

Physical Colloquium

"Non-Equilibrium Turbulence in the Post-Kolmogorovean era – A Combined Empirical-Theoretical Approach"

Associate Professor Clara Velte

Department of Civil and Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering Danmarks Tekniske Universitet - DTU

Colloquium on

Monday, 27.10.2025, 2.15 p.m. Room No. W02 1-148

Turbulence remains one of the most important unsolved problems in classical physics. As in many other branches of physics, equilibrium descriptions are prevalent, yet it is the non-equilibrium states that dominate nature and engineering and often govern the most critical dynamics. The classical framework – shaped by Richardson, Kolmogorov, and Batchelor and commonly referred to as K41 – rests on assumptions of local equilibrium. While this produces reliable predictions under near-equilibrium conditions, it fails to capture flows that evolve strongly in space and time, where memory effects, inhomogeneities, and non-local interactions dominate.

In this talk, I will present recent progress towards a post-Kolmogorov understanding of turbulence, based on a combined empirical—theoretical program. We are formulating the framework for a theory of non-equilibrium turbulence, designed to capture the dynamics beyond K41. This theoretical framework is being directly validated through extensive state-of-the-art experiments, enabling us to uncover the mechanisms that govern energy and momentum transfer in evolving flows. I will conclude by outlining how this approach paves the way for improved models of turbulence and opens new perspectives for tackling one of physics' enduring frontiers.

Host: Prof. Dr. Martin Kühn