

Fraunhofer

A/SO

10

Euclidean State Space Models

Definitions and Assumptions:

- Time-Discrete, Euclidean Setup ideal model:

$\boldsymbol{x}_t = \boldsymbol{F}(\boldsymbol{x}_{t-1},t) + \boldsymbol{v}_t,$	$v_t \stackrel{ ext{indep.}}{\sim} (0, Q_t),$	[p -dim],
$\mathbf{y}_t = \mathbf{Z}(\mathbf{x}_t, t) + \varepsilon_t,$	$arepsilon_t \stackrel{ ext{indep.}}{\sim} (0, oldsymbol{V}_t),$	[q -dim],
	$x_0 \sim (a_0, Q_0),$	[p -dim],

 $\{v_t\}, \{\varepsilon_t\}, x_0$ indep. as processes

functions *F*, *Z* smooth with known derivatives; hyper–parameters Q_t, V_t, a_0 known

extensible to:

- continuous time (SDE's)
- incorporate user-specified controls

💹 Fraunhofer

Classical Method: Kalman–Filter Filter Problem $|\mathbf{E}|\mathbf{x}_t - f_t(\mathbf{y}_{1:t})|^2 = \min_{f_t} |_{t_t}$

with $y_{1:t} = (y_1, ..., y_t), \quad y_{1:0} := \emptyset$ General solution: $E[x_t|y_{1:t}]$ —difficult to compute

Kalman–Filter assuming $F(x, t) = F_t x$, $Z(x, t) = Z_t x$ optimal solution among linear filters — Kalman[/Bucy] [60/61]:

Initialization: $x_{0|0} = a_0$ Prediction: $x_{t|t-1} = F_t x_{t-1|t-1}$, $[\Delta x_t = x_t - x_{t|t-1}]$

Correction: $\mathbf{x}_{t|t} = \mathbf{x}_{t|t-1} + \mathbf{M}_t^0 \Delta \mathbf{y}_t$, $[\Delta \mathbf{y}_t = \mathbf{y}_t - \mathbf{Z}_t \mathbf{X}_{t|t-1}]$

and corresponding recursions for the prediction/filtering error covariances $\Sigma_{t|t[-1]}$ and the Kalman gain M_t^0

Features of the Kalman–Filter

- + an easy, understandable structure: initialization, prediction, correction step
- + correction step is easily evaluable and interpretable: it is linear !
- + strict recursivity / Markovian structure: all information from the past useful for the future is captured in the value of $x_{t|t-1}$.
- the correction step is linear and thus not robust, as y enters unbounded;

Aim of robustification: try to retain all "+"'s, revise "-"

Implementation concept

Fraunhofer

- Programming language
 - ► completely in S, perhaps some code in C later (~> FKF)
- ▶ Use existing infrastructure: zoo, timeSeries
 - for: graphics, diagnostics, management of date/time
- Code in different layers
 - internal functions: no S4-objects, no time stamps (helps bringing in code by "non-S4-people")
 - user interface: S4-objects, time stamps
- Use generating functions for encapsulation
 - without using structured arguments:
 - \blacktriangleright too many arguments \rightsquigarrow user looses track
 - prone to name mis-matchings (positional, partial matching)
 - bad alternative: fix defaults...
 - have generating functions to produce control objects
 - control objects may be reused

R-package robKalman — Contents

- ▶ Kalman filter: filter, Kalman gain, covariances
- > ACM-filter: filter, multivariate version, GM-estimator
- rLS-filter: filter, calibration of clipping height
 - AO/SO-robust version
 - IO-robust version
 - with a certain delay joint treatment of AO/SO's & IO's
- extensible to further recursive filters:
 - \rightsquigarrow general interface recursiveFilter with arguments:
 - data
 - state space model (hyper parameters) [will be: object of class SSM]
 - functions for the init./pred./corr.step [will be: object containing them]
 - [will be: control object]

🗾 Fraunhofer

Implementation so far

Interfaces so far

- ▶ preliminary, "S4-free" interfaces
 - Kalman filter (in our context) KalmanFilter
 - rLS: rLSFilter (=rLS.AO.Filter), rLS.IO. Filter, rLS.IOAO.Filter
 - ACM: ACMfilt, ACMfilter, mACMfilter
 - all realized as wrappers to recursiveFilter
- availability: robKalman version 0.3 (incl. demos)

http://r-forge.r-project.org/projects/robkalman/

Almost ready:

- S4 classes: for SSM's; for output-classes; for method-classes; for control-classes (reuse robustbase-code)
- interfaces between S4-layer and S4-free layer to other SSM packages

to robfilter (Roland Fried & K. Schettlinger)

Ō

Work in process

Release Plans

- package robKalman should be on CRAN by UseR! 2009, but...
- ► at least: release on CRAN by end of August
- ► till then: refer to **r**-forge

Extensions

robust smoothing

(80% done)

- robust EM-Algorithm to estimate unknown hyper parameters (extending Shumway/Stoffer) (70% done)
- ► interpretation as random coefficient regression
 → robust regression-type approach (rIC, mIC) (30% done)
- connecttion to particle filters theory and computer interface
- speeding up things / bridging to fast Kalman filter of FKF by David Luethi, Philipp Erb

(**1%** done)

O

(10% done)

🗾 Fraunhofer

References

Birmiwal, K. and Shen, J. (1993) : *Optimal robust filtering*. Stat. Decis., **11**(2): 101–119. Durbin, J. and Koopman, S. J. (2001) : *Time Series Analysis by State Space Methods*.

- Oxford University Press. Fried, R. and Schettlinger, K. (2008) : R-package robfilter: Robust Time Series Filters. http://cran.r-project.org/web/packages/robfilter.
- Kalman, R.E. (1960) : A new approach to linear filtering and prediction problems. *Journal* of Basic Engineering—Transactions of the ASME, **82**: 35–45.
- Kalman, R.E. and Bucy, R. (1961) : New results in filtering and prediction theory. *Journal* of Basic Engineering—Transactions of the ASME, **83**: 95–108.
- Martin, D. (1979) : Approximate conditional-mean type smoothers and interpolators. In Smoothing techniques for curve estimation. Proc. Workshop Heidelberg 1979. Lect. Notes Math. 757, p. 117-143
- Masreliez C.J. and Martin R. (1977) : Robust Bayesian estimation for the linear model and robustifying the Kalman filter. *IEEE Trans. Autom. Control*, AC-22: 361–371.
- Ruckdeschel, P. (2001) : Ansätze zur Robustifizierung des Kalman Filters. Bayreuther Mathematische Schriften, Vol. 64.

Some experiences on collaborative programming on r-forge

▶ r-forge:

- very neat for collaborative R package development
 - version management (svn)
 - mail-forwarded log-files of committed code
 weep track of work of others
 - bug tracker, archived mailing lists, ...
 - see slides by Stefan Theussl
- needs serious conceptional preparations
 - for separating/modularizing tasks
 - consistency: coding & documentation conventions
- helpful: scheduling, reminders/deadlines for collaborators...
- summarizing:

Collaborative programming is enjoyable and very exciting!

THANKS FOR YOUR ATTENTION!

Fraunhofer

References (cont.)

R Development Core Team (2009) : R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

R-Forge Administration and Development Team (2008) : *R-Forge User's Manual*, BETA. SVN revision: 47, August, 12 2008.

http://r-forge.r-project.org/R-Forge_Manual.pdf

- Schick, I.C. (1989) : Robust recursive estimation of a discrete–time stochastic linear dynamic system in the presence of heavy-tailed observation noise. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.
- Schick I.C. and Mitter S.K. (1994) : Robust recursive estimation in the presence of heavy-tailed observation noise. *Ann. Stat.*, **22**(2): 1045–1080.

Shumway, R.H. and Stoffer, D.S. (1982) : An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3: 253–264.
 Spangl, B. (2008) : On Robust Spectral Density Estimation. PhD Thesis at Technical University, Vienna.

11

