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We study the polygons governing the convex hull of a point set created by the steps of n inde-
pendent two-dimensional random walkers. Each such walk consists of L discrete time steps, where
x and y increments are i.i.d. Gaussian. We analyze area A and perimeter M of the convex hulls.
We obtain probability densities for these two quantities over a large range of the support by using
a large-deviation approach allowing us to study densities below 10−900. We find tha the densities
exhibit a universal scaling behavior as a function of A/L and M/

√
L, respectively. As in the case

of one walker (n = 1), the densities follow Gaussian distributions for M and
√

A, respectively. We
also obtained the rate functions for the area and perimeter, rescaled with the scaling behavior of
their maximum possible values, and found limiting functions for L → ∞, revealing that the densities
follow the large-deviation principle. These rate functions can be described by two power laws for
n → ∞ in contrast to the n = 1 case, where one power law is sufficient. We also investigated the
behavior of the averages as a function of the number of walks n and found good agreement with the
predicted behavior.

PACS numbers: 02.50.-r,75.40.Mg,89.75.Da

I. INTRODUCTION

Originally, random walks have been introduced by
Pólya [1] in 1921. Since then, many studies have dealt
with this topic, as they are an ubiquitous model for phys-
ical, biological and social processes [2–4]. Example ap-
plications from biology include self-propelled motion of
bacteria, and the diffusion of nutrients [3], as well as an-
imal motion in general [5, 6]. Another example is the
marking of territories by animals or the description of
home ranges [7–9]. For the latter case a strong increase
of the amount of experimentally available data ocurred
after the introduction of automated radio/GPS tagging
of animals [10, 11]. The usage of minimum convex poly-
gons, called convex hulls, bordering the trace of an ani-
mal [7, 12] is a simple yet versatile [13] way to describe
the home range and can be used for any type of (random-
walk) data. In two dimensions, the convex hull of a point
set is the minimum subset whose elements form a con-
vex polygon in such a way that (a) all points of the set
and (b) the connecting lines between all possible pairs lie
inside the polygon.

Much progress has been made on the analytical side,
when the number of steps is very large and the random
walk (with a finite variance of the step size) converges
to the continuous-time Brownian motion (for a review
see e.g., [14]). The mean perimeter [15, 16] and mean
area [17] of a single two-dimensional Brownian motion
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are known for a long time.

It was shown [14, 18] recently that the problem of com-
puting the mean perimeter and the mean area of the con-
vex hull of an arbitrary two-dimensional stochastic pro-
cess can be mapped to computing the extremal statistics
of the one-dimensional component of the process. This
procedure was successfully applied recently to compute
the mean perimeter and the mean area of several two-
dimensional stochastic processes such as the random ac-
celeration process in 2D [19], 2D branching Brownian
motions with absorption and applications to edpidemic
outbreak [20] and 2D anomalous diffusion processes [21].
Very recently, this method was also successfully used to
compute the exact mean perimeter of the convex hull of
a planar Brownian motion confined to a half-space [22].
Finally, using different methods, the mean perimeter and
the mean area of the convex hull of a single Brownian mo-
tion, but in arbitrary dimensions, have been computed
recently in the mathematics literature [23, 24].

Analytical calculations of even the second moment for
the area and perimeter of a convex hull regarding single
two-dimensional Brownian motion turned out to be very
difficult [25, 26]. For the full distributions of the area
and perimeter no analytical results are known so far, so
the usage of computer simulations is a natural approach,
as done in a recent study [27].

Here, we are interested in multiple random walk-
ers, which perform their walks independently from each
other. The investigation of n non-interacting random
walkers on a d-dimensional regular lattice has been done
in [28–30]. Many studies have been published for in-
teracting multiparticle walkers [31], e.g., in one dimen-
sion [32–35]. The mean first passage time of n indepen-
dent diffusing particles in Euclidean space is calculated,
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e.g., in [36]. Recently, the mean perimeter and the mean
area of n independent Brownian motions have been com-
puted in 2D [14, 18]. In this article we want to check
the predictions from theory by numerical simulations of
n non-interacting time-discrete Brownian random walk-
ers as well as the probability density functions of the
area and perimeter of the corresponding convex hulls. In
particular we apply a numerical large-deviation approach
to obtain the probability density functions over a large
range of the support, down to probability densities as
small as 10−900. In addition, we are interested in what
way the same results for n > 1 walkers are found in com-
parison to the n = 1 case [27].

The paper is organized as follows: Section II intro-
duces the random walk model, the convex hull of a two-
dimensional point set, and briefly elucidates an algorithm
to obtain such a convex hull. Part III explains the large-
deviation scheme used to obtain the probability density
function over a large range of the support including the
low-probability tails. The next part IV presents the re-
sults achieved from our simulations. The last section V
concludes the article and a short outlook is given.

II. RANDOM WALKS, CONVEX HULLS, AND

ALGORITHMS

A time-discretized random walk consists of L step vec-

tors ~δi, and the position ~x(τ) at time step τ < L is the
sum of all steps up to τ , i.e.:

~x(τ) = ~x0 +

τ∑

i=1

~δi (1)

The walk configuration itself is then the set W =

{~δ1, ~δ2, ..., ~δL} of steps [37]. The step ~δi = (δx,i, δy,i)
itself denotes a displacement of the particle by δx,i in
x-direction and δy,i in y-direction. Here, we consider
a time-discrete approximation to a Brownian walk, i.e.,
both δx,i and δy,i are, for each i, drawn randomly from a
Gaussian distribution with zero mean and variance one.
All considered walks are open, i.e., the walker does not
need to get back to the starting point ~x(0) after L steps.

In contrast to [27], where only single walks with one
walker have been investigated, we put multiple random
walks under scrutiny. So, starting from the origin of the
coordinate system, n independent random walkers per-
form their walks simultaneously. The resulting point set

W̃ of n ·L points given by the individual positions of all n
walkers after each time step is then further investigated.

The convex hull C = conv(P̃) of a two-dimensional

point set P̃ = {P̃i}, P̃i ∈ R
2 is described through a con-

vex set over P̃. The points P within C are given by
all possible combinations P =

∑
αiP̃i with P̃i ∈ P̃ and∑

i αi = 1 and αi ∈ R
+
0 (definition given according to

[38]). This means:

1. All points Pi ∈ P lie within C.

2. All lines PiPj ;Pi, Pj ∈ P also lie within C.

The boundary of the convex set is a polygon which
connects a subset P ⊂ P̃ of H points from the point
set, i.e., P = {P0, P1, . . . , PH−1}, with Pi = (xi, yi) (i =
0, . . . ,H − 1). The hull is attributed with area A and
perimeter M according to (identifying i = H with i = 0):

A(C) =
1

2

H−1∑

i=0

(yi + yi+1)(xi − xi+1) (2)

M(C) =

H−1∑

i=0

√
(xi − xi+1)2 + (yi − yi+1)2 (3)

For our work, we determined the polygons bordering
convex hulls (for which one uses shortly the term “con-
vex hull”) numerically. For convenience, we use dimen-
sionless quantities subsequently, as all convex hulls are
represented in a computer.

Here, we used the “Jarvis March” algorithm [39], which
has a complexity of O(N ·H), where N is the number of
points in the investigated point set and H the number of
points in the convex hull. In this algorithm, the convex
hull is calculated in a “gift-wrapping” manner, where one
needs to make sure that all points of the set lie on e.g.,
the right side of a starting point. The next point added
to the convex hull is the point which has the minimum
angle between the line connecting both points and the
vertical. This procedure is repeated until one reaches
the starting point again.

In usual cases, the application of convex hull al-
gorithms can be accelerated by usage of pre-selection
heuristics, such as the one introduced by Akl and Tou-
ssaint [40]. This heuristic looks up extreme points of
the set (i.e., those of maximum and minimum x- and
y-coordinates) and discards all points which lie inside
the quadrilateral formed by these points. We use a cus-
tom refinement of this heuristic, which is based on iterat-
ing the heuristic under rotation of the coordinate origin,
which eliminates another fraction of inert points per each
iteration.

III. LARGE-DEVIATION SCHEME

For simple-sampling results, walk configurations W for
multiple walkers n are generated randomly, and the ac-
cording convex hulls C are calculated through the algo-
rithm, resulting in a multitude of values of A and M .
Obtaining histograms of these values only gives access to
the high probability regime, where the convex-hull prop-
erties of typical random walks are measured. However, in
order to obtain values of these quantities with especially
low probabilities, allowing us to measure the distribu-
tions P (A) and P (M) over a large range of the support,
a certain Markov-Chain Monte Carlo (MCMC) scheme
can be used [41, 42].
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The MCMC consists of an evolution of random walks
W(t) and corresponding sets W̃(t) of points. t is another
discrete “time” parameter, not to be confused with the
time parameter τ of the random walks. For the walks,
we measure the property S(t), i.e., the area (S = A) or
perimeter (S = M) of the convex hull of the point sets,
depending on which distribution P (A) or P (M) we are
aiming at. The initial configuration W(0) is any walk
configuration, e.g., a randomly chosen one.

At each Monte Carlo step t, all n independent walks
Wk(t) (k ∈ {1, 2, . . . , n}) are altered to W∗

k by replacing

one randomly selected step ~δi (i ∈ {1, 2, . . . , L}) in each

walk with a newly generated step ~δ′i. The new step is
generated according to the same distribution as all other

random walk steps, i.e., the x- and y-coordinate of ~δ′i are
drawn independently from a Gaussian distribution. Note

that by exchanging e.g., the first step ~δ1, all following
positions ~x (cf., Eq. (1)) of the walk are changed. The

convex hull of the point set W̃∗ =
⋃

k W̃∗
k resulting from

the n walks W∗
k is calculated, leading to the quantity S∗.

The alteration W∗ is accepted (W(t+1) = W∗) according
to the Metropolis probability:

pMet = min
[
1, e−(S∗−S(t))/T

]
. (4)

Here, T is the (artificial) Monte Carlo “temperature”,
which is a parameter used to set the range of the sampled
values. If the alteration is not accepted, it is rejected, i.e.,
W(t + 1) = W(t).

Like in any MCMC simulation one needs to equilibrate
the simulation, i.e., discards the initial part of the mea-
sured quantities until “typical” values are found. Typical
equilibration times are 103 sweeps (one sweep equals L
MC steps) for e.g., L = 200, n = 3, and T = 10 for
the area of the convex hull. In addition, we pick only
each kth data point from the original measurement to
get roughly decorrelated values. For the case above we
use k = 1 sweeps, which is a typical value. Towards low
absolute values of the temperature this value needs to
be increased, so e.g., for T = 0.2 in the above case, we
choose k = 100 sweeps.

For a given quantity (S = A or S = M) and a given
walk length L one gets different probability density func-
tions (pdfs) PT (S) for each temperature T used. They
are related to the actual distribution P (S) according to
the relation [41]

P (S) = eS/T Z(T ) PT (S) , (5)

where Z(T ) is a normalization constant. For different
values of T , different ranges of the measured value S are
obtained. This allows for a piecewise reconstruction of
P (S) via suitable choices of the normalization constants
Z(T ). They can be calculated through inversion of this
formula whenever for two values T1 and T2 the ranges of
the sampled values of S overlap. Thus, the temperatures
are chosen such that for neighbouring T the measured
histograms sufficiently overlap.

For a more detailed description of the calculation of
the normalization constants Z(T ) and the determination
of the pdf from the pdfs for the single temperatures we
refer to, e.g., [41, 43].

Note that the large-deviation approach has already
been applied successfully for the case of the convex hull of
the point set of one (n = 1) walker [27]. In that reference
also the test case of independent points was simulated
and a comparison with analytical results yielded a good
agreement.

IV. RESULTS

For n = 3 random walks we performed simulations for
walk lengths of L ∈ [20, 200] while measuring and biasing
for the area A and the perimeter M of the convex hulls,
respectively. To obtain a large range of the support for
the pdfs of these two quantities we used e.g. 17 tempera-
tures T ∈ [−200, 40] (excluding the value T = ∞, which
corresponds to simple sampling) for L = 200 for the pdf
of A and about 40 temperatures T ∈ [−20, 5] for M .

We also studied the case of n = 2 walks, which is closer
to the single walker case. Here, we used walks of lengths
L ∈ [20, 500].

To investigate the behavior with increasing number of
walks n, due to the strongly increasing numerical effort,
we performed simulations at fixed system size L = 50
and variable number of walks n ∈ [2, 6] for both observ-
ables A and M . We again obtained probability density
functions over a large range of the support. In addition,
we performed simple-sample simulations, i.e., close to the
peak of the histogram, for L = 50, 106 samples and up
to n = 105 independent random walkers.
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FIG. 1: Probability density function P (M) of the perimeter
M of the convex hull of n = 3 independent random walks in
semi-logarithmic scale. Inset: Region around peaks in double
logarithmic scale.
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A. Probability density function

As an example, Fig. 1 shows the pdf of the perimeter
of the convex hull of three independent two-dimensional
time-discrete open Brownian walks. By using the large-
deviation approach, probability densities smaller than
10−900 can be reached. One can observe the strong cur-
vature of the data on a semi-logarithmic scale. With
increasing walk length L the probability densities also
increase when looking at a fixed perimeter. This is due
to the fact that for larger walk lengths large perimeters
are found by the simulations more likely as more steps in
the random walk are available. We obtained results with
similar high numerical quality for the probability density
of the area (not shown without rescaling for brevity).
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FIG. 2: Rescaled pdfs for n = 3 walks, the area A of the
convex hull and different walk lengths L in semi-logarithmic
scale. Inset: Region close to peaks in linear scale.

Next we check whether the scaling assumptions for the
area [14]

PL(A) =
1

L
P̃

(
A

L

)
, (6)

and the perimeter [14]

PL(M) =
1√
L

P̃

(
M√
L

)
, (7)

are also valid [27] in the case of multiple (n = 2, 3) ran-

dom walks. Here P̃ are universal distributions (actually
different ones, here distinguished by the argument M and
A, respectively) independent of L. This scaling behavior
represents the know scaling of the mean values as func-
tion of walk length.

In Fig. 2 the collapse according to Eq. (6) is shown. In
the tail of the rescaled pdfs almost perfect agreement of

the curves for the different system sizes is visible. Only
in the peak region (cf. inset of Fig. 2) small finite-size ef-
fects occur. The collapse of the pdfs for the perimeter in
accordance with Eq. (7) is depicted in Fig. 3. A good col-
lapse with small finite-size deviations in the peak region
(see inset) is also achieved.

Similar results were found and a good data collapse
was achieved (not shown) for the area and perimeter for
n = 2, respectively.

B. Functional form of the probability density

function

According to [27] we use as universal distributions P̃ (.)
in Eqs. (6) and (7) two Gaussians in the case of large L.
For the perimeter we obtain [27]:

P̃ (m) =
a√

2π σ2
exp

(
− (m − µM)2

2σ2

)
, (8)

where a is a constant and m = M/
√

L. If we approximate
A ∝ M2, so l ∝ m2 with l = A/L, we get an additional

factor 1/
√

l from |dm/d l| ∼ 1/
√

l in the scaling relation.
In total, the scaling function for the area is given by [27]:

P̃ (l) =
a√

2π σ2 l
exp

(
− (

√
l − µA)2

2σ2

)
, (9)

where a is some constant parameter.
Figs. 4 and 5 show the results of those fits to the

rescaled pdfs for L = 200 and n = 3. In both figures,
two independent fits, one to the tail of the distribution
and one to the peak region, were necessary. A single fit
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FIG. 3: Rescaled pdfs for n = 3 walks, the perimeter M of the
convex hull and different walk lengths L in semi-logarithmic
scale. Inset: Region close to peaks in linear scale.
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Gaussian, µA = 1.925(2), σA = 0.309(2)

T = 200

10-2

10-1

0 2 4 6 8 10

FIG. 4: Gaussian fit (solid line) according to Eq. (9) with
parameter a = 1000(25) to the rescaled pdf of the area for
L = 200 and n = 3. Note that the logarithm of Eq. (9) was
fitted to the logarithm of the pdf for A/L ≥ 50 to match the
tail. Inset: Gaussian fit (dashed line) in the peak region for
A/L ∈ [2, 5] corresponding to Eq. (9) with a = 0.474(3).

over the full support does not match the data. In Fig. 4
both independent Gaussian fits fit the data well although
deviations around the peak (cf., inset of Fig. 4) are visi-
ble.

Fig. 5 shows the fits according to Eq. (8) to the rescaled
pdf of the perimeter. The fit to the tail matches the
region of large M/

√
L very well. Nevertheless, in the

inset of Fig. 5 strong deviations from a Gaussian behavior
can be seen.

Next, we investigate the (left) tail of the pdfs towards
small values of the rescaled area and perimeter. Corre-
sponding to [27] we expect for small L an exponential
behavior for the perimeter

P̃ (m) = a exp

(
− b

m2

)
, (10)

where a and b are constants and again m = M/
√

L. With
similar arguments as for large L, where Gaussian fits are
used (cf., Eqs. (8) and (9)) we obtain for the scaling of
the perimeter

P̃ (l) =
a√
l

exp

(
−b

l

)
, (11)

where a and b are constants and again l = A/L.
Fig. 6 shows the exponential fits to the left tails of

the rescaled pdfs of the area and perimeter, respectively.
The fit to the rescaled pdf of the perimeter matches the
data quite well for small m < 5. Also the fit according
to Eq. (11) (see inset of Fig. 6) suits well to the rescaled
pdf of the area for small l < 2.

C. Rate function

Next, the empirical rate function Φ(s) [44] is calculated
which describes the leading behavior of the pdf in the
large-deviation tail. If one assumes that the behavior
of the probability density away from the typical values
around the peak is exponentially small in the walk length
L, one gets for the rate function

Φ(s) = − 1

L
lnP (s). (12)

The quantity s is usually normalized with the maximum
possible values so that s ∈ [0, 1]. As for Gaussian random
walks no real maximum exists, we choose [27] sA = A/L2

and sM = M/L, respectively.
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2  P
n(

L
)

L / T1/2

n = 3

T = 200
Gaussian, µL = -0.054(3), σL = 3.0003(1)

Gaussian, µL = 7.85(1), σL = 1.56(2)

10-3

10-2

10-1

2 6 10 14

FIG. 5: Gaussian fit (solid line) according to Eq. (8) with
parameter a = 1200(22) to the rescaled pdf of the perimeter
for L = 200 and n = 3. Note that the logarithm of Eq. (9) was

fitted to the logarithm of the pdf for M/
√

L ≥ 20 to match the
tail. Inset: Gaussian fit (dashed line) in the peak region for

M/
√

L ∈ [5, 15] corresponding to Eq. (8) with a = 1.011(8).

Fig. 7 shows the rate function for n = 3 and the area
of the convex hull. For small values of sA there are a
strong finite length effects, whereas for larger values the
curves for different L seem to converge quickly to one
curve. Nevertheless, a convergence of the rate function
to one universal shape seems likely, indicating that the
densities obey the large-deviation principle [44].

To estimate the behavior of the curves for large L we
plotted the rate function in a double-logarithmic scale
in the inset of Fig. 7 and also show a power law sκ

A with
κ = 1 for comparison. Apparently, our data has the same
slope, at least in the region where sA is large. This is the
same result as was found previously for n = 1 [27].

In Fig. 8 the rate function for the perimeter and n = 3
is depicted. Again, for small values of sM strong finite
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FIG. 6: Exponential fit (solid line) according to Eq. (10) to
the rescaled pdf of the perimeter for L = 200 and n = 3.
Parameters of the fit are a = 72(8) and b = 200.9(5). Note
that the logarithm of the fit function was fitted to the loga-
rithm of the pdf for m ∈ [1, 5] to match the tail of the pdf.
Inset: Exponential fit (dashed line) according to Eq. (11) to
the rescaled pdf of the area for L = 200 and n = 3. Param-
eters of the fit are a = 394(22) and b = 15.06(2). Note that
the logarithm of the fit function was fitted to the logarithm
of the pdf for l ∈ [0, 2] to match the tail of the pdf.

size effects occur and the convergence to a common curve
is very slow. On the other hand, for larger sM the con-
vergence to a common curve is already visible. In the
inset of Fig. 8 the data is shown in a double-logarithmic
plot. Our data is compatible with a power-law behavior
sκ

M with κ = 2 for large sM represented by the dashed
line. Again we have found the same result as was found
previously for n = 1 [27].

In order to investigate the behavior of the rate func-
tion with varying number of walks n, we show Φ(sM ) in
Fig. 9 as a function of sM = M/L, where L = 50 is fixed,
for various values of n. For small sM a strong influence of
n can be seen, while these are weaker for larger values of
sM . For larger values of sM a convergence to one common
curve is visible. In the inset of Fig. 9 we compare the be-
havior of the data with a power law sκ

M , with κ = 2 like in
the scaling of the perimeter with walk length. The data
is compatible with this power law behavior for large sM ,
the exponent appearing rather independent of n. Nev-
ertheless, for small values of sM apparently a different
power-law with a higher exponent emerges. But, due to
the limited range of number of walks n we can address,
the limiting exponent for n → ∞ cannot be extracted.
The monotonic increase of the steepness with growing
value of n, as visible in our data, shows that this expo-
nent must be larger than κ2 = 2.62(1) which is the value
we obtain from the fit to the n = 6 data. Nevertheless,

from the present data it is clear that the rate function
for multiple random walks shows at least two regimes
right to the minimum, i.e., is quite richer compared to
the n = 1 case.
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100

10-3 10-2 10-1 100

FIG. 7: Rate function Φ(sA) as a function of the scaled
area sA = A/L2 for different walk lengths L and n = 3
walks in semi-logarithmic scale. Inset: The same in a double-
logarithmic plot, where the dashed line close to the data is a
power law sκ

A, with κ = 1.

For the rate function of the area (not shown) we ob-
serve a similar behavior as for the perimeter, although
the convergence is slower. The data is compatible for
large values of SA again with a power law with exponent
κ = 1, for all values of n. Again we found that close to
the minimum a second regime appears to form. Similar
as for the perimeter we fitted a second power-law to the
data for n = 6 walks and found for sA ∈ [0.3, 0.6] a the
power-law exponent κ2 = 1.187(2).

The behavior of the rate functions for large s of both
the area and the perimeter agree with the expected ones
[27] found for n = 1. So, our pdfs are said to follow the
“large-deviation principle” as they can be well described
by a rate function given by Eq. (12).

D. Scaling behavior with respect to the number n
of walks

According to [14] for n two-dimensional open Brownian
random walks the average area is expected to scale like

〈An〉 = βnL, (13)

where the n-dependent prefactor is given by

βn = 4n
√

π

∫ ∞

0

u[erf(u)]n−1 · [ue−u2 − g(u)] du, (14)
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FIG. 8: Rate function Φ(sM ) as a function of the scaled
perimeter sM = M/L for different walk lengths L and n = 3
walks in semi-logarithmic scale. Inset: The same in a double-
logarithmic plot, where the dashed line close to the data is a
power law sκ

M , with κ = 2.

10-1

100

101

 0  2  4  6  8  10

Φ
n(

s L
)

sL = L / T

T = 50
n = 2
n = 3
n = 4
n = 5
n = 6

10-1

100

101

100 101

FIG. 9: Rate function Φ(sM ) as a function of the scaled
perimeter sM = M/L for different number of walks n ∈ [2, 6]
and walk length L = 50 in semi-logarithmic scale. Inset:
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M , with κ = 2. The dashed-
dotted line close to the data results from a power-law fit to
the data for n = 6 and sM ∈ [1.8, 3.5] and gives the exponent
κ2 = 2.62(1).

erf(u) is the error function

erf(u) =
2√
π

∫ u

0

e−t2 dt,

and

g(u) =
1

2
√

π

∫ 1

0

e−u2/t

√
t(1 − t)

dt.

In the large-n limit βn scales like [14]

βn ∼ 2π lnn. (15)

According to [14] the average perimeter of convex hulls
of n two-dimensional Brownian walks should scale like

〈Mn〉 = αn

√
L, (16)

with

αn = 4n
√

2π

∫ ∞

0

ue−u2

[erf(u)]n−1 du, (17)

which has a large-n scaling

αn ∼ 2π
√

2 lnn . (18)

To check these analytical predictions, we performed
simple-sampling simulations to determine the average
area and perimeter for various values of n ∈ [1, 105].
Fig. 10 shows the results for n = 3 independent Gaus-
sian walks and the rescaled averages µA = 〈A〉/L and

µM = 〈A〉/
√

L, where 〈· 〉 denotes averaging. We simu-
lated walk lengths L ∈ [10, 2000] and used at least 8 · 105

samples to determine the average. A power-law fit

µX(L) = µ∞
X + a · Lb (19)

with parameter µ∞
X (X = A,M) denoting the extrapo-

lated value for L → ∞ is performed. Excluding the small
system sizes the fit is done over the range L ∈ [150, 2000],
yielding a reduced chi-square value of χ2

red ≈ 0.72 for the
area. One can observe a convergence towards the average
area for infinite L, which is µ∞

A = 4.415(6). Compared to

the literature [14] β3 = π +3−
√

3 ≈ 4.410 the measured
value agrees within error bars. The inset of Fig. 10 shows
the fit to the rescaled average perimeter µM . Again,
a convergence towards the average for L → ∞ is visi-
ble. The fit gives χ2

red ≈ 0.76 for L ∈ [150, 2000] with
µ∞

M = 8.339(7). This value is compatible within error
bars with the analytical derivation [14] α3 ≈ 8.334.

For n = 2 walks we accomplished similar fits (not
shown) as for n = 3. The fit for the rescaled average
area was performed with an reduced chi-square value
of χ2

red ≈ 0.20 over system sizes L ∈ [300, 2000]. The
average value for an infinite system is µ∞

A = 3.144(5),
which is compatible within error bars with literature [14]:
β2 = π ≈ 3.142. For the average perimeter we ob-
tained by the fit according to Eq. (19) χ2

red ≈ 0.10 with



8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

101 102 103 104

µ A

T

n = 3

 7.2

 7.6

 8

 8.4

10
1

10
2

10
3

10
4

µ L

FIG. 10: Average rescaled area µA of the convex hull as a
function of walk length L for n = 3 walks. Note the loga-
rithmic scaling of the L-axis. For each data point at least
8 · 105 samples were used. Dashed-dotted line is a power-law
fit according to Eq. (19). Horizontal dashed line represents
analytical expectation [14] β3 ≈ 4.410. Inset: The same for
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expectation according to [14]: α3 ≈ 8.334.

µ∞
M = 7.091(4). This value agrees within error bars with

the published value [14] α2 = 4 · √π ≈ 7.090.

Next, we want to check if our data matches the exact
equations (14) and (17) for high values of n. In Fig. 11
the averages of the area and perimeter obtained from
simple-sampling simulations with L = 50 fixed and vari-
ous values for the number of walks n is presented. Scaling
the n-axis logarithmically leads to a linear behavior of the
average area for large n indicating a logarithmic depen-
dence like expected by the previous scaling assumptions
for βn. As Eq. (14) is only valid for large values of L one
can see a small deviation between the theoretical and the
measured values.

In the same way, the behavior of the average perimeter
follows the expected behavior, as shown in the inset of
Fig. 11.

Clearly, the data points for L = 50 are located system-
atically below the analytical curves, which is only valid
for L → ∞. This does not come unexpectedly, because
we see this behavior already for n = 3 in Fig. 10. To check
the convergence of the data for different walk lengths we
investigate (Figures not shown) convex hulls for n = 1000
walks as already done for n = 3. A fit according to Eq.
(19) for walk lengths L ∈ [70, 104] yields for the area
a reduced chi-square value of χ2

red ≈ 1.4. One can ob-
serve a convergence for L → ∞ towards µ∞

A = 21.40(1)
which is compatible with the theoretical value (cf. Eq.
(14)) β100 ≈ 21.3890 within a standard error bar. For

the perimeter the power-law fit for L ∈ [100, 104] results
in χ2

red ≈ 0.18 and an extrapolated value for infinite L
which is µ∞

M = 17.262(1). Compared to the theoretical
value α100 ≈ 17.2596 there is good agreement within two
standard error bars. So, we can be confident that our
data shows the expected convergence for all values of n
towards the theoretical values.
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FIG. 11: Average area as a function of number of walks n for
L = 50. Note the logarithmic scaling of the n-axis. For each
data point about 106 samples have been used. The dashed-
dotted line shows the exact value given by Eqs. (13) and (14).
Inset: The same for the averaged perimeter. Dashed line
displays exact value obtained by Eqs. (16) and (17).

Next, we want to investigate whether the scaling be-
havior of the average with respect to the number n of
walks transfers to the full distributions, as it is the case
with respect to the number L of steps in the walks.
Figs. 12 and 13 show the distributions with a correspond-
ing rescaling of the axis. Apparently the quality of the
collapse is not very good but seems to get gradually bet-
ter when making the number n of walks very large. This
can be seen when looking at the insets of the figures,
where the change of the distributions for n = 104 →
n = 105 is rather small, compared to the change n = 2
→ n = 10. This corresponds to the just discussed behav-
ior of the mean, where also strong scaling corrections at
small number n of walks are visible. Thus, a convergence
to the scaling form, at rather large values of n, appears
likely.

V. CONCLUSION AND OUTLOOK

We have performed simulations of multiple two-
dimensional discrete-time random walks with Gaussian
displacements. Convex hulls of the random walks have
been calculated and the area A and perimeter M has been
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obtained. We have applied a large-deviation scheme, via
biasing Markov-chain Monte Carlo evolutions in the con-
figuration space of walks. The bias was introduced with
respect to large or small areas or perimeters, respectively.
In this way we have been able to obtain these distribu-
tions, for moderate number of walks, over large ranges
of the support. Thus, we could measure probability den-
sities spanning as many as 1000 decades in probability.
The resulting probability densities show the same scal-
ing behavior as the mean with respect to the length L
of the walks, i.e., P̃ (A/L) and P̃ (M/

√
L) appear to be

universal densities.
The shape of these universal densities follows Gaussian

distributions for M and
√

A, respectively, as for the n = 1
case. Also, for the deviations of the distribution in the
direction of very small diameters and areas, the previ-
ously found (n = 1) exponential behavior is obtained for
multiple random walks, at least in the range of accessible
number n.

We also obtained the rate functions for area and
perimeter, rescaled with the scaling behavior of the max-
ima, i.e., L2 and L, respectively. For both quantities, the
finite-length rate functions approach limiting functions
for L → ∞, showing that the densities follow the large-
deviation principle [45, 46]. This makes it likely that
using analytical approaches from large-deviation theory,
some results for the distributions of the convex hulls may
be obtained. Anyway, most interesting, the rate func-
tions seem to be well described by two power laws in the
case n → ∞, in contrast to the previously studied n = 1
case, where only one power law was visible.
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FIG. 12: Rescaled pdfs for L = 50, the area A of the convex
hull and various number of walks n in semi-logarithmic scale.
Inset: Region close to peaks in double-logarithmic scale. Note
that for walk numbers n ≥ 30 only values from simple sam-
pling exist and therefore only the region around the peak is
depicted.

Finally, we have verified, that the scaling behavior
of the averages with respect to the number n of walks
is predicted as in the literature [14]. The convergence
is slow, such that on the level of the full distribution
the convergence to a limiting function is not visible for
the restricted range of numbers n we can address using
the large-deviation approach. Nevertheless, using simple-
sampling simulations of number of walks up to n = 105,
a convergence in the high-probability, i.e., peak region is
visible, making a full convergence likely.

For future research it would be interesting to inves-
tigate multiple interacting walkers [31, 35], or multi-
ple walkers performing self-avoiding walks or loop-erased
random walks [47, 48]. Furthermore, in higher dimen-
sions a change of the scaling of the obtained distributions
and thus also of the shape of the distributions can be an-
ticipated, making such studies useful. Finally, it would
be very interesting to apply the methods used here to
biological models to investigate the formation of animal
territories [9], which had originally motivated this work.
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[36] J. Dräger, and J. Klafter, Phys. Rev. E 60, 6503 (1999).
[37] W. Feller, An Introduction to Probability Theory and Its

Applications, Volume I (John Wiley & Sons, New York,
1950).

[38] F. P. Preparata, and M. I. Shamos, Computational Ge-
ometry – An Introduction (Springer, Berlin, 1985).

[39] R. A. Jarvis, Inform. Process. Lett. 2, 18 (1973).
[40] S. G. Akl, and G. T. Toussaint, Inform. Process. Lett. 7,

219 (1978).
[41] A. K. Hartmann, Phys. Rev. E 65, 056102 (2002).
[42] A. K. Hartmann, Eur. Phys. J. B 84, 627 (2011).
[43] A. K. Hartmann, New Optimization Algorithms in

Physics, Editors: A. K. Hartmann, and H. Rieger (Wiley-
VCH, Berlin, 2004; pp. 253).

[44] H. Touchette, Phys. Rep. 478, 1 (2009).
[45] F. denHollander, Large Deviations (American Mathe-

matical Society, Providence, 2000).
[46] A. Dembo, and O. Zeitouni, Large Deviation Techniques

and Applications (Springer, Berlin, 2010).
[47] G. F. Lawler, J. Phys. A: Math. Gen. 20, 4565 (1987).
[48] S. N. Majumdar, Phys. Rev. Lett. 68, 2329 (1992).


