
Higher Order Asymptotics on Shrinking
Neighborhoods

Peter Ruckdeschel

Mathematisches Institut
Peter.Ruckdeschel@uni-bayreuth.de

www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL

Seminar at EPFL
October 27, 2006

Outline of Sections I – III

First Order Asymptotics In Robust Statistics
Ideal Setup
Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Higher Order Asymptotics
A “Historic” Aside. . . : Lausanne 2003
Different Constructions With Same IC
Existing Approaches
Uniform Expansions of the MSE

Situation In One Dimension
Uniformity Without Reference To Starting Estimator
Comments
Sketch of Proof
Consequence: Second Order Optimality
Comparison of “Optimalities”

Outline of Sections IV and V

New Concepts in Robust Statistics
Minimax-Radius
Second Order Minimax-Radius
Cniper Contamination
Cniper Contamination and Second Order Asymptotics

Back again: Comparison of k-step- and M-estimators
Specialization: One-dim. Symmetric Location
Higher Order Comparison of maxMSE
Optimal Robustness Combined With High Breakdown
Empirical Results: Simulation Design
Empirical Results: Simulation Results

Outline

First Order Asymptotics In Robust Statistics
Ideal Setup
Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

mailto:Peter.Ruckdeschel@uni-bayreuth.de
http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL


Ideal Setup

Setup: inference on parameter � in a model for i.i.d. observations

P = fP� j � 2 �g � � R
k ; P “smooth”

I common robust technique:
use first order von-Mises (vM) expansion

Definition
influence curves at P�:

	2(�) =
�
 � 2 Lk

2(P�) j E�  � = 0; E�  ��
�
� = Ik

	

asymptotically linear estimators:

p
n (Sn � �) =

1p
n

nX
i=1

 �(xi ) + oPn
�
(n0)

Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

Uc(�; r ; n) =
�
(1� r=

p
n )+P� + (1 ^ r=

p
n )R

��R 2M1(A)
	

Robust optimality problem: supQ2Uc MSEQ( �) = min!

here: supQ2Uc MSEQ( �) = E� j �j2 + r2 sup j �j2
Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]
unique solution is an IC ~�� of Hampel-type, i.e.;

~�� = (A��� � a�)w w = min
�
1; b�=jA��� � a�j

	

with A�, a�, b� such that E� ~�� = 0; E� ~���
�
� = Ik ; and

(MSE) r2b� = E�

�jA��� � a�j � b�
�
+

Limitations of First Order Approach

I So far: asymptotics is of first order, for both ALE and MSE
I Limitations

- (Technicality: in order to force convergence of the risk:
modification of the loss function by clipping)

- no indication for the quality/speed of the convergence — to
what degree do radius r , sample size n and clipping height b
affect the approximation?

- no indication which construction achieving an optimally–robust
IC asymptotically to take
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A “Historic” Aside I. . . : Lausanne 2003

I simulational evidence for reasonable results of the infinitesimal
setup was reported:
I good convergence of the MSE’s to the asymptotic ones for the

ideal model (tentative rate 1=n)
I (slow) convergence of the MSE’s to the asymptotic ones for

the contaminated model (tentative rate 1=
p

n)
I convergence speed gets slower for r , k increasing
I good convergence of the relative MSE’s to the asymptotic

ones for the contaminated model (tentative rate 1=n or faster)
I order of the relative asymptotic MSE’s for different k is

preserved largely (at most another k yields a performance gain
of 3% w.r.t. k0 — for n = 5 and r = 0:1)

I never large differences between constructions, for the best r of
order 10�2 or smaller

A “Historic” Aside II. . . : Lausanne 2003

I preliminary convergence results were presented:

Theorem (for both n odd and even — R.[05(a)])

for the sample median in the ideal Model

n MSE(Medn;N (0; 1)) = �
2

h
1+

�
�
2 �2 [�1]| {z }

for midpoint if n even

�
=n
i
+o( 1

n )

uniform conv. for Medn on Nbd about the ideal Model N (0; 1)

n supF real MSE(Medn;F real) = �
2 (1+r2)(1+

2rp
n
+o( 1p

n ))

Different Constructions With Same IC

I By means of first order asy. no distinction possible between
I M-estimator (does not dependent on �(0)n !):

�(z)n s.t. gn(�
(z)
n ) = 0 for gn(�) =

nX
i=1

��(Xi );

I k-step-estimator: to some starting estimator �(0)n ,

�(k)n := �(k�1)
n +

1
n

nX
i=1

�
�
(k�1)
n

(Xi )

 central question of this talk:

Which one—k-step- or M-estimator—has smaller risk for fixed n?

Existing Approaches To Assess This Question

I vM-expansion (Jurečkova and varying coauthors, [83–97])
idea: for two estimators Sn; S 0n, expand �n = Sn � S 0n to higher

order (for smooth ICs)
but need not exist (e.g. median);

then: Bahadur-Kiefer representation for the remainder
� due to correlation: L(�n) of little help for comparison of
L(Sn), L(S 0n)

I distributional expansion (Edgeworth / Saddlepoint approx.)
(e.g. Ronchetti and Welsh [02])
I more flexible but (Saddlepoint approx.) less explicit analytically
+ suffices for (MSE-)risk under uniform integrability

up to now: no uniform statements on neighborhoods



Uniform Expansions of the MSE I

Theorem (R. [05(a,b,c)])

Let � 7! �� be smooth in L1(P�),
Sn be an M- or a k-step-estimator to ��, and

let starting estim. �(0)n for the k-step-estimator be
I uniformly n1=4+�-consistent on ~Uc for some � > 0
I uniformly square-integrable in n and on ~Uc

Then maxMSE(Sn) := n sup
Qn2~Uc(r)

MSE(Sn)

= A0 +
rp
n A1 +

1
n A2 + o( 1

n )

for A0 = E� j��j2 + r2 sup j��j2 and A1, A2 are constants
depending on ��, r , and, for k-step-est., also on �(0)n

As to Uniform Integrability:

Breakdown-restricted samples
I by breakdown-point type argument: no uniform convergence of

MSE on neighborhoods Uc(�; r ; n) for r > 0
 sample-wise restriction of the neighborhoods,

conditioned on # contaminations in sample  ~Uc(�; r ; n):
s.t. percentage of contaminations in such samples smaller than the

finite-sample breakdown-point of most robust estimator S [
n.

e.g. in the location case, samples with more than 50% contaminiations are
excluded

I by Hoeffding: restriction is asymptotically exponentially
negligible

Uniform Expansions of the MSE II

Exact expressions for A1 for 1-step-estimator in one dimension
Let �� bounded and two times differentiable in L1(P�),

�
(0)
n = � + 1

n
P

~��(xi ) + oL1(~Uc)
(n�1=2) for a bounded IC ~��,

Then

A1 = 2 Cov�(��; ~��)�Var� �2
� + b2

�

+ 2b2
�

d
dt Cov�(�t ; ~��)

��
t=�

+ 2~b2
�

d
dt Var� �t

��
t=�

+ d2

dt2 E� �t
��
t=�

h
b� Var� ~�� + 2~b� Cov�(��; ~��)

i

+ r2~b�b�
�
2 + ~b� d2

dt2 E� �t
��
t=�

�

where b� = sup j��j; ~b� = lim sup
"#0

sup j~��j I(j��j � b� � ")

M-est put ~�� = ��
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Uniform MSE-Expansions for M-estimators and Median

Theorem (R. [05(a,b)])

Let �� be a bounded, monotone IC s.t. � 7! E#  
j
� smooth

P� have at least polynomial tails
Sn be an M-estimator to ��

Then maxMSE(Sn) := n sup
Qn2~Uc(r)

MSE(Sn)

= A0 +
rp
n A1 +

1
n A2 + o( 1

n )

for A0 = E� j��j2 + r2 sup j��j2 and A1, A2 are constants
depending on �� and r

Comments

Theorem (R. 2005(a)/2005(b))
In the last theorem, maximal MSE is already attained if contam. is
concentrated strictly right [left] of ��1

� (sup j��j)� b
p

2 log(n)=n .

I special proof for median due to violation of Cramér-condition
I also possible:

I treatment of bias and variance, separately
I over-/under-shoot probability-risk

I cross-checks: simulations, numerical evaluations
I compared to saddlepoint-approximations, c.f. Field and

Ronchetti [90] much more explicit terms
I gives justification (ex post) for good approximation quality of

Fraiman et al [01]

Sketch of Proof I

I use Qn(Sn � t) = Qn(
P

i  (Xi � t) > 0) essentially
I conditioning w.r.t. the number K of contaminated observations
I cond. w.r.t. the actual contam. ~Tm;k =

P
Ui=1  (X

di
i )

I partitioning the integrand of the conditional MSE,

K < k1r
p

n k1r
p

n � K < n=2 K � n=2

jtj � k2b2log(n)=n (I)

k2b2log(n)=n < jtj � Cnk01 (III)
(II)

excluded

jtj > Cnk01 (IV)
for any fixed k1; k 01 > 1, k2 > 2

I showing negligibility of cases (II),(III), and (IV)
I using an Edgeworth expansion on (I)

Sketch of proof II

I change of variables t = t(s) to extract argument s from exp
—(implicit function theorem!)

I with MAPLE: collecting terms
I identification of the least favorable contamination
I integration of s — conditional on K = k
I integration of K



Consequence: Second Order Optimality I

Corollary

Let F and  be symmetric:
Then A1 = 2r2b2 + v2

0 + b2 and maximal risk is
R1(Sn) = r2b2 + v0

2 + rp
n A1

Consequence:
Second order optimal (s-o-o) IC is of Hampel form

A�minf1; c1=j�jg

with s-o-o clipping height c1 determined as

r2c1

�
1 +

r2 + 1
r2 + r

p
n

�
= E(j�j � c1)+

Consequence: second order optimality II

If h(c) := E(j�j � c)+ is differentiable in the f-o-o c0,

c1 = c0

�
1� 1p

n
r3 + r

r2 � h0(c0)

�
+ o(

1p
n
)

=) As h0 < 0, c1 < c0 always
i.e.; first order asymptotics is too optimistic
I as c1 is optimal, R1 behaves locally as a parabola with vertex in

c1; hence the risk-improvement of c1 compared to c0 is O(1=n)
I same goes for t-o-o clipping height c2 =) risk-improvement of

c2 compared to c1 is O(1=n2)

Optimal c ’s and corresp. (numerically) exact maxMSE I

r n = 5 n = 10 n = 30 n = 100
0:1 actual rad. 0:04 0:03 0:02 0:01

c0 1.948 1.948 1.948 1.948
relMSEex

n (c0) 8.679% 4.065% 1.340% 0.448%
c1 1.394 1.484 1.611 1.724
relMSEex

n (c1) 0.833% 0.207% 0.027% 0.010%
c2 1.309 1.428 1.585 1.713
relMSEex

n (c2) 0.332% 0.066% 0.008% 0.006%
cFZY 1.368 1.370 1.610 1.756
relMSEex

n (cFZY) 0.658% 0.002% 0.026% 0.031%
cex 1.167 1.358 1.560 1.704
MSEn(cex) 1.388 1.239 1.151 1.107

c0 f-o-o: by equation we just saw
c1 s-o-o: by equation we just saw
c2 third order: num. optimization of MSE among Hampel-type ICs
cFZY num. optimization of a proposal by Fraiman et al.
cex num. optimization of the (num.) exact MSE

Optimal c ’s and corresp. (numerically) exact maxMSE II

r n = 5 n = 10 n = 30 n = 100
1:0 actual rad. 0:45 0:32 0:18 0:10

c0 0.436 0.436 0.436 0.436
relMSEex

n (c0) 2.716% 3.132% 0.746% 0.149%
c1 0.320 0.340 0.369 0.394
relMSEex

n (c1) 1.411% 1.610% 0.251% 0.021%
c2 0.255 0.291 0.342 0.382
relMSEex

n (c2) 0.876% 0.999% 0.123% 0.006%
cFZY – 0.281 0.344 0.387
relMSEex

n (cFZY) – 0.892% 0.132% 0.012%
cex 0.001 0.125 0.286 0.366
MSEn(cex) 12.627 8.445 4.948 3.787

c0 f-o-o: by equation we just saw
c1 s-o-o: by equation we just saw
c2 third order: num. optimization of MSE among Hampel-type ICs
cFZY num. optimization of a proposal by Fraiman et al.
cex num. optimization of the (num.) exact MSE
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Unknown Radius r : Minimax-Radius

I situation: r not known, only available information r 2 [rl ; ru]
I relative inefficiency of �r when used at radius s:

�(r ; s) := max
nbd

asRisk(�r ; s)=max
nbd

asRisk(�s ; s)

I minimax radius/inefficiency:
r = r0 such that �̂(r) is minimal for �̂(r) := sups2[rl ;ru ] �(r ; s)

Theorem (Radius-minimax procedure [R.:Ri:04])
Assume that maximal asymptotic risk on nbd is representable as

~G(�; r) = G(r!�; ��) for
I �2

� = EP j�j2, !� = supQ in nbd jEQ �j
I G = G(w ; s) convex, isotone in both arguments
I G homogeneous,i.e.; G(�w ; �s) = ��G(w ; s)

For all such G, the radius-minimax IC does not depend on G!

Second Order Minimax-Radius

I Set R1( ; r ; n) := r2 sup j j2 + E 2 + rp
nA1 and let c1(r ; n)

the s-o-o c ; then determine the s-o-minimax-radius r1 = r1(n)
as minimizer of

min
r 0

max
r2(rl ;ru)

�1(r 0; r ; n); �1(r 0; r ; n) :=
R1(�c1(r 0;n); r ; n)
R1(�c1(r ;n); r ; n)

I Illustration at Gaussian location model for rl = 0, ru =1
n = 5 n = 10 n = 100 n =1

r1 0.390 0.449 0.559 0.621
c1(r1) 0.776 0.749 0.722 0.718
�1(r1) 16.27% 17.08% 17.96% 18.07%

I So if r is completely unknown, use the M-estimator to
�c for c � 0:7 — you will never have a larger inefficiency
than the limiting 18%!

Cniper Contamination

I Huber [97], p. 62, complains “. . . the considerable confusion
between the respective roles of diagnostics and robustness.
The purpose of robustness is to safeguard against deviations
from the assumptions that are near or below the limits of
detectability.”

I In R. [06]: determination of these limits in a statistical way,
using binomial maximin tests, giving exact critical rate 1=

p
n

I Idea: Among risk-maximizing contamination(s) determine the
“most innocent appearing least favorable contamination”

 H. Rieder: cniper–contamination: Being of Ianus-type, it
pretends to be nice but in fact is already pernicious.



Cniper Contamination and Second Order Asymptotics

Proposition

Let Qn(x) := (1� r=
p

n )F + r=
p

n Ifxg
and asMSE1(S ;Q) the s-o as. MSE of S under Q.
Define x1 = x1(n) as the minimal x > 0 such that

asMSE1(S (c1)
n ;Qn(x)) = asMSE1(Ŝn;Qn(x))

for S (c1)
n the s-o-o M-estimator and Ŝn is the MLE.

Then one can show: (S (c1)
n ;Qn(x1(n))) is a saddlepoint.

Illustration: one-dim. Gaussian location (known scale)

n 5 10 100 1
r1(n) 0.390 0.449 0.559 0.621
c1(r1; n) 0.776 0.749 0.722 0.718
x1(n) 2.937 2.465 1.800 1.524
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Specialization: One-dim. Symmetric Location

Proposition

Let ��(� � ) = ���( � )
I ~�� MSE-optimal IC to radius r (with clipping height ~b�)

I �
(b�)
� = A��� minf1; b�

jA���jg for some 0 < b� < ~b�.

I Sn; S 0
n be the resp. M- and 1-step-estimator to ~��,

with �(0)n an ALE with IC �
(b�)
�

Then maxMSE(S 0
n) = maxMSE(Sn) + o(n�1=2)

Remark
No general statement to our central question:
If IC is of Hampel-type and first order MSE-suboptimal, then both
situations maxMSE(S 0

n)
<
>maxMSE(Sn) + o(n�1=2) may occur.

Higher Order Comparison of maxMSE

Uniform expansion of MSE allows the following comparison

Theorem (R. 2005(b))

Let � 7! �� be k times differentiable in L1(P�).
Sn; S 0

n be the resp. M- and k-step estimator to ��.

�
(0)
n to S 0

n be uniformly consistent and integrable as before
Then there exist expansions of order k of maxMSE for Sn; S 0

n and
maxMSE(S 0

n) = maxMSE(Sn) + o(n�(k�1)=2)

I preceding theorem covers n1=3-consistent �(0)
n s like

Least-Median-of-Squares-regression estimators
I we apply theorem to k = 3, as explicit expressions for expansions

available only up to order 3
I extension to non-L1-smooth ICs like Hampel-type-ICs for k = 3 by ad-hoc

methods



Optimal Robustness Combined With High Breakdown

I use of high-breakdown estimators slower than n�(1=4+�)

Proposition (R.05: Acceleration of slow starting estimators)

Let ~�(0)n I uniformly n�-consistent on ~Uc(r) for some 0 < � � 1=4
I uniformly square-integrable as in the theorem

Then an m = d�1� log2 �e-step-estimator ~�(m)
n to any L1(P�)-smooth IC

with �(0)n = ~�
(0)
n is uniformly integrable and

becomes n1=4+�-consistent,

=) is admitted as starting estimator in preceding theorem

I high breakdown of ~�(0)n is inherited to k-step-estimators
(not true for M-estimators!)

=) optimal uniform efficiency + optimal breakdown point

Empirical Results: Simulation Design

I ideal model: P = N (�; 1) at � = 0
I M = 10000 runs; sample sizes: n = 5; 10; 30; 50; 100
I contamination radii: r = 0:1; 0:25; 0:5; 1:0
I contaminating distribution: Dirac at point 100
I ICs: Huber-type to c = 0:5; 0:7; 1; 1:5; 2
I estimators:

I M-estimator and
I 1-Step-estimator with sample median as starting estimator

Empirical Results: Simulation Results I

Empirical and asymptotic maxMSE at n = 30, c = 0:5

r simulation asymptotics
r=
p

n
M/1step

maxMSEn [low; up] n0 n�1=2 n�1

0:00 1step 1.270 [1.235 ;1.306 ] 1.263 1.263 1.258
0:00 M 1.272 [1.237 ;1.307 ] 1.263 1.263 1.259
0:25 1step 1.553 [1.510 ;1.596 ] 1.369 1.519 1.544
0:05 M 1.545 [1.502 ;1.588 ] 1.369 1.514 1.532
1:00 1step 5.357 [5.214 ;5.500 ] 2.967 4.127 4.772
0:18 M 5.362 [5.219 ;5.505 ] 2.967 4.132 4.652

maxMSEn: average of emp. risks, low/up: emp. 95% confidence interval
asymptotics taken from leading terms of the preceding expansions:
A0 [ + rn�1=2 A1 ( + n�1A2)], respectively

Empirical Results: Simulation Results II

Number of iterations In needed for M-Estimator at n = 30 and
c = 0:5, as well as n = 50 and c = 2:0

Iterations
r n = 30 and c = 0:5 n = 50 and c = 2:0

�In [low; up] �In [low; up]
0.00 7.00 [ 5; 9 ] 5.56 [ 4; 7 ]
0.10 8.62 [ 5; 12 ] 7.17 [ 4; 10 ]
0.25 9.93 [ 5; 12 ] 8.54 [ 5; 10 ]
0.50 10.56 [ 7; 12 ] 9.36 [ 6; 10 ]
1.00 10.70 [ 8; 13 ] 9.74 [ 8; 11 ]

=) statist. unjustified computation time compared to 1-step
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