Ultrametric probe of the spin-glass state in a field
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We study the ultrametric structure of phase space of one-dimensiamgusisin glasses with random power-
law interaction in an external random field. Although in zero field the modébith the mean-field and non-
mean-field universality classes shows an ultrametric signature [Plexs.LRtt. 102 037207 (2009)], when
a field is applied ultrametricity seems only present in the mean-field regifmeseTresults agree with data for
spin glasses studied within the Migdal-Kadanoff approximation. Our rethglisfore suggest that the spin-glass
state might be fragile to external fields below the upper critical dimension.

PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q, 64.60.-i

I. INTRODUCTION the UM structure of phase space seems to be much weaker for
the studied system sizes, suggesting that the spin-glakes st
for short-range systems is fragile with respect to extdynal
applied fields. These results are compared to studies of spin
nglasses within the Migdal-Kadanoff (MK) approximation.

The paper is organized as follows. In Sec. Il we intro-
duce the model studied, followed by details on the numerical
method in Sec. Ill. Our probe for UM behavior is outlined in
Sec. IV, followed by results (Section V) and conclusions.

Spin glassés’ are paradigmatic model systems that find
wide applicability across disciplines. Although studied i
tensely over the last four decades, our understanding oéso
of their fundamental aspects is still in its infancy. In paurtar,
the understanding of the nature of the spin-glass stateinsma
controversial and active discussion has emerged recently.
In particular, it is unclear if the mean-field replica symme-
try breaking (RSB) picturé of Parisi describes the nonmean-
field behavior of spin-glasses in an externally-applieddfiel
best. While the droplet theot§ '8 states that there is no spin-
glass state in a field for short-range systems, the mean-field
RSB picturé!*19-2!states that for low enough temperatures
T and fieldsH, i.e., below the de Almeida-Thouless lifiea
stable spin-glass state emerges. The question lies atthefco
theoretical descriptions and is of immediate importancgpto
plications in fields ranging from, e.g., sociology to ecomesn

One way to settle the applicability of the RSB picture to
short-range spin glasses in a field while avoiding technical
difficulties when measuring observables in a fléfe is by
testing if the phase space is ultrametric (UM). Unfortutyate
the existence of an UM phase structure for short-range spifG. 1: Dendrogram obtained by clustering 100 configurations (see
glasses on hypercubic lattices remains elustvmainly be-  text) for a sample system with = 0.0 (Sherrington-Kirkpatrick
cause only small systems can be studied numerically. Receniodel) and. = 512 at 7" = 0.36, together with the matrixl,s
results in zero fielé? suggest that short-range systems are notgrey scale, distance 0 is black). The order of the states is given by
UM, whereas other opinions exiE:27 the leaves of the dendrogram (figure rotated clockwise®y.

More recently? results on one-dimensional Ising mod-
els with power-law interactions showed that short-range sp
glasses might be UM after all. Therefore, a natural probe
for the spin-glass state in a field is to study the UM response Il. MODEL
of one-dimensional Ising models with power-law interactio
when an external field is applied. The model has the advantage The one-dimensional Ising chain with long-range power-
in that by tuning the exponent of the power law, the universal |aw interaction&’-2-3%s described by the Hamiltonian
ity class can be tuned between a mean-field and a non-mean-
field universality class. In addition, large linear systemes _ LQ.q. Q.. L €ij
can be simulated whereas for hypercubic latféesly small = Z JigSiSi zlj haSi 5 Jij = elo) 7 )
linear system sizes can be studied.

Our results show that for this model in a field the phasewhereS; € {41} are Ising spins and the sum ranges over all
space has an UM structure in the mean-field regime. Howevespins in the system. Thie spins are placed on a ring to ensure
in the nonmean-field regime, when an external field is appliedperiodic boundary conditions amg = (L /) sin(w|i—j|/L)

i<j



's the geometric distance between the spisare Gaussian TABLE I: Simulation parameters for the one-dimensional chain with

random couplings. In the range of interésk< o < 32, the H = 0.1 and different power-law exponents L is the system size,

constantc(o) is choserf’ such that the mean-field transition Nsa is the number of disorder realizations ang is the number of

i P _
temperature to a spin-glass phasd 8" (o < 0.5,L, H = equilibration sweeps. For the parallel tempering simulatiBns, =

0) = 1. In Eq. (1), the spins couple to site-dependent random 36 andT;,... = 1.40 with a total of16 temperatures.
fields h; chosen from a Gaussian distribution with zero meary

and standard deviatioi?]s.” = H. R T " £ 32 412%0 55000

The model has a rich phase diagram when the expanent g o 0.60 0.75 64 4000 150 000
is changed® Both the universality class and the range of theq.qo 0.60 0.75 128 4000 500 000
interactions can be continuously tuned. In particutar=  0.00 0.60 0.75 256 4000 1000 000
0 gives the Sherrington-Kirkpatrick (SK) mod&?2 whose  0.00 0.60 0.75 512 4000 1000000

solution is the mean-field theory for spin glasses and where a
spin-glass state in a field is expected, i.e., an UM signditure
low enoughH and temperature®. More importantly?® for ~ dard MK recursion where, starting from one bond, iteragivel
1/2 < o < 2/3 the critical behavior is mean-field-like, while each bond is replaced B bonds and2?~* spins ¢ = 3).
for 2/3 < o < 1itis non-mean field like. For details, see, e.g., Refs. 39 and 40.
Here we study in a field = 0.10 the SK model § = 0]
to test our analysis protocol, as well as the one-dimenkiona
chain foro = 0.60 (also mean-field like), as well as= 0.75 IV." ULTRAMETRICITY
(T. ~ 0.69, roughly corresponding to four space dimen-
sions) outside the mean-field regime. We choose two val- Ultrametricity appears in different fields or research rang
ues ofo # 0 to be able to discern any trends when the ef-ing from linguistics to the taxonomy of animal species and
fective dimensionalit? is reduced. In general.g = (2 — is a key component of Parisi's mean-field solution of the
n)/(20 — 1), wheren, is the critical exponeny for the short-  SK model*1##! Therefore, if a spin-glass model has no UM
range model at space dimensidn= d.g, which is zero in  phase-space structure there is a strong indication thaiBar
the mean-field regime and, for example).275(25) in four =~ mean-field picture might not work for this system.
space dimension¥. In an UM spac# the triangle inequalityl,, < dag +
ds, is replaced by a stronger condition wheig, <
max{da.g,ds,}, i.e., the two longer distances must be equal
I1l. NUMERICAL METHOD AND EQUILIBRATION and the states lie on an isosceles triangle. Heyrerepresents
the distance between two poirtsand 3 in phase space.
We generate spin-glass configurations by first equilibrat- V& use the approach developed in Ref. 12 which is closely

ing the system at low temperatures and an external randofgated to the one used by Hed al. in Eef. 23. For each
field of average strengtHl = 0.1 using the exchange Monte disorder realization we produck/ = 10” equilibrium con-
Carlo method® Once the system is in thermal equilibrium fidurations. These are sorted using the average-linkage ag-
we record states ensuring that these are well separated in t§/0merative clustering algorithti. The clustering procedure
Markov process and thus not correlated by measuring autcgia/ts With M clusters containing each exactly one configu-
correlation times. In practice, if we equilibrate the systier ration. Distances are measured in terms oflthe haml;jm_ng dis-
7.q Monte Carlo sweeps, we generate for each disorder reafanCedas = (1 — [gag|), Wheregay = N=" 5 ; 575 is
ization 107 states separated by, /10 Monte Carlo sweeps. the spin overlap between configurations®} and{S”}. It-

We test equilibration using the method presented in Ref. 11€ratively the two closest cluste€s, andC, are merged into
Simulation parameters are listed in Table I. one clusteiCy, reducing the number of clusters by one. The

The presented data are all fér = 0.36. In Ref. 36 we distances of the new clustét; to the other remaining clusters
fixed T ~ 0.47T, for all values ofo studied to ensure that have tobe calculated: The distance between two clustes is t
we are deep in the spin-glass phase. However, it is uncleverage d_istance between all pairs of members of the ciust_er
if one-dimensional spin glasses with power-law interaetio | Ne iterative procedure stops when only one cluster remains
have a spin-glass state for > 2/3.1%1337Using theT,, es- the results are then typically st(uctured in a tree-likeistr .
timates of Leuzzet al'® at zero and finite fieldig = 0.1)  fure called a dendrogram (see Fig. 1). To probe for a putative
for thedilutedversion of the model we estimate that if a spin- UM space structure, we randomly select three configurations
glass state exists faf = 0.1 it should suppress the zero- from the hlerarchl_cal cluster structure (see Ref. 23),|IE_E}I _
field 7, by approximately 17%. Fos = 0.75 it is known N three mutual distances. Next, we sort these hamming dis-
that T,(H = 0) ~ 0.69(1),** which is in the nonmean- tancesdax > died > dmin and compute the correlator
geﬁlg renge. Therefor@ = 0.36 cor.respo'nds roughly to K = (dmax — duea)/0(d), @)

.6T.(H = 0.1), i.e., deep in the putative spin-glass phase.

For comparison, we also study spin glasses within the starwhere o(d) is the width of the distance distribution. If the
dard MK approximatiori® i.e., spin glasses on hierarchical phase space is UM, then we expégt.. = dieq for L — oco.
lattices. Due to the simple lattice structure, the phaseesfga  ThusP(K) — §(K = 0) for L — oo and the for the variance
also expected to be simple. We used a variation of the starof the distributionVar(X) — 0 for L — co.
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FIG. 3: (Color online) Variancé/ar(K) of P(K) as a function of
system sizd. for different values of. The data can be fit to a power
law (dashed lines). In the mean-field regime (SK ang- 0.6) a
fit to a constant is unlikely (see text). The power-law decay of the
variance as a function of system size suggests a divergerfeeAn)
o for K — 0. Foro = 0.75 the data are compatible with a constant
S - . .
= (solid line) or a very weak power-law behavior, suggesting that there
might not be an UM phase space structure.
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FIG. 4: (Color online) Varianc&/ar(K) of P(K) as a function of
system sizd. for spin glasses on hierarchical lattices. The data are

compatible with a constant behavior, showing that there is no UM
phase space structure for spin glasses within the MK approximation.
The solid line is a guide to the eye.
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FIG. 2: (Color online) DistributionP(K) for different system sizes

(all panels have the same horizontal and vertical scale) and an exter-

nal random fieldd = 0.1. (a) Data for the SK model. The distribu- for a divergence fork — 0. Similar results are found for
tion diverges very slightly foiX’ — 0 andL — oo thus signaling an the mean-field regime with — 0.60 [Figure 2(b)]. The UM

UM phase structure. (b) Data for = 0.60 (mean-field universality . . ) . . )
class). There is still a weak hint of a divergence for— 0. (c) Data _S|gnatl_1rel|£1 a fl_eld is considerably Weaker_ tha_n Whe_n no field
for o = 0.75 (nonmean-field universality class). There is no sign of 1 @pplied-= While for the SK model there is still a faint sign

a divergence in?(K) for K — 0. Note that wherf/ = 0 datafor ~ Of & divergence, for larger values ofit is hard to see if the

o = 0.75 show a clear signature for UM behavitr. distributions diverge forX — 0 andL — oo. Figure 2(c)

shows data for = 0.75, 7" = 0.36 and H = 0.10 where no

visible sign of a divergence is present, suggesting thase@ha

space might not be UM outside the mean-field regime. A bet-

ter probe is given by the variandér(K) of the distribution

as a function of system size, Fig. 3. The variance of the dis-
Figure 2(a) shows the distributiaR( K') for the SK model tribution for the SK model clearly decays with a power law

(c = 0)andT = 0.36 and H = 0.10. There is a slight hint  (Q-factor of the fit~ 0.28).** A fit of a constant gives) = 0.

V. RESULTS
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Similar results are obtained far = 0.60 where a fit to a can tune the system out of the mean-filed universality class.
power law is very likely withQQ = 0.989. Again, a fitto a  Using a hierarchical clustering method and analyzing the re
constant gives) < 10~°. However, foro = 0.75 both afitto  sulting distance matrices we show that when an external field
a very weak power lawVar(K) ~ L~ with v = 0.014(6)] is applied the system is only UM in the mean-field regime,
and a constant are equally probable with Q values in thevicinunlike in the zero-field case where an UM signal was found
ity of 0.8 — 0.9. Although larger systems would be needed for values ofo that correspond to space dimensions above and
to fully discern the behavior, the data are compatible with abelow the upper critical dimension. These results are ir@&gr
constant. Either ultrametricity in the nonmean-field regim ~ ment with calculations on MK hierarchical lattices. Theref,
completely lost in a field or strongly weakened. the spin-glass state is fragile with respect to externafiptied
Within the MK approximation the distribution8(K’) also  fields below the upper critical dimension.
show no divergence fok* — 0. Figure 4 shows the variance
of the distributions as a function of the system size. There
is no discernible decrease with an increasing number osspin
i.e., no UM structure of phase space. This is to be expected be Acknowledgments
cause the model is defined on a hierarchical lattice. However
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