k-step- and M-estimators – a comparison of MSE by uniform higher order asymptotics

Peter Ruckdeschel

Fakultät für Mathematik und Physik Peter.Ruckdeschel@uni-bayreuth.de www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL

ICORS06, Lisbon July, 18 2006

Ideal Setup

Setup: inference on parameter θ in a model for i.i.d. observations

$$\mathcal{P} = \{ P_{\theta} \, | \, \theta \in \Theta \} \qquad \Theta \subset \mathbb{R}^k, \qquad \mathcal{P} \text{ ``smooth''}$$

 common robust technique: use first order von-Mises (vM) expansion

Definition

influence curves at P_{θ} :

$$\Psi_2(\theta) = \left\{ \psi_\theta \in L_2^k(P_\theta) \, | \, \operatorname{E}_\theta \psi_\theta = 0, \, \operatorname{E}_\theta \psi_\theta \Lambda_\theta^\tau = \mathbb{I}_k \right\}$$

asymptotically linear estimators:

$$\sqrt{n}\left(S_n- heta
ight)=rac{1}{\sqrt{n}}\sum_{i=1}^n\psi_{ heta}(x_i)+o_{P_{ heta}^n}(n^0)$$

Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

$$U_c(\theta, r, n) = \left\{ (1 - r/\sqrt{n})_+ P_\theta + (1 \wedge r/\sqrt{n}) R \, \big| \, R \in \mathcal{M}_1(\mathcal{A}) \right\}$$

Robust optimality problem: $\sup_{Q \in U_c} MSE_Q(\psi_{\theta}) = min!$ here: $\sup_{Q \in U_c} MSE_Q(\psi_{\theta}) = E_{\theta} |\psi_{\theta}|^2 + r^2 \sup |\psi_{\theta}|^2$ **Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]** *unique solution is Hampel-type IC* $\tilde{\eta}_{\theta}$, *i.e.*

$$\begin{split} \tilde{\eta}_{\theta} &= (A_{\theta}\Lambda_{\theta} - a_{\theta})w \qquad w = \min\left\{1, b_{\theta}/|A_{\theta}\Lambda_{\theta} - a_{\theta}|\right\}\\ \text{with } A_{\theta}, \ a_{\theta}, \ b_{\theta} \ \text{such that} \quad \mathrm{E}_{\theta} \ \tilde{\eta}_{\theta} = 0, \quad \mathrm{E}_{\theta} \ \tilde{\eta}_{\theta}\Lambda_{\theta}^{\tau} = \mathbb{I}_{k}, \ \text{and}\\ (\mathrm{MSE}) \qquad r^{2}b_{\theta} &= \mathrm{E}_{\theta} \left(|A_{\theta}\Lambda_{\theta} - a_{\theta}| - b_{\theta}\right)_{+} \end{split}$$

Different constructions with same IC

▶ So far: asymptotics is of first-order, for both ALE and MSE
→ no distinction possible between

• M-estimator (does not dependent on $\theta_n^{(0)}$!):

$$\theta_n^{(z)} \quad \text{s.t.} \quad g_n(\theta_n^{(z)}) = 0 \quad \text{ for } g_n(\theta) = \sum_{\substack{i=1 \\ (0)}}^n \eta_\theta(X_i),$$

• k-step-estimator: to some starting estimator $\theta_n^{(0)}$,

$$\theta_n^{(k)} := \theta_n^{(k-1)} + \frac{1}{n} \sum_{i=1}^n \eta_{\theta_n^{(k-1)}}(X_i)$$

 \rightsquigarrow central question of this talk:

Which one—k-step- or M-estimator—has smaller risk for fixed n?

Existing approaches to assess this question

vM-expansion (Jurečkova and varying coauthors, [83–97])
 idea: for two estimators S_n, S'_n, expand Δ_n = S_n - S'_n to higher order (for smooth ICs)

but need not exist (e.g. median);

then: Bahadur-Kiefer representation for the remainder

- due to correlation: $\mathcal{L} \Delta_n$ of little help for comparison of $\mathcal{L}(S_n)$, $\mathcal{L}(S'_n)$
- distributional expansion (Edgeworth / Saddlepoint approx.) (e.g. Ronchetti and Welsh [02])
 - more flexible but (Saddlepoint approx.) less explicit analytically
 - + suffices for (MSE-)risk under uniform integrability

up to now: no uniform statements on neighborhoods

Uniform expansions of the MSE I

Theorem (R. 2005(a)/2005(b)) Let $\theta \mapsto \eta_{\theta}$ be smooth in $L_1(P_{\theta})$, S_n be an M- or a k-step-estimator to η_{θ} , and let starting estim. $\theta_n^{(0)}$ for the k-step-estimator be • uniformly $n^{1/4+\delta}$ -consistent on \tilde{U}_c for some $\delta > 0$ • uniformly square-integrable in n and on \tilde{U}_c Then $\max MSE(S_n) := n \sup MSE(S_n)$ $Q_n \in \tilde{U}_c(r)$ $= A_0 + \frac{r}{\sqrt{n}} A_1 + \frac{1}{n} A_2 + o(\frac{1}{n})$

for $A_0 = E_{\theta} |\eta_{\theta}|^2 + r^2 \sup |\eta_{\theta}|^2$ and A_1 , A_2 are constants depending on η_{θ} , r, and, for k-step-est., also on $\theta_n^{(0)}$

As to Uniform Integrability:

Breakdown-restricted samples

- by breakdown-point type argument: no uniform convergence of MSE on neighborhoods U_c(θ, r, n) for r > 0
- \rightsquigarrow sample-wise restriction of the neighborhoods, conditioned on # contaminations in sample $\rightsquigarrow \tilde{U}_c(\theta, r, n)$:
- s.t. percentage of contaminations in such samples smaller than the finite-sample breakdown-point of most robust estimator S_n^{\flat} .
- e.g. in the location case, samples with more than 50% contaminiations are excluded
 - by *Hoeffding:* restriction is asymptotically exponentially negligible

Uniform expansions of the MSE II

Exact expressions for A_1 for 1-step-estimator in one dimension Let η_{θ} bounded and two times differentiable in $L_1(P_{\theta})$, $\theta_n^{(0)} = \theta + \frac{1}{n} \sum \tilde{\eta}_{\theta}(x_i) + o_{L_1(\tilde{U}_c)}(n^{-1/2})$ for a bounded IC $\tilde{\eta}_{\theta}$, Then

$$\begin{array}{lll} \mathcal{A}_{1} & = & 2\operatorname{Cov}_{\theta}(\eta_{\theta},\tilde{\eta}_{\theta}) - \operatorname{Var}_{\theta}\eta_{\theta}^{2} + b_{\theta}^{2} \\ & & + 2b_{\theta}^{2} \frac{d}{dt}\operatorname{Cov}_{\theta}(\eta_{t},\tilde{\eta}_{\theta})\big|_{t=\theta} + 2\tilde{b}_{\theta}^{2} \frac{d}{dt}\operatorname{Var}_{\theta}\eta_{t}\big|_{t=\theta} \\ & & + \frac{d^{2}}{dt^{2}}\operatorname{E}_{\theta}\eta_{t}\big|_{t=\theta} \left[b_{\theta}\operatorname{Var}_{\theta}\tilde{\eta}_{\theta} + 2\tilde{b}_{\theta}\operatorname{Cov}_{\theta}(\eta_{\theta},\tilde{\eta}_{\theta})\right] \\ & & + r^{2}\tilde{b}_{\theta}b_{\theta}\left[2 + \tilde{b}_{\theta}\frac{d^{2}}{dt^{2}}\operatorname{E}_{\theta}\eta_{t}\big|_{t=\theta}\right] \\ & \text{where} \qquad b_{\theta} = \sup|\eta_{\theta}|, \quad \tilde{b}_{\theta} = \limsup\sup_{\varepsilon\downarrow 0} \sup|\tilde{\eta}_{\theta}|\operatorname{I}(|\eta_{\theta}| \ge b_{\theta} - \varepsilon) \end{array}$$

M-est put $\tilde{\eta}_{\theta} = \eta_{\theta}$

Specialization: one-dim. symmetric location

Proposition

Let
$$\Lambda_{\theta}(-\cdot) = -\Lambda_{\theta}(\cdot)$$

 $\blacktriangleright \tilde{\eta}_{\theta} MSE$ -optimal IC to radius r (with clipping height \tilde{b}_{θ})
 $\flat \eta_{\theta}^{(b_{\theta})} = A_{\theta}\Lambda_{\theta} \min\{1, \frac{b_{\theta}}{|A_{\theta}\Lambda_{\theta}|}\}$ for some $0 < b_{\theta} < \tilde{b}_{\theta}$.
 $\flat S_n, S'_n$ be the resp. M- and 1-step-estimator to $\tilde{\eta}_{\theta}$,
with $\theta_n^{(0)}$ an ALE with IC $\eta_{\theta}^{(b_{\theta})}$
Then $\max MSE(S'_n) = \max MSE(S_n) + o(n^{-1/2})$

Remark

т

No general statement to our central question:

If IC is of Hampel-type and first-order MSE-suboptimal, then both situations $\max MSE(S'_n) \leq \max MSE(S_n) + o(n^{-1/2})$ may occur.

Higher Order Comparison of $\mathrm{max}\mathrm{MSE}$

Uniform expansion of MSE allows the following comparison Theorem (R. 2005(b))

Let $\theta \mapsto \eta_{\theta}$ be k times differentiable in $L_1(P_{\theta})$. S_n, S'_n be the resp. M- and k-step estimator to η_{θ} . $\theta_n^{(0)}$ to S'_n be uniformly consistent and integrable as before Then there exist expansions of order k of maxMSE for S_n, S'_n and $\max MSE(S'_n) = \max MSE(S_n) + o(n^{-(k-1)/2})$

- preceding theorem covers n^{1/3}-consistent θ_n⁽⁰⁾s like Least-Median-of-Squares-regression estimators
- we apply theorem to k = 3, as explicit expressions for expansions available only up to order 3
- extension to non- L_1 -smooth ICs like Hampel-type-ICs for k = 3 by ad-hoc methods

Optimal Robustness Combined With High Breakdown

• use of high-breakdown estimators *slower* than $n^{-(1/4+\delta)}$

Proposition (R.05: Acceleration of slow starting estimators)

Let
$$\tilde{\theta}_n^{(0)}$$
 uniformly n^{α} -consistent on $\tilde{U}_c(r)$ for some $0 < \alpha \le 1/4$
 \blacktriangleright uniformly square-integrable as in the theorem
Then an $m = \lceil -1 - \log_2 \alpha \rceil$ -step-estimator $\tilde{\theta}_n^{(m)}$ to any $L_1(P_{\theta})$ -smooth IC with $\theta_n^{(0)} = \tilde{\theta}_n^{(0)}$ is uniformly integrable and becomes $n^{1/4+\delta}$ -consistent,

 \implies is admitted as starting estimator in preceding theorem

- ▶ high breakdown of θ̃⁽⁰⁾_n is inherited to k-step-estimators (not true for M-estimators!)
- \implies optimal uniform efficiency + optimal breakdown point

Simulation Design

- ideal model: $\mathcal{P} = \mathcal{N}(\theta, 1)$ at $\theta = 0$
- ▶ *M* = 10000 runs; sample sizes: *n* = 5, 10, 30, 50, 100
- ▶ contamination radii: *r* = 0.1, 0.25, 0.5, 1.0
- contaminating distribution: Dirac at point 100
- ICs: Huber-type to c = 0.5, 0.7, 1, 1.5, 2
- estimators:
 - M-estimator and
 - 1-Step-estimator with sample median as starting estimator

Simulation Results I

Empirical and asymptotic maxMSE at n = 30, c = 0.5

r	M/1step	simulation			asymptotics			
r/\sqrt{n}		$\overline{\max}MSE_n$	[low;	up]	n^0	$n^{-1/2}$	n^{-1}	
0.00	1step	1.270	[1.235;1	.306]	1.263	1.263	1.258	
0.00	M	1.272	[1.237 ;1	.307]	1.263	1.263	1.259	
0.25	1step	1.553	[1.510;1	.596]	1.369	1.519	1.544	
0.05	M	1.545	[1.502;1	.588]	1.369	1.514	1.532	
1.00	1step	5.357	[5.214 ;5	.500]	2.967	4.127	4.772	
0.18	M	5.362	[5.219;5	.505]	2.967	4.132	4.652	

 $\overline{\max MSE}_n$: average of emp. risks, low/up: emp. 95% confidence interval asymptotics taken from leading terms of the preceding expansions: $A_0 [+rn^{-1/2}A_1(+n^{-1}A_2)]$, respectively

Simulation Results II

Number of iterations I_n needed for M-Estimator at n = 30 and c = 0.5, as well as n = 50 and c = 2.0

	Iterations									
r	n = 30	and $c =$	n = 50 and $c = 2.0$							
	\overline{I}_n	[low;	up]	Īn	[low	;	up]			
0.00	7.00	[5;	9]	5.56	[4;	7]			
0.10	8.62	[5;	12]	7.17	[4;	10]			
0.25	9.93	[5;	12]	8.54	[5;	10]			
0.50	10.56	[7;	12]	9.36	[6;	10]			
1.00	10.70	[8;	13]	9.74	[8;	11]			

 \implies statist. unjustified computation time compared to 1-step

Bibliography

N. Rieder (1994):

Robust Asymptotic Statistics. Springer.

P. Ruckdeschel (2005(a)):

Higher order asymptotics for the MSE of M estimators on shrinking neighborhoods. In preparation. Also available in http://www.uni-bayreuth.de/departments/math/org/mathe7/ RUCKDESCHEL/pubs/mest1.pdf.

P. Ruckdeschel (2005(b)):

Higher order asymptotics for the MSE of k-step-estimators on shrinking neighborhoods. In preparation.