itself, which therefore acts as a counter . Here, k is
interpreted as a key representing all or part of the parameters such as y0, c and w
for the Weyl sequence. Note that if n is a w-bit counter and fk is a bijection, the
period of this type of generator is 2w. While the Weyl generator itself certainly is not
good enough as a RNG meeting today’s standards, one might wonder whether there
are better generators based on the same idea. A number of functions designed along
these lines have been recently discussed by Salmon et al. in Ref. [?].

While such generators have not received much attention in the past for use in
simulations, they are very alike to the functions used in secret-key cryptography .
There, one has a family of encryption functions that depend on a key k and encode
the plain-text n (represented as an integer) into a cipher-text xn (encoded as another
integer) [?]. This is clearly of the form (10), assuming that fk is a bijection allowing
to uniquely decode the cipher-text. The connection to random-number generation
comes in through the security requirements of such function sets fk in cryptographic
applications: if the cipher-texts contain any structure that allow to distinguish them
from pure random sequences, this is a weakness of the system potentially allowing to
break the code (i.e., to find the key or plain-text only knowing the cipher-text). It is
therefore well-known in the cryptographic community that established systems such
as DES (the data encryption standard) and AES (the advanced encryption standard)
can be viewed as extremely high-quality random-number generators [?].

AES is an iterative block cipher based on the repeated application of keyed bi-
jections in several rounds designed to ensure diffusion of bits, i.e., generation of
highly random output from highly regular inputs. It uses a so-called substitution-

16 Will be inserted by the editor

permutation network, which applies repeated substitutions (S-boxes) and permuta-
tions (P-boxes) to the bits of the chosen block of the plain-text. The resulting bi-
jections are highly non-linear, in contrast to most of the transformations used in
traditional RNGs. The block size in AES is 128 bits, leading to a more than sufficient
period of 2128 ≈ 3×1038. For details of the AES transformation see, e.g., Ref. [?]. The
authors of Ref. [?] implemented AES as an RNG on CPU (there using the hardware
support for AES built into recent Intel and AMD CPUs) and GPU. These techniques
produce pseudo-random sequences passing all tests, but they are relatively slow unless
the mentioned special-purpose hardware support is available (which is not the case
on current GPUs).

To provide faster generators without hardware support, Salmon et al. suggest a
simplified schedule based on cryptographic techniques. The core component is based
on integer division and its remainder,

mulhi(a, b) = b(a× b)/2wc,
mullo(a, b) = (a× b) mod 2w,

which can be performed efficiently on most architectures (often reducing to one ma-
chine instruction). The main iteration (or S-box) picks two words (L,R) out of a
block of N words of w bits and computes

L′ = mullo(R,M),

R′ = mulhi(R,M)⊕ k ⊕ L.

The final output is the result of r rounds (so-called Feistel iterations) of the application
of N/2 such S-boxes with different multipliers M but, for each thread, constant “key”
k. For N > 2, the N elements are additionally permuted in between rounds (P-
boxes). Since multiplication, permutation and XOR ⊕ are bijective, it is clear that
the transformation is bijective. The quality of the resulting class of generators, dubbed
Philox-Nxw r, can be systematically improved by increasing the number r of Feistel
iterations. The authors of Ref. [?] empirically find that r ≥ 7 is required for N = 4
and w = 32 to achieve Crush-resistance.

We tested the generators Philox-4x32 7 and Philox-4x32 10 on GPU. Note that,
although this generator requires local storage for four 32-bit words (128 bits) for
performing the iterations, it does not require to load or store a state, such that its
storage requirement is of a different nature than those of the recursive generators.
The use of four words leads to a period of 2128. Since such (pseudo-)cryptographic
bijections are designed to deliver outputs essentially indistinguishable from random
sequences for any choice of k, different keys can be used to generate independent
random-number streams in parallel simulations. For the 64-bit key used here, this
allows to generate 264 independent random-number sequences, ideal for the parallel
applications considered here. Since the key and sequence space can be partitioned
arbitrarily, it is straightforward to use intrinsic logical variables to determine the
random numbers to be used. In a parallel Monte Carlo simulation, therefore, the
counter could correspond to an iteration or sweep number, whereas the key might be
chosen to represent the particle/spin number and further parameters (temperature,
disorder realization, system size, . . .) characterizing the whole run. Using intrinsic
variables for sub-stream selection has the additional advantage of producing identical
results for any specific execution configuration on GPU or even between CPU and
GPU implementations.

The random-number streams of these generators have already been tested in var-
ious sample-orders against the batteries in TestU01 in Ref. [?] and were found to
pass all tests. In addition to that, we used the Ising application test and found no

Will be inserted by the editor 17

deviations, cf. the data in Table 1. Regarding execution speed, we find the standalone
generators to perform at 30× 109 for r = 10 and 41× 109 for r = 7, which is better
than the other high-quality generators considered here. Similarly, in the Ising test
the Philox performance is rather good. Note that Philox4x32 produces four 32-bit
random numbers per invocation. For the Ising simulation with k = 1, however, each
thread only consumes two numbers such that the k = 1 performance results are, in
fact, disfavoring Philox and could be improved by rearranging the code accordingly.
For k = 2, were all produced random numbers are also consumed, Philox4x32 7 re-
sults in 0.1379 ns per attempted spin flip compared to 0.1278 ns for the LCG32 and
0.1330 for LCG64.

8 Conclusions

The generation of high-quality random numbers is an issue of continuing interest
for those engaging in computer simulation studies. After a number of unpleasant
surprises in the early years [?,?], the community has today at its disposal a number of
generators with very long periods and passing most statistical tests for simulations on
serial machines such as single CPUs. With the advent of massively parallel machines
(some of the current clusters already have a total of more than 1 million GPU cores),
the search for adaptations of proved generators or the invention of entirely new RNGs
has begun. Apart from the more general problem of parallel computing to provide
an exceedingly large number of independent random-number streams, simulations on
GPU are faced with the additional challenge of finding generators with small state or
with the possibility of flexible state sharing between the threads of a block (or warp)
to accommodate the small amount of memory local to the multiprocessors and the
memory bandwidth limitations.

Simple, small-state generators such as linear congruential or multiply-with-carry
variants can be very fast. The statistical quality of the resulting sequences, however,
is not ideal for high-precision applications. State sharing, allowing generators with
larger states and hence much longer periods and ensuing better statistical quality of
produced numbers, appears to be a much more promising strategy, providing some
generators passing all tests of the extensive TestU01 suite. We suggest a new generator
along these lines, based on the XORShift idea proposed by Marsaglia [?], which passes
all tests and provides very good performance. For some generators of this type, such as
the Mersenne twister for graphics processors suggested in Ref. [?] and included in the
latest version of the cuRAND library, however, generation of appropriate parameter
sets for a large number of parallel instances is a challenging problem in itself. A
completely different approach [?] based on the keyed bijections used in symmetric-key
cryptosystems is very versatile in producing large numbers of independent random-
number streams, does not require to save a state by coupling keys and counters to
intrinsic variables such as particle numbers and additionally provides one of the most
performant high-quality generators currently available on GPUs.

Acknowledgments

M.W. thanks W. Peterson for bringing Ref. [?] to his attention. M.W. acknowledges
support by the DFG under contract No. WE4425/1-1 (Emmy Noether Programme).

18 Will be inserted by the editor

References

1. A. K. Hartmann, Practical Guide to Computer Simulations (World Scientific, Singapore,
2009)

2. J. E. Gentle, Random number generation and Monte Carlo methods, 2nd edn. (Springer,
Berlin, 2003)

3. J. von Neumann, J. Res. Nat. Bur. Stand. 12, 36 (1951)
4. G. Marsaglia, J. Mod. Appl. Stat. Meth. 2, 2 (2003)
5. G. Marsaglia, DIEHARD Battery of Tests of Randomness, http://www.stat.fsu.edu/

pub/diehard/

6. P. L’Ecuyer, R. Simard, ACM Trans. Math. Softw. 33, 4 (2007)
7. A. M. Ferrenberg, D. P. Landau, Y. J. Wong, Phys. Rev. Lett. 69, 23, 3382 (1992)
8. G. Parisi, F. Rapuano, Phys. Lett. B 157, 4, 301 (1985)
9. A. E. Ferdinand, M. E. Fisher, Phys. Rev. 185, 832 (1969)

10. J. D. Owens, M. Houston, D. Luebke, et al., Proceedings of the IEEE 96, 879 (2008)
11. T. Preis, P. Virnau, W. Paul, et al., J. Comput. Phys. 228, 4468 (2009)
12. J. Yin, D. P. Landau, Phys. Rev. E 80, 051117 (2009)
13. M. Weigel, Comput. Phys. Commun. 182, 1833 (2011)
14. E. E. Ferrero, J. P. De Francesco, N. Wolovick, et al., q-state Potts model metasta-

bility study using optimized GPU-based Monte Carlo algorithms (2012), preprint
arXiv:1101.0876, 1101.0876

15. J. A. van Meel, A. Arnold, D. Frenkel, et al., Mol. Simul. 34, 259 (2008)
16. A. J. Anderson, C. D. Lorenz, A. Travesset, J. Comput. Phys. 227, 5342 (2008)
17. D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors (Elsevier, Amster-

dam, 2010)
18. R. P. Brent, in Proc. Fifth Australian Supercomputer Conference, 95–104 (Melbourne,

1992)
19. J. K. Salmon, M. A. Moraes, R. O. Dror, et al., in Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11
(ACM, New York, NY, USA, 2011)

20. M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 1, 3 (1998)
21. NVIDIA Corporation, CUDA Toolkit 4.1 CURAND Guide (2012)
22. L. Howes, D. B. Thomas, in GPU Gems 3, 805–830 (Addison-Wesley, Boston, 2007)
23. E. Alerstam, T. Svensson, S. Andersson-Engels, J. Biomed. Opt. 13, 6, 060504 (2008)
24. M. Weigel, J. Comp. Phys. 231, 3064 (2012)
25. M. Saito, M. Matsumoto, Variants of Mersenne Twister Suitable for Graphic Processors

(2010), preprint arXiv:1005.4973, 1005.4973
26. V. Demchik, Comput. Phys. Commun. 182, 3, 692 (2011)
27. N. Nandapalan, R. P. Brent, L. M. Murray, et al. (2011), preprint arXiv:1108.0486,

1108.0486

28. T. Bradley, J. du Toit, R. Tong, et al., in Hwu, ed., GPU Gems: Emerald Edition,
231–246 (Morgan Kaufman, Amsterdam, 2011)

29. G. Marsaglia, J. Stat. Softw. 8, 1 (2003)
30. D. E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms,

3rd edn. (Addison-Wesley, Upper Saddle River, NJ, 1997)
31. P. L’Ecuyer, Math. Comput. 68, 249 (1999)
32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, et al., Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)
33. M. Weigel, Phys. Rev. E 84, 036709 (2011)

34. J. Kelling, G. Ódor, Phys. Rev. E 84, 061150 (2011)
35. G. Marsaglia, A. Zaman, Ann. Appl. Probab. 1, 462 (1991)
36. M. Lüscher, Comput. Phys. Commun. 79, 1, 100 (1994)
37. F. Belletti, M. Cotallo, A. Cruz, et al., Comput. Phys. Commun. 178, 3, 208 (2008)
38. G. Marsaglia, A. Zaman, W. Wan Tsang, Stat. Probabil. Lett. 9, 1, 35 (1990)
39. F. Panneton, P. L’Ecuyer, ACM Trans. Model. Comput. Simul. 15, 4, 346 (2005)
40. R. P. Brent, ANZIAM Journal 48, C188 (2007)

Will be inserted by the editor 19

41. W. A. Stein, Sage Mathematics Software, The Sage Development Team (2011)
42. V. Shoup, NTL: A library for doing number theory (2008)
43. W. Trappe, L. C. Washington, Introduction to Cryptography with Coding Theory, 1st

edn. (Prentice Hall, 2002)
44. P. Hellekalek, S. Wegenkittl, ACM Trans. Model. Comput. Simul. 13, 4, 322 (2003)

