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We study the ultrametric structure of phase space of one-dimensional Ising spin glasses with random power-
law interaction in an external random field. Although in zero field the model inboth the mean-field and non-
mean-field universality classes shows an ultrametric signature [Phys. Rev. Lett. 102, 037207 (2009)], when
a field is applied ultrametricity seems only present in the mean-field regime. These results agree with data for
spin glasses studied within the Migdal-Kadanoff approximation. Our resultstherefore suggest that the spin-glass
state might be fragile to external fields below the upper critical dimension.
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I. INTRODUCTION

Spin glasses1,2 are paradigmatic model systems that find
wide applicability across disciplines. Although studied in-
tensely over the last four decades, our understanding of some
of their fundamental aspects is still in its infancy. In particular,
the understanding of the nature of the spin-glass state remains
controversial and active discussion has emerged recently.3–13

In particular, it is unclear if the mean-field replica symme-
try breaking (RSB) picture14 of Parisi describes the nonmean-
field behavior of spin-glasses in an externally-applied field
best. While the droplet theory15–18states that there is no spin-
glass state in a field for short-range systems, the mean-field
RSB picture2,14,19–21states that for low enough temperatures
T and fieldsH, i.e., below the de Almeida-Thouless line,22 a
stable spin-glass state emerges. The question lies at the core of
theoretical descriptions and is of immediate importance toap-
plications in fields ranging from, e.g., sociology to economics.

One way to settle the applicability of the RSB picture to
short-range spin glasses in a field while avoiding technical
difficulties when measuring observables in a field12,13 is by
testing if the phase space is ultrametric (UM). Unfortunately,
the existence of an UM phase structure for short-range spin
glasses on hypercubic lattices remains elusive,23 mainly be-
cause only small systems can be studied numerically. Recent
results in zero field23 suggest that short-range systems are not
UM, whereas other opinions exist.24–27

More recently12 results on one-dimensional Ising mod-
els with power-law interactions showed that short-range spin
glasses might be UM after all. Therefore, a natural probe
for the spin-glass state in a field is to study the UM response
of one-dimensional Ising models with power-law interactions
when an external field is applied. The model has the advantage
in that by tuning the exponent of the power law, the universal-
ity class can be tuned between a mean-field and a non-mean-
field universality class. In addition, large linear system sizes
can be simulated whereas for hypercubic lattices23 only small
linear system sizes can be studied.

Our results show that for this model in a field the phase
space has an UM structure in the mean-field regime. However,
in the nonmean-field regime, when an external field is applied,

the UM structure of phase space seems to be much weaker for
the studied system sizes, suggesting that the spin-glass state
for short-range systems is fragile with respect to externally-
applied fields. These results are compared to studies of spin
glasses within the Migdal-Kadanoff (MK) approximation.

The paper is organized as follows. In Sec. II we intro-
duce the model studied, followed by details on the numerical
method in Sec. III. Our probe for UM behavior is outlined in
Sec. IV, followed by results (Section V) and conclusions.

FIG. 1: Dendrogram obtained by clustering 100 configurations (see
text) for a sample system withσ = 0.0 (Sherrington-Kirkpatrick
model) andL = 512 at T = 0.36, together with the matrixdαβ

(grey scale, distance 0 is black). The order of the states is given by
the leaves of the dendrogram (figure rotated clockwise by90◦).

II. MODEL

The one-dimensional Ising chain with long-range power-
law interactions17,28–30is described by the Hamiltonian

H = −
∑

i<j

JijSiSj −
∑

i

hiSi ; Jij = c(σ)
ǫij

rij
σ

, (1)

whereSi ∈ {±1} are Ising spins and the sum ranges over all
spins in the system. TheL spins are placed on a ring to ensure
periodic boundary conditions andrij = (L/π) sin(π|i−j|/L)
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is the geometric distance between the spins.ǫij are Gaussian
random couplings. In the range of interest0 ≤ σ ≤ 2, the
constantc(σ) is chosen30 such that the mean-field transition
temperature to a spin-glass phase isTMF

c (σ ≤ 0.5, L,H =
0) = 1. In Eq. (1), the spins couple to site-dependent random
fieldshi chosen from a Gaussian distribution with zero mean
and standard deviation[h2

i ]
1/2
av = H.

The model has a rich phase diagram when the exponentσ
is changed:30 Both the universality class and the range of the
interactions can be continuously tuned. In particular,σ =
0 gives the Sherrington-Kirkpatrick (SK) model,31,32 whose
solution is the mean-field theory for spin glasses and where a
spin-glass state in a field is expected, i.e., an UM signaturefor
low enoughH and temperaturesT . More importantly,28 for
1/2 < σ < 2/3 the critical behavior is mean-field-like, while
for 2/3 < σ ≤ 1 it is non-mean field like.

Here we study in a fieldH = 0.10 the SK model [σ = 0]
to test our analysis protocol, as well as the one-dimensional
chain forσ = 0.60 (also mean-field like), as well asσ = 0.75
(Tc ∼ 0.69, roughly corresponding to four space dimen-
sions) outside the mean-field regime. We choose two val-
ues ofσ 6= 0 to be able to discern any trends when the ef-
fective dimensionality33 is reduced. In generaldeff = (2 −
η)/(2σ − 1), whereη is the critical exponentη for the short-
range model at space dimensiond = deff , which is zero in
the mean-field regime and, for example,−0.275(25) in four
space dimensions.34

III. NUMERICAL METHOD AND EQUILIBRATION

We generate spin-glass configurations by first equilibrat-
ing the system at low temperatures and an external random
field of average strengthH = 0.1 using the exchange Monte
Carlo method.35 Once the system is in thermal equilibrium
we record states ensuring that these are well separated in the
Markov process and thus not correlated by measuring auto-
correlation times. In practice, if we equilibrate the system for
τeq Monte Carlo sweeps, we generate for each disorder real-
ization 103 states separated byτeq/10 Monte Carlo sweeps.
We test equilibration using the method presented in Ref. 11.
Simulation parameters are listed in Table I.

The presented data are all forT = 0.36. In Ref. 36 we
fixed T ≈ 0.4Tc for all values ofσ studied to ensure that
we are deep in the spin-glass phase. However, it is unclear
if one-dimensional spin glasses with power-law interactions
have a spin-glass state forσ > 2/3.11,13,37Using theTc es-
timates of Leuzziet al.13 at zero and finite field (H = 0.1)
for thedilutedversion of the model we estimate that if a spin-
glass state exists forH = 0.1 it should suppress the zero-
field Tc by approximately 17%. Forσ = 0.75 it is known
that Tc(H = 0) ≈ 0.69(1),11 which is in the nonmean-
field regime. ThereforeT = 0.36 corresponds roughly to
0.6Tc(H = 0.1), i.e., deep in the putative spin-glass phase.

For comparison, we also study spin glasses within the stan-
dard MK approximation,38 i.e., spin glasses on hierarchical
lattices. Due to the simple lattice structure, the phase space is
also expected to be simple. We used a variation of the stan-

TABLE I: Simulation parameters for the one-dimensional chain with
H = 0.1 and different power-law exponentsσ. L is the system size,
Nsa is the number of disorder realizations andτeq is the number of
equilibration sweeps. For the parallel tempering simulationsTmin =
0.36 andTmax = 1.40 with a total of16 temperatures.

σ L Nsa τeq

0.00 0.60 0.75 32 4 000 20 000
0.00 0.60 0.75 64 4 000 150 000
0.00 0.60 0.75 128 4 000 500 000
0.00 0.60 0.75 256 4 000 1 000 000
0.00 0.60 0.75 512 4 000 1 000 000

dard MK recursion where, starting from one bond, iteratively
each bond is replaced by2d bonds and2d−1 spins (d = 3).
For details, see, e.g., Refs. 39 and 40.

IV. ULTRAMETRICITY

Ultrametricity appears in different fields or research rang-
ing from linguistics to the taxonomy of animal species and
is a key component of Parisi’s mean-field solution of the
SK model.1,14,41Therefore, if a spin-glass model has no UM
phase-space structure there is a strong indication that Parisi’s
mean-field picture might not work for this system.

In an UM space42 the triangle inequalitydαγ ≤ dαβ +
dβγ is replaced by a stronger condition wheredαγ ≤
max{dαβ , dβγ}, i.e., the two longer distances must be equal
and the states lie on an isosceles triangle. Here,dαβ represents
the distance between two pointsα andβ in phase space.

We use the approach developed in Ref. 12 which is closely
related to the one used by Hedet al. in Ref. 23. For each
disorder realization we produceM = 103 equilibrium con-
figurations. These are sorted using the average-linkage ag-
glomerative clustering algorithm.43 The clustering procedure
starts withM clusters containing each exactly one configu-
ration. Distances are measured in terms of the hamming dis-
tancedαβ = (1 − |qαβ |), whereqαβ = N−1

∑
i Sα

i Sβ
i is

the spin overlap between configurations{Sα} and{Sβ}. It-
eratively the two closest clustersCa andCb are merged into
one clusterCd, reducing the number of clusters by one. The
distances of the new clusterCd to the other remaining clusters
have to be calculated: The distance between two clusters is the
average distance between all pairs of members of the clusters.
The iterative procedure stops when only one cluster remains,
the results are then typically structured in a tree-like struc-
ture called a dendrogram (see Fig. 1). To probe for a putative
UM space structure, we randomly select three configurations
from the hierarchical cluster structure (see Ref. 23), resulting
in three mutual distances. Next, we sort these hamming dis-
tancesdmax ≥ dmed ≥ dmin and compute the correlator

K = (dmax − dmed)/̺(d), (2)

where̺(d) is the width of the distance distribution. If the
phase space is UM, then we expectdmax = dmed for L → ∞.
ThusP (K) → δ(K = 0) for L → ∞ and the for the variance
of the distributionVar(K) → 0 for L → ∞.
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FIG. 2: (Color online) DistributionP (K) for different system sizes
(all panels have the same horizontal and vertical scale) and an exter-
nal random fieldH = 0.1. (a) Data for the SK model. The distribu-
tion diverges very slightly forK → 0 andL → ∞ thus signaling an
UM phase structure. (b) Data forσ = 0.60 (mean-field universality
class). There is still a weak hint of a divergence forK → 0. (c) Data
for σ = 0.75 (nonmean-field universality class). There is no sign of
a divergence inP (K) for K → 0. Note that whenH = 0 data for
σ = 0.75 show a clear signature for UM behavior.30

V. RESULTS

Figure 2(a) shows the distributionP (K) for the SK model
(σ = 0) andT = 0.36 andH = 0.10. There is a slight hint
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FIG. 3: (Color online) VarianceVar(K) of P (K) as a function of
system sizeL for different values ofσ. The data can be fit to a power
law (dashed lines). In the mean-field regime (SK andσ = 0.6) a
fit to a constant is unlikely (see text). The power-law decay of the
variance as a function of system size suggests a divergence inP (K)
for K → 0. For σ = 0.75 the data are compatible with a constant
(solid line) or a very weak power-law behavior, suggesting that there
might not be an UM phase space structure.
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FIG. 4: (Color online) VarianceVar(K) of P (K) as a function of
system sizeL for spin glasses on hierarchical lattices. The data are
compatible with a constant behavior, showing that there is no UM
phase space structure for spin glasses within the MK approximation.
The solid line is a guide to the eye.

for a divergence forK → 0. Similar results are found for
the mean-field regime withσ = 0.60 [Figure 2(b)]. The UM
signature in a field is considerably weaker than when no field
is applied.12 While for the SK model there is still a faint sign
of a divergence, for larger values ofσ it is hard to see if the
distributions diverge forK → 0 andL → ∞. Figure 2(c)
shows data forσ = 0.75, T = 0.36 andH = 0.10 where no
visible sign of a divergence is present, suggesting that phase
space might not be UM outside the mean-field regime. A bet-
ter probe is given by the varianceVar(K) of the distribution
as a function of system size, Fig. 3. The variance of the dis-
tribution for the SK model clearly decays with a power law
(Q-factor of the fit∼ 0.28).44 A fit of a constant givesQ = 0.
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Similar results are obtained forσ = 0.60 where a fit to a
power law is very likely withQ = 0.989. Again, a fit to a
constant givesQ < 10−5. However, forσ = 0.75 both a fit to
a very weak power law [Var(K) ∼ L−γ with γ = 0.014(6)]
and a constant are equally probable with Q values in the vicin-
ity of 0.8 — 0.9. Although larger systems would be needed
to fully discern the behavior, the data are compatible with a
constant. Either ultrametricity in the nonmean-field regime is
completely lost in a field or strongly weakened.

Within the MK approximation the distributionsP (K) also
show no divergence forK → 0. Figure 4 shows the variance
of the distributions as a function of the system size. There
is no discernible decrease with an increasing number of spins,
i.e., no UM structure of phase space. This is to be expected be-
cause the model is defined on a hierarchical lattice. However,
a direct comparison to the results forσ = 0.75 strengthens the
evidence of a non-UM structure for the latter case.

VI. SUMMARY AND CONCLUSION

We have studied numerically the low-temperature config-
uration landscape of long-range spin-glasses with power-law
interactions. By tuning the exponentσ that governs the de-
cay of the power-law interactions and therefore their rangewe

can tune the system out of the mean-filed universality class.
Using a hierarchical clustering method and analyzing the re-
sulting distance matrices we show that when an external field
is applied the system is only UM in the mean-field regime,
unlike in the zero-field case where an UM signal was found
for values ofσ that correspond to space dimensions above and
below the upper critical dimension. These results are in agree-
ment with calculations on MK hierarchical lattices. Therefore,
the spin-glass state is fragile with respect to externally-applied
fields below the upper critical dimension.
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