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We present results from Monte Carlo simulations to test for ultrametricity and clustering prop-
erties in spin-glass models. By using a one-dimensional Ising spin glass with random power-law
interactions where the universality class of the model can be tuned by changing the power-law
exponent, we find signatures of ultrametric behavior both in the mean-field and non-mean-field uni-
versality classes for large linear system sizes. Furthermore, we confirm the existence of nontrivial
connected components in phase space via a clustering analysis of configurations.
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An ultrametric (UM) space [1] is a special kind of met-
ric space in which the triangle inequality dαγ ≤ dαβ +dβγ

[dαβ represents the distance between two points α and
β] is replaced by a stronger condition where dαγ ≤
max{dαβ, dβγ}, i.e., the two longer distances must be
equal and the states thus lie on an isosceles triangle. The
concept appears in many branches of science, such as p-
adic numbers, linguistics, as well as taxonomy of animal
species. It is also an intrinsic property of Parisi’s mean-
field solution [2–4] of the Sherrington-Kirkpatrick (SK)
[5] infinite-range spin glass. Hence, in general, the nature
of the spin-glass state [4, 6] can be analyzed via clustering
and ultrametricity-probing methods.

The nature of the spin-glass state is controversial and it
is unclear if the mean-field picture (also known as RSB for
“replica symmetry breaking”) [2], the droplet picture [7,
8], or an intermediate, more phenomenological scenario
dubbed as TNT [9, 10] (for “trivial–nontrivial”) describes
the nature of the spin-glass state best. One avenue to
settle the applicability of the mean-field picture to short-
range spin glasses is by testing if the phase space is UM.
Unfortunately, the existence of an UM phase structure for
short-range spin glasses is controversial, mainly because
only small linear system sizes have been accessible so far.
Recent results [11] suggest that short-range systems are
not UM, whereas other opinions exist [12–14]. Thus it
is of paramount importance to test if short-range spin
glasses have an UM phase space.

In this work we approach the problem from a different
angle: First, we use a one-dimensional (1D) Ising spin-
glass with power-law interactions. The model has the
advantage that large linear system sizes can be studied.
Furthermore, by tuning the exponent of the power law,
the universality class of the model can be tuned between a
mean-field and a non-mean-field universality class. This
allows us to test our analysis method on the mean-field
SK model and then apply it to regions of phase space
where the system is not mean-field like. We perform a
clustering analysis of the data similar to the work of Hed
et al. [11] to obtain nontrivial triangles in phase space
and introduce a novel correlator which allows us to see
an UM signature for low temperatures and (as expected

FIG. 1: (Color online) Sketch of the phase diagram of the 1D
Ising chain with random power-law interactions. For σ ≤ 1/2
we expect SK-like infinite-range behaviour. For 1/2 < σ ≤

2/3 we have mean-field (MF) behaviour corresponding to an
effective space dimension deff ≥ 6, whereas for 2/3 < σ . 1 we
have a long-range (non-MF) spin glass with a finite ordering
temperature Tc. Close to σ = 2/3 (vertical red line) deff ≈

2/(2σ − 1) [4]. For σ ≥ 1 Tc = 0.

from physical grounds) delivers no signal for high tem-
peratures. Furthermore, we use a clustering analysis to
search for connected components in phase space. Note
that the proposed method can be applied to any field of
science to test for an UM structure of phase space, thus
making the method generally applicable.

Our results for low temperatures show that for this
model the phase space has an UM signature and ex-
hibits many phase-space components, the number grow-
ing with system size in the mean-field as well as non-
mean-field case. This suggests that for large enough sys-
tem sizes short-range spin glasses at low enough temper-
atures might have an UM phase space structure.

Model — The Hamiltonian of the 1D Ising chain with
long-range power-law interactions [15, 16] is given by

H = −
∑

i<j

JijSiSj Jij = c(σ)
εij

rij
σ

, (1)

where Si ∈ {±1} are Ising spins and the sum ranges over
all spins in the system. The L spins are placed on a ring
and rij = (L/π) sin(π|i − j|/L) is the distance between
the spins. εij are Gaussian-distributed random couplings
of zero mean and standard deviation unity. The con-
stant c(σ) is chosen such that the mean-field transition
temperature to a spin-glass phase is T MF

c = 1 [16].
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TABLE I: Simulation parameters for the 1D chain and differ-
ent power-law exponents σ. L is the system size, Nsa is the
number of disorder realizations, τeq is the number of equilibra-
tion sweeps, Tmin is the lowest temperature and Nr the num-
ber temperatures used in the exchange Monte Carlo method.

σ L Nsa τeq Tmin Nr

0.00 0.75 0.85 32 4 000 10 000 0.20 20

0.00 0.75 0.85 64 4 000 10 000 0.20 20

0.00 0.75 0.85 128 4 000 10 000 0.20 20

0.00 0.75 0.85 256 4 000 65 000 0.20 20

0.00 0.75 512 2 000 200 000 0.20 20

0.85 512 2 000 650 000 0.20 20

0.00 1024 1 000 32 000 0.40 26

The model has a very rich phase diagram when the
exponent σ is tuned [16]: Both the universality class and
the range of the interactions of the model can be contin-
uously tuned by changing the power-law exponent. For
σ ≤ 1/2 the model exhibits infinite-range behaviour and
corresponds to the SK model. For 1/2 < σ ≤ 2/3 we
have mean-field behaviour with an effective space dimen-
sion deff ≥ 6, whereas for 2/3 < σ . 1 we have a long-
range spin glass with a finite ordering temperature Tc.
Close to σ = 2/3 deff ≈ 2/(2σ− 1) [4]. For σ ≥ 1 Tc = 0.
In this work we study the SK model [σ = 0, Tc = 1]
to test our analysis protocol, as well as the 1D chain for
σ = 0.75 [Tc ∼ 0.69] and 0.85 [Tc ∼ 0.49] [17, 18]; both
corresponding to the non-mean-field regime. We choose
two values which correspond to different effective space
dimensions to be able to discern any trends when the
effective dimensionality is reduced.

Numerical details — We generate spin-glass config-
urations by first equilibrating the system at T ≈ 0.4Tc

using exchange Monte Carlo [19, 20], i.e., T = 0.4 for the
SK model, 0.27 for σ = 0.75 and 0.20 for σ = 0.85. Once
the system is in thermal equilibrium we record states en-
suring that these are well separated in the Markov pro-
cess and thus not correlated by measuring autocorrela-
tion times. In practice, if we equilibrate the system for
τeq Monte Carlo sweeps, we generate for each disorder
realization 103 states separated by τeq/10 Monte Carlo
sweeps. We test equilibration by equating the energy of
the system to the energy computed from the link over-
lap. Once the data agree within error bars for at least
three logarithmically-spaced bins the system is in ther-
mal equilibrium [18]; see Table I for details.

Analysis details — We use an approach closely re-
lated to the one used by Hed et al. [11]. M = 103 equi-
librium states at T ≈ 0.4Tc—to probe deep within the
spin-glass phase—are sorted using the average-linkage ag-
glomerative clustering algorithm [21]: Distances are mea-
sured in terms of the hamming distance dαβ = (1−|qαβ |),

where qαβ = N−1
∑

i Sα
i Sβ

i is the spin overlap between
states {Sα} and {Sβ}. The clustering procedure starts
with L clusters containing one state and the two closest

lying clusters are merged. The “distance” between two
clusters is the average distance between all pairs of mem-
bers of the clusters. The procedure is iterated until one
large cluster is obtained. The sequence of mergers can
be displayed by a tree, referred to as a dendrogram. Fur-
thermore, one can plot the distance matrix dαβ having
ordered the states according to the leaves of the dendro-
gram. This is shown in Fig. 2 where the matrix elements
are encoded in gray scale (black corresponds to zero dis-
tance). The complex phase-space structure is clearly vis-
ible: The matrix has a block-diagonal form, the blocks
again being subdivided in a block-diagonal structure.

To analyze the matrix quantitatively for ultrametricity,
we randomly select three states from different branches
of the tree (cf. Ref. [11]) and sort the distances: dmax ≥
dmed ≥ dmin. We compute the correlator

K = (dmax − dmed)/%(d), (2)

where %(d) is the width of the distribution of distances.
Note that the definition of K in Eq. (2) differs from the
definition used in Ref. [11] where the normalization is
performed with dmin. Our choice ensures that any ap-
parent change of an UM measure is scaled out, which
is just caused by a width change of the distance distri-
bution. The definition used in Ref. [11] can only tell if
there is no ultrametricity, i.e., a random bit string will
also show an UM response (which we have verified nu-
merically). The definition in Eq. (2) alleviates this prob-
lem: For T > Tc (or a random bit string) there is no
UM signature in K, whereas for T � Tc we see a clear
UM response for the SK model. Thus we are able to dis-
cern between “trivial ultrametricity,” which occurs from
equilateral triangles at T > Tc, and a true UM phase
space structure. If the phase space is UM then we expect
dmax = dmed for L → ∞. Thus P (K) → δ(K = 0) for
L → ∞ [22]. We have also verified that P (K) does not
show any sign of ultrametricity for Migdal-Kadanoff spin
glasses [? ] where no ultrametricity phase structure is
present by construction.

We also analyze the connected components in phase
space (visible in the distance matrices dαβ) by extend-
ing the approach of Kelley et al. [23]. During the
i’th iteration of the clustering algorithm one encounters
M(i) = M − i clusters. Thus the goal is to find the
number of clusters which represents the data best corre-
sponding to the highest-level blocks in the ordered dαβ

matrix. To obtain a better resolution at the scale of small
distances, we use a logarithmic scale d̃αβ ∼ 1 − log dαβ ,
normalized to values [0, 1) [24]. To measure the com-
ponent property of the configuration space, we calcu-
late for each cluster Γ = {αi} obtained during the algo-
rithm the average distance within the cluster (“spread”)
spΓ = 2

∑
α6=β∈Γ d̃αβ/|Γ|(|Γ| − 1). Here |Γ| is the num-

ber of states in the cluster Γ. Then, for each iteration i,
the average spread spi among the M(i) clusters is calcu-
lated. Once the clustering analysis is completed, all M
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FIG. 2: A dendrogram obtained by clustering 100 configura-
tions (see text) for a sample system with σ = 0.0 and L = 512
at T = 0.4 together with the matrix dαβ shown in grey scale
(distance 0 is black). The order of the states is given by the
leaves of the dendrogram (figure rotated clockwise by 90◦).

average spread values are normalized to lie in the inter-
val [1, M − 1], resulting in spnorm

i . For each realization
the minimum Mmin of spnorm

i + γM(i) as a function of
M(i) is determined, where γ is a sensitivity parameter
(the method of Ref. [23] corresponds to γ = 1). Then
nC = Mmin is the number of phase-space components.
Note that the larger γ is, the fewer components are found.
Since a paramagnet should exhibit only one component,
we determine for each system size L γ(L) such that for
M = 103 random bit strings (T = ∞), averaged over 102

runs, on average 1.1 components are obtained [25].

Results — In Fig. 3 the distribution P (K) is shown
for σ = 0 (SK model), 0.75 (non-mean-field), 0.85 (non-
mean-field) deep in the low-temperature phase (T ≈
0.4Tc). In all three cases, P (K) seems to converge to
a delta function for L → ∞. This is clearly visible
when looking at the variance of the distribution which
decays with a power-law of the system size (Fig. 3 bot-
tom). Note that P (K) does not change with system
size close to Tc (inset to Fig. 3, top panel). A similar
lack of divergence has also been found for simulations for
σ = 4.0 (not shown). Therefore, the correlator [Eq. (2)]
can clearly distinguish between “trivial” ultrametricity—
which is due to equilateral triangles—and ultrametricity
created by a complex energy landscape.

In Fig. 4 the number of components nC is shown for
σ = 0 (SK model) as function of systems size for different
temperatures T . Below Tc nC increases with system size,
while for larger T it decreases. Other values of σ show
a qualitatively similar behavior (not shown). Interest-
ingly, the number of measured components is largest in
the spin-glass phase and close to Tc (see inset to Fig. 4).
The reason is probably that at higher temperatures more
valleys of the energy landscape are accessible, including

FIG. 3: (Color online) Top set: Distribution P (K) for differ-
ent system sizes. Top panel: Data for the SK model. The
distribution diverges for K → 0 thus signaling an UM phase
structure. Inset: For T ∼ Tc no divergence is visible. Middle
[bottom] panel: Data for the 1D chain for σ = 0.75 [0.85]
(non-mean-field universality class). The distribution still di-
verges. Bottom: Variance of P (K) as a function of L for dif-
ferent σ. The data are well fit to a power-law decay ∼ b/Lc

with c > 0 (dashed lines) suggesting a divergence for K → 0
for all σ. We have also computed the “fraction of UM in-
stances,” (those which exhibit

R 0.5

0
Pinstance(K) dK ≥ 0.5, not

shown). For larger system sizes, this fraction grows with the
system size for all σ values. Hence the results for σ > 2/3 are
not due to rare strongly-ultrametric instances.
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FIG. 4: (Color online) Number of phase-space components
nC in the SK model as a function of system size N for dif-
ferent temperatures. For T . Tc (full symbols) the number
of components grows considerably for increasing system size
L, whereas for T & Tc (open symbols) the number of compo-
nents remains approximately constant as a function of L. The
inset shows the number of components as a function of tem-
perature T for L = 512 for different exponents σ. The data
for all σ are qualitatively similar: for T ∼ Tc (dotted lines)
the number of components is much larger than at T � Tc.

those who have high-lying minima, still separated by en-
ergy barriers rarely overcome. For even higher temper-
atures even more states are highly populated, leading
to basically one big component in the energy landscape.
The exact peak position shifts slightly with increasing σ.

Summary and discussion — We have studied numer-
ically the low-temperature configuration landscape of a
one-dimensional long-range spin glass with power-law in-
teractions characterized by an exponent σ. By using a hi-
erarchical clustering method and analyzing the resulting
distance matrices we have studied the UM properties, as
well as counted the components of the phase space. For
this purpose we have introduced a novel way to quantify
ultrametricity and we have extended a method to count
components by analyzing the distance matrix structure.
We observe that for values of the power-law exponent σ
spanning the infinite-range SK universality class (σ = 0)
to the non-mean-field universality class (σ = 0.75, 0.85)
an UM organization and a complex clustered landscape
seem to emerge for the system sizes studied. To see
whether these results persist at larger length scales, it
would be of interest to study even larger systems. A pos-
sible approach would be to study a model with power-
law-dependent dilution [26] where even larger system
sizes are possible. This is of importance since the sys-
tem sizes needed to probe the crossover to any putative
UM behavior presumably might depend on the system

size.
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