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Abstract. The concept of replica symmetry breaking found in the solution of the
mean-field Sherrington-Kirkpatrick spin-glass model has been applied to a variety
of problems in science ranging from biological to computational and even financial
analysis. Thus it is of paramount importance to understand which predictions of
the mean-field solution apply to non-mean-field systems, such as realistic short-
range spin-glass models. The one-dimensional spin glass with random power-law
interactions promises to be an ideal test-bed to answer this question: Not only
can large system sizes—which are usually a shortcoming in simulations of high-
dimensional short-range system—be studied, by tuning the power-law exponent of
the interactions the universality class of the model can be continuously tuned from
the mean-field to the short-range universality class. We present details of the model,
as well as recent applications to some questions of the physics of spin glasses. First,
we study the existence of a spin-glass state in an external field. In addition, we
discuss the existence of ultrametricity in short-range spin glasses. Finally, because
the range of interactions can be changed, the model is a formidable test-bed for
optimization algorithms.

1 Introduction

Spin glasses [1–3] are paradigmatic models which can be applied to a wide va-
riety of problems and fields ranging from economical to biological, as well as
sociological problems, to name a few. Most prominent is the replica symme-
try breaking solution of Parisi [4] of the mean-field Sherrington-Kirkpatrick
(SK) spin glass. Unfortunately, an analytical solution for short-range realistic
spin-glass models, such as the Edwards-Anderson Ising spin glass [5], remain
to be found and generally phenomenological descriptions, such as the droplet
picture [6] or numerical simulations are used to understand these systems.
Given the lack of rigorous results for short-range spin glasses, it is of impor-
tance to understand the applicability of different predictions made by the
mean-field solution of the SK model, as well as other theoretical pictures.

Unfortunately, numerical studies of spin glasses are difficult to accom-
plish and in general only small to moderate system sizes can be accessed.
Despite huge technological advances in the last decade which have enabled
the construction of large computer clusters out of commodity components,
brute force computation alone will not suffice to probe considerably larger
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system sizes. The source of this problem lies in the diverging equilibration
times of Monte Carlo simulations of spin glasses; the systems are generally
NP hard. Furthermore, to obtain thermodynamically sound results, calcula-
tions need to be disorder averaged, thus adding considerable overheard to
any simulation. To properly probe the thermodynamic limiting behavior it is
thus important to use efficient algorithms, improved models, as well as large
computer clusters.

We discuss in detail a one-dimensional spin-glass model with power-law
interactions [6–8] where, by tuning the exponent of the power-law interactions
different universality classes from infinite-range SK to short-range can be
probed. Furthermore, because the model is one-dimensional, a wide range
of system sizes can be probed. In the past we have applied the model to
different problems in the physics of spin glasses [8–13]. In this work we study
two questions which lie at the core of the applicability of the mean-field
solution to short-range spin glasses: Do short-range spin glasses order in an
externally-applied magnetic field? Are short-range spin glasses ultrametric?
Our results suggest that new theoretical descriptions are needed: While there
are indications of an ultrametric structure of phase space, spin-glass order is
destroyed in a field for short-range systems.

Finally, we also discuss extensions as well modifications of the model to
study different related problems in the physics of spin glasses and present
applications to algorithm development and testing.

2 Model & Numerical Method

We first introduce the one-dimensional Ising chain in detail and explain its
rich phase diagram. Furthermore, we describe exchange (parallel tempering)
Monte Carlo, a numerical method which is very efficient to study spin-glass
systems at low temperatures.

2.1 The one-dimensional Ising chain

The Hamiltonian of the one-dimensional Ising chain with power-law interac-
tions [7,14,8] is given by

H1D = −
∑

i<j

JijSiSj −
∑

i

hiSi , Jij = c(σ)
εij

rij
σ

, (1)

where Si ∈ {±1} are Ising spins and the sum ranges over all spins in the
system. To ensure periodic boundary conditions, the L spins are placed on
a ring, see Fig. 1 (right panel). Here, rij = (L/π) sin(π|i − j|/L) is the dis-
tance between the spins on the ring topology and εij are Gaussian-distributed
random couplings of zero mean and standard deviation unity. The constant
c(σ) is chosen such that the mean-field transition temperature to a spin-glass



New Insights from One-Dimensional Spin Glasses 3

Tc = 0 Tc = 0

Tc > 0Tc > 0

σd =

SK
l

σc(d)d = 2σ

SR

LR SR

d

d

11/2 σ2

1
0

+IR MF LR

Fig. 1. Left panel: Schematic phase diagram of the one-dimensional Ising chain
with power-law interactions [14]. The white horizontal arrow corresponds to d = 1.
For σ ≤ 1/2 we expect infinite-range (IR) behaviour reminiscent of the SK model.
For 1/2 < σ ≤ 2/3 we have mean-field (MF) behaviour corresponding to an effective
space dimension deff ≥ 6, whereas for 2/3 < σ . 1 we have a long-range (LR+)
spin glass with a finite ordering temperature Tc. In these regimes deff ≈ 2/(2σ − 1)
[1]. For 1 ≤ σ . 2 we have a long-range spin glass with Tc = 0 (LR0) and for σ & 2
the model displays short-range (SR) behaviour with Tc = 0. Figure adapted from
Ref. [8]. Right panel: Graphical representation of the one-dimensional Ising chain
with L = 16 spins.

phase is TMF
c = 1; see Ref. [8] for details. The model has a very rich phase

diagram in the d–σ plane, see Fig. 1 (left panel). In this work we are in-
terested in d = 1 which corresponds to the thick horizontal white arrow in
the phase diagram. The universality class and range of the interactions of
the model can be continuously tuned by changing the power-law exponent σ.
Furthermore, there are theoretical predictions for the critical exponents [7]:
ν = 1/(2σ − 1) for σ ≤ 2/3, and η = 3− 2σ. Therefore, predictions made for
the mean-field spin-glass can be probed when the effective space dimension
(range of the interactions) is reduced. Furthermore, because the efficiency of
different algorithms often depends strongly on the range of the interactions,
the one-dimensional chain is an ideal test bed to benchmark the efficiency of
optimization algorithms.

In one space dimension, for σ ≤ 1/2 the model is in the Sherrington-
Kirkpatrick [15] infinite-range universality class where the energy of the sys-
tem needs to be rescaled with the system size to avoid divergencies. In par-
ticular, for σ = 0 the SK model is recovered exactly. For 1/2 < σ < 1 the
model has a finite-temperature spin-glass ordering transition. Furthermore,
for 1/2 < σ ≤ 2/3 the system is in the mean-field universality class cor-
responding to a high-dimensional short-range spin-glass system above the
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upper critical dimension du = 6. For 2/3 < σ < 1 the system is non-mean
field, whereas for σ ≥ 1 the spin-glass phase only exists at T = 0, i.e., the
lower critical dimension of short-range spin glasses corresponds to σ = 1.

2.2 Numerical method

Because of a rough energy landscape and diverging relaxation times, spin
glasses are extremely difficult to study numerically. Any numerical method
used must have the potential to efficiently cross energy barriers and thus
sample the phase space evenly. Probably one of the simplest, yet most effi-
cient methods to study problems with rough energy landscapes (beyond spin
glasses) is the exchange (parallel tempering) Monte Carlo method [16].

The idea behind the method is to allow for a Markov process in temper-
ature space. M copies of the system are simulated at different temperatures,
where the largest temperature is generally chosen to be of the order of 2T MF

c .
Besides the simple Monte Carlo updates [17] on each spin of the system, after
a certain number of lattice sweeps the energies of neighboring temperatures
are compared and a Monte Carlo move which swaps the temperatures of
neighboring configurations is proposed. With this approach, a configuration
stuck in a metastable state has the possibility to heat up and then cool back
down to the true equilibrium state thus effectively speeding up equilibration
by orders of magnitude. The position of the temperatures has to be chosen
with care: If neighboring temperatures are chosen too far apart, a bottleneck
in the temperature-space Markov process emerges thus reducing the efficiency
of the method. If the temperatures are too close extra unnecessary overhead
is introduced. To select the position of the temperatures, it is convenient to
study the acceptance probabilities of the global Monte Carlo moves. Because
in spin glasses the susceptibility does not diverge, a generally good thumb-
rule is to select the position of the temperatures such that the probabilities
are between 0.2 and 0.9 and roughly independent of temperature. This is not
necessarily the case for other systems. We also refer the reader to Ref. [18]
where an iterative feedback method is introduced which ensures that the
random walk of each configuration in temperature space is optimal.

When using Gaussian-distributed disorder we test equilibration of the
Monte Carlo simulations by equating the link overlap ql to the energy U =
−(1/N)

∑

i,j [Jij〈SiSj〉]av of the system [19], i.e.,

U(ql) =
(TMF

c )2

2T
(ql − 1) , ql =

2

N

∑

i,j

[J2
ij ]av

(TMF
c )2

[〈SiSj〉
2
T ]av . (2)

In Eq. (2), 〈· · · 〉T represents a thermal average and [· · · ]av an average over
the disorder. T is the temperature of the system. As can be seen in Fig. 2,
starting from a random configuration will underestimate U(ql), whereas the
energy U will be overestimated. Once both agree, the system is in thermal
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Fig. 2. Equilibration test using
Eq. (2). Once the energy U com-
puted directly and from the link
overlap [U(ql)] agree, the system
is in thermal equilibrium. Data for
L = 512, T = 0.20 and σ = 0.75.

equilibrium. Note that the method can be easily extended to system with
(Gaussian distributed) external fields [11].

3 Selected results

We have applied the one-dimensional Ising chain to several problems in the
physics of spin glasses. Below we present in more detail two questions which
lie at the core of the applicability of the mean-field solution to short-range
spin glasses. In the following we compare the mean-field SK model (σ = 0)
to the one-dimensional Ising chain for σ = 0.75 where the model is in the
non-mean-field universality class.

3.1 Do spin glasses order in a magnetic field?

The applicability of spin-glass models to other fields of science relies heavily
on the existence of a spin-glass phase in a field. Many mappings onto spin-
glass models produce external field terms. While the mean-field model has
been shown to have a spin-glass phase in a field, it has been unclear until
recently if short-range spin glasses order in a field as well [20–29]. Simulations
of three-dimensional spin-glass models [28,30] suggest that the de Almeida-
Thouless line [31], which separates the spin-glass from the paramagnetic state
in the H–T phase diagram does not exist for realistic short-range Ising spin
glasses. Although the aforementioned studies in three space dimensions using
the finite-size two-point correlation length [32] provide clear evidence that
short-range spin glasses do not order in a field, they do not shed any light
on the behavior of short-range spin glasses with space dimensions above the
upper critical dimension.
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In Ref. [11] the one-dimensional Ising chain has been studied in an exter-
nally applied Gaussian-distributed random field—which has a similar behav-
ior than a uniform field —for different exponents σ of the power-law inter-
actions. For exponents which correspond to effective space dimensions above
the upper critical dimension, a spin-glass state in a field is found, whereas for
exponents σ > 2/3 which correspond to effective space dimensions less than
six, no de Almeida-Thouless line could be found for simulations down to very
low temperatures. Technical details about the simulation, and in particular
the parameters of the simulation can be found in Ref. [11].

In order to probe the existence of a spin-glass state we add an external
(random) field to the Hamiltonian, i.e., H1D → H1D −

∑

i hiSi. The reasons
for using random fields are the ability to thoroughly test for equilibration
of the Monte Carlo method (for detail see Refs. [28] and [11]). Furthermore,
exchange Monte Carlo performs better.

To test for the existence of the transition for σ > 1/2, we compute the
finite-size correlation length from the Fourier transform of the spin-glass sus-
ceptibility [33,32]:

χSG(k) =
1

N

∑

ij

[

(〈SiSj〉T − 〈Si〉T 〈Sj〉T )
2
]

av
eik(Ri−Rj) . (3)

Fig. 3. Left panel: Scaled spin-glass susceptibility N−1/3χSG as a function of tem-
perature for the mean-field Sherrington-Kirkpatrick model at zero external field.
The data cross at Tc(H = 0) = 1.0 in agreement with analytical results. Right
panel: Same observable and model as depicted in the left panel, except for H = 0.10.
The data cross at Tc(H = 0.10) ≈ 0.82 thus clearly showing that the mean-field
model orders in a field, as expected from theoretical results.
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Fig. 4. Left panel: Finite-size correlation length divided by the system size as a
function of temperature for the one-dimensional Ising spin chain with σ = 0.75 at
zero field. In this regime the system is not in the mean-field universality class. The
data cross cleanly at Tc(H = 0) ≈ 0.69. Right panel: Same observable and model
as the left panel, except for H = 0.10. Note that for temperatures as low as T = 0.1
there is no crossing visible, suggesting that there is no spin-glass state in a field.
Figure adapted from Ref. [11].

After performing an Ornstein-Zernicke approximation we obtain for the two-
point finite-size correlation length

ξL =
1

2 sin(kmin/2)

[

χSG(0)

χSG(kmin)
− 1

]1/(2σ−1)

, (4)

where χSG(0) is the standard spin-glass susceptibility and kmin = 2π/L. The
finite-size correlation length divided by the system size is a dimensionless
quantity which scales as ξL/L = X̃[L1/ν(T − Tc)]. Because in the infinite-
range universality class no correlation length can be computed, we exploit the
fact that the critical exponent η = 1/3 is exactly known for the SK model
[34,30]. Therefore, we locate the transition in the SK model by studying
χSG/N1/3 = C̃[L1/ν(T − Tc)], where χSG = χSG(k = 0). Once the respective
observables for different system sizes cross we have a spin-glass state for
T ≤ Tc, where Tc is given by the crossing point.

In Fig. 3 we show χSG/N1/3 for the SK model (σ = 0) as a function of
temperature for zero, as well as an external field of strength H = 0.10. In
both cases the data cross, indicative of a transition in zero as well as finite
fields. This is not the case for the one-dimensional model with σ = 0.75.
While the data of the finite-size correlation length at zero field clearly show
a transition at Tc ≈ 0.69 (see Fig. 4, left panel), this is not the case for
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H = 0.10 where the data do not cross even for temperatures considerably
lower than the critical temperature (see Fig. 4, right panel).

The presented results clearly show the numerical existence of an AT line
for the mean-field SK model, whereas for the model at σ = 0.75 (outside the
mean-field universality class there is no sign of a transition in a small but
finite field). Together with results presented in Ref. [11] we thus conclude
that short-range spin glasses below the upper critical dimension do not order
in an externally-applied magnetic field.

3.2 Are spin glasses ultrametric?

Ultrametricity is an intrinsic property of the Parisi solution of the mean-
field model [35] and it can be described in the following way: Consider an
equilibrium ensemble of states at T < Tc and pick three, Sα, Sβ and Sγ , at
random. Order them so that their distances dαβ = (1− qαβ)/2, where qαβ =

L−1
∑

Sα
i Sβ

i is the spin overlap, satisfy dαγ ≥ dγβ ≥ dαβ . Ultrametricity
means that in the thermodynamic limit we obtain dγβ = dαβ with probability
1, i.e., the states lie on an isosceles triangle.

To date, the existence of ultrametricity for short-range spin glasses—
which would validate the applicability of the mean-field solution to short-
range systems—is highly controversial. Recent results [36] suggest that short-
range systems are not ultrametric, whereas other opinions exist [37–39]. Be-
cause the one-dimensional Ising chain allows for tuning the system away
from the mean-field universality class, it presents itself as the ideal test-bed
for this problem. Below we present results for σ = 0.0 (SK) as well as 0.75
(non-mean-field regime) using an approach closely related to the one used by
Hed et al. [36].

We generate 1000 equilibrium states (spin configurations) for 1000 – 4000
disorder instances of the model using exchange Monte Carlo at T = 0.4Tc

(i.e., T = 0.4 for the SK model and T = 0.27 for the one-dimensional chain
with σ = 0.75). The temperature used is chosen such that we probe deep
in the spin-glass phase, but not too low to avoid trivial state triangles. The
generated states are in turn sorted using Ward’s hierarchical clustering ap-
proach [40] (see Fig. 5). The clustering procedure starts with L clusters which
contain one state and the two closest lying clusters are merged. Distances are
measured in terms of the hamming distance dαβ = (1 − qαβ)/2. This pro-
cedure is repeated until one large cluster is obtained. Once the states are
clustered, we select three states from different branches of the left sub-tree
(see Ref. [36] for details) and sort the distances: dmax ≥ dmed ≥ dmin. We
compute the correlator

K =
dmax − dmed

%(d)
, (5)
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Fig. 5. Dendrograms and distance matrices. Darker colors correspond to closer
distances in phase space. Left panel: SK model at T = 0.4 (L = 1024). The distance
matrix shows clear structure below Tc. Middle panel: One-dimensional Ising chain
for σ = 0.75 and T = 0.40 < Tc (L = 512). Again the data show structure. This
is in contrast to the right panel which shows data for the one-dimensional chain at
T = 1.40 � Tc (L = 512, σ = 0.75).

Fig. 6. Left panel: Distribution P (K) for the mean-field SK model at T = 0.4Tc.
The data peak for K → 0 with increasing system size showing clearly that phase
space is ultrametric. Right panel: Same observable as in the left panel for the
one-dimensional Ising chain with σ = 0.75 (non-mean-field universality class) at
T = 0.27 ≈ 0.4Tc. While the divergence at K = 0 is less pronounced, the data show
a similar behavior than in the left panel.

where %(d) is the width of the distribution of distances. If the space is ultra-
metric, we expect dmax = dmed for L → ∞. This means for the distribution
P (K) → δ(K = 0) for L → ∞.

In Fig. 6 (left panel) we show data for the distribution P (K) for the SK
model at T = 0.4Tc. For increasing system size the data seem to converge to
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a limiting delta function. This is not the case for T = Tc (not shown) where
the data are independent of system size and show no divergence for K →
0. This suggests that the used observable correctly captures the underlying
ultrametric behavior. Furthermore, studies of cophonetic distances show that
the structures found in the dendrograms are not arbitrary. Figure 6 (right
panel) shows P (K) for the one-dimensional Ising chain with σ = 0.75 at
T = 0.27 ≈ 0.4Tc for a range of system sizes. The data show a similar
behavior than for the SK model, although the effect is not as pronounced.
Further simulations at σ values larger than 0.75 as well as a quantitative
study of the number of clusters and RSB layers shall clarify with certainty if
short-range spin glasses have an ultrametric phase structure or not.

4 Future directions

In the past, we have studied several properties of spin glasses using the one-
dimensional Ising chain, such as the nature of the spin-glass state [8,9,41],
ground-state energy distributions of spin glasses [10], the existence of a spin-
glass state in a field [11] (see above), field chaos in spin glasses [13], local-field
distributions in spin glasses [12], as well as ultrametricity in spin glasses [13]
(see above). Furthermore, other groups have also studied other open ques-
tions in the physics of spin glasses with this model, such as nonequilibrium
problems [42] or different cumulants of the order parameter distribution [43].
All previous studies had been done on the model presented in Eq. (1) using
Ising spins. In this section we mention some extensions, as well as modifica-
tions of the model which can be used to study different problems.

4.1 Variations on the model

Recently, a one-dimensional spin-glass chain with Heisenberg spins has been
studied in Ref. [44] to test the controversial spin-chirality decoupling scenario
[45–48] proposed by Kawamura. It is unclear to date what the nature of the
spin-glass state in Heisenberg spin glasses is. In particular, it is unclear if spin
and chirality degrees of freedom decouple. To test this scenario, simulations
of the one-dimensional Heisenberg chain [44] at σ = 1.1 have been performed.
For σ = 1.1 the spin degrees of freedom only order at T = 0, whereas results
suggest that the chirality degrees of freedom order at finite nonzero temper-
atures. Similar studies could be performed for models with planar XY spin
degrees of freedom, as well as Potts spins (work in progress).

Finally, the Hamiltonian can also be modified to include, for example,
p-spin interactions to study structural glasses [49] (work in progress). Pre-
liminary results suggest that the model has a finite ordering temperature in
the mean-field regime.
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4.2 Studying larger systems with dilution

While the linear system sizes L studied with the one-dimensional Ising chain
are considerably larger than the system sizes accessible in short-range sys-
tems, the fact that the model is fully-connected makes it difficult to access
large numbers of spins because any algorithm would have to do O(L2) up-
dates at every Monte Carlo sweep. This is because the system has O(L2)
interactions between the spins. Recently, Leuzzi and collaborators suggested
a variation of the model which is diluted, thus drastically reducing the num-
ber of neighbors for each spin [50]. In their version, a random bimodally-
distributed bond between two spins is placed with a power-law dependent
probability adjusted such that the mean connectivity z is always 6 for all σ.
This has the effect that for σ → 0 we recover the Viana-Bray model with
fixed connectivity [51]. Because of the dilution, systems of 104 spins can be
studied to temperatures as low as ∼ 0.4Tc.

In Fig. 7 we present data for a diluted system with Gaussian-distributed
random interactions and σ = 0.75. In this case, the probability to place a bond
between two spins is P(Jij 6= 0) = r−2σ , where r is the distance between the
spins. The mean connectivity z of the model is then given by z = 2ζ(2σ) in
the thermodynamic limit, where ζ is the Riemann zeta function. For σ = 0
we recover the SK model, whereas, for example, for σ = 0.75 the mean
connectivity is only z ≈ 5.22 thus allowing the study of large systems (note
that the interactions are rescaled such that T MF

c = 1). In the left panel of

Fig. 7. Left panel: Finite-size correlation length for the power-law diluted one-
dimensional Ising spin glass with variable connectivity. The data cross at Tc ≈

0.54 illustrating the existence of a transition. Right panel: Distribution of the spin
overlap function P (q) at T = 0.4 for different system sizes. The width of the lines
corresponds to the error bars.
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Fig. 7 the finite-size correlation length as a function of temperature is shown.
The data cross at Tc ≈ 0.54 signaling the existence of a spin-glass transition.
In the right panel of Fig. 7 we show the distribution of the spin overlap q =
L−1

∑

i Sα
i Sβ

i . While the data show corrections due to critical fluctuations,
they converge to a seemingly system-size independent value around |q| ≈
0. This would agree with the replica symmetry breaking scenario by Parisi
[4,52,53,2] although lower temperatures are needed to properly address this
question. Current work focuses on revisiting the existence of a spin-glass state
in a field using the model with dilution.

5 Benchmarking of algorithms

Benchmarking optimization algorithms [55,56] plays a crucial role in the field
of disordered and complex systems, as well as many other interdisciplinary
applications. Knowing the range of applicability of a given algorithms can
be of great importance when trying to solve a given problem. For example,
whereas the branch, cut & price algorithm [57–59] works best for short-range
systems, it is least efficient when the interactions are long range [10].

Recently, the hysteretic optimization heuristic [60] has been introduced
to estimate ground states of spin-glass systems. The method is known to
work well for the mean-field SK model, as well as the traveling salesman
problem [56]. The idea behind hysteretic optimization is successive demag-
netization at zero temperature. With additional shake-ups (field increases to
further randomize the system) close-to-ground-state configurations can be
obtained. Recently, Gonçalves and Bottcher [54] have studied the efficiency
of the method on the one-dimensional Ising chain. Data adapted from their
work shown in Fig. 8 clearly show that the method works best for infinite-

Fig. 8. Percentage error in the
ground-state energies obtained
with hysteretic optimization in
comparison to exact ground states
as a function of the exponent
σ for different system sizes L.
Clearly, the algorithm works best
for σ . 1/2 (vertical dashed line),
i.e., in the infinite-range regime.
Outside the infinite-range regime,
avalanches do not percolate the
system and thus the algorithm is
less efficient. Figure adapted from
reference [54].
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range models (σ ≤ 1/2) where avalanches in the hysteresis loops proliferate
easily. While the error in finding the ground states increases slightly with
system size for σ . 1/2 the increase is considerably stronger for larger values
of σ. As soon as the system is not infinite-ranged, avalanches are small and
the method is not efficient.

6 Concluding remarks

By using a one-dimensional spin-glass model with random power-law interac-
tions we have been able to shed some light on some of the open questions in
the physics of spin glasses. The one-dimensional spin-glass chain has the ad-
vantage over conventional models that large linear system sizes can be stud-
ied. Furthermore, by changing the power-law exponent of the interactions,
different universality classes ranging from the mean-field to the short-range
universality class can be probed. The latter feature of the model allows also
for efficient benchmarking of optimization algorithms.
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2. M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World

Scientific, Singapore, 1987)
3. A.P. Young (ed.), Spin Glasses and Random Fields (World Scientific, Singa-

pore, 1998)
4. G. Parisi, Phys. Rev. Lett. 43, 1754 (1979)
5. S.F. Edwards, P.W. Anderson, J. Phys. F: Met. Phys. 5, 965 (1975)
6. D.S. Fisher, D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986)
7. G. Kotliar, P.W. Anderson, D.L. Stein, Phys. Rev. B 27, R602 (1983)
8. H.G. Katzgraber, A.P. Young, Phys. Rev. B 67, 134410 (2003)
9. H.G. Katzgraber, A.P. Young, Phys. Rev. B 68, 224408 (2003)

10. H.G. Katzgraber, M. Körner, F. Liers, M. Jünger, A.K. Hartmann, Phys. Rev.
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