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Ideal Setup

Setup: inference on parameter θ in a model for i.i.d. observations

P = {Pθ | θ ∈ Θ} Θ ⊂ Rk , P “smooth”

I common robust technique:
use first order von-Mises (vM) expansion

Definition
influence curves at Pθ:

Ψ2(θ) =
{
ψθ ∈ Lk

2(Pθ) | Eθ ψθ = 0, Eθ ψθΛ
τ
θ = Ik

}
asymptotically linear estimators:

√
n (Sn − θ) =

1√
n

n∑
i=1

ψθ(xi ) + oPn
θ
(n0)



Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

Uc(θ, r , n) =
{
(1− r/

√
n )+Pθ + (1 ∧ r/

√
n ) R

∣∣ R ∈M1(A)
}

Robust optimality problem: supQ∈Uc MSEQ(ψθ) = min!

here: supQ∈Uc MSEQ(ψθ) = Eθ |ψθ|2 + r2 sup |ψθ|2

Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]
unique solution is Hampel-type IC η̃θ, i.e.

η̃θ = (AθΛθ − aθ)w w = min
{
1, bθ/|AθΛθ − aθ|

}
with Aθ, aθ, bθ such that Eθ η̃θ = 0, Eθ η̃θΛ

τ
θ = Ik , and

(MSE) r2bθ = Eθ

(
|AθΛθ − aθ| − bθ

)
+



Different constructions with same IC

I So far: asymptotics is of first-order, for both ALE and MSE
 no distinction possible between

I M-estimator (does not dependent on θ(0)
n !):

θ(z)
n s.t. gn(θ

(z)
n ) = 0 for gn(θ) =

n∑
i=1

ηθ(Xi ),

I k-step-estimator: to some starting estimator θ(0)
n ,

θ(k)
n := θ(k−1)

n +
1
n

n∑
i=1

η
θ

(k−1)
n

(Xi )

 central question of this talk:

Which one—k-step- or M-estimator—has smaller risk for fixed n?



Existing approaches to assess this question

I vM-expansion (Jurečkova and varying coauthors, [83–97])
idea: for two estimators Sn,S ′

n, expand ∆n = Sn − S ′
n to higher

order (for smooth ICs)
but need not exist (e.g. median);

then: Bahadur-Kiefer representation for the remainder
− due to correlation: L∆n of little help for comparison of L(Sn),
L(S ′

n)

I distributional expansion (Edgeworth / Saddlepoint approx.)
(e.g. Ronchetti and Welsh [02])
I more flexible but (Saddlepoint approx.) less explicit analytically
+ suffices for (MSE-)risk under uniform integrability

up to now: no uniform statements on neighborhoods



Uniform expansions of the MSE I

Theorem (R. 2005(a)/2005(b))

Let θ 7→ ηθ be smooth in L1(Pθ),
Sn be an M- or a k-step-estimator to ηθ, and

let starting estim. θ(0)
n for the k-step-estimator be

I uniformly n1/4+δ-consistent on Ũc for some δ > 0
I uniformly square-integrable in n and on Ũc

Then maxMSE(Sn) := n sup
Qn∈Ũc(r)

MSE(Sn)

= A0 + r√
n A1 + 1

n A2 + o( 1
n )

for A0 = Eθ |ηθ|2 + r2 sup |ηθ|2 and A1, A2 are constants
depending on ηθ, r , and, for k-step-est., also on θ(0)

n



As to Uniform Integrability:

Breakdown-restricted samples
I by breakdown-point type argument: no uniform convergence of

MSE on neighborhoods Uc(θ, r , n) for r > 0
 sample-wise restriction of the neighborhoods,

conditioned on # contaminations in sample  Ũc(θ, r , n):
s.t. percentage of contaminations in such samples smaller than the

finite-sample breakdown-point of most robust estimator S [
n.

e.g. in the location case, samples with more than 50% contaminiations are
excluded

I by Hoeffding: restriction is asymptotically exponentially
negligible



Uniform expansions of the MSE II

Exact expressions for A1 for 1-step-estimator in one dimension
Let ηθ bounded and two times differentiable in L1(Pθ),

θ
(0)
n = θ + 1

n
∑
η̃θ(xi ) + oL1(Ũc)

(n−1/2) for a bounded IC η̃θ,

Then

A1 = 2 Covθ(ηθ, η̃θ)−Varθ η2
θ + b2

θ

+ 2b2
θ

d
dt Covθ(ηt , η̃θ)

∣∣
t=θ

+ 2b̃2
θ

d
dt Varθ ηt

∣∣
t=θ

+ d2

dt2 Eθ ηt
∣∣
t=θ

[
bθ Varθ η̃θ + 2b̃θ Covθ(ηθ, η̃θ)

]
+ r2b̃θbθ

[
2 + b̃θ

d2

dt2 Eθ ηt
∣∣
t=θ

]
where bθ = sup |ηθ|, b̃θ = lim sup

ε↓0
sup |η̃θ| I(|ηθ| ≥ bθ − ε)

M-est put η̃θ = ηθ



Specialization: one-dim. symmetric location

Proposition

Let Λθ(− · ) = −Λθ( · )
I η̃θ MSE-optimal IC to radius r (with clipping height b̃θ)

I η
(bθ)
θ = AθΛθ min{1, bθ

|AθΛθ|} for some 0 < bθ < b̃θ.

I Sn, S ′
n be the resp. M- and 1-step-estimator to η̃θ,

with θ(0)
n an ALE with IC η

(bθ)
θ

Then maxMSE(S ′
n) = maxMSE(Sn) + o(n−1/2)

Remark
No general statement to our central question:
If IC is of Hampel-type and first-order MSE-suboptimal, then both
situations maxMSE(S ′

n)
<
> maxMSE(Sn) + o(n−1/2) may occur.



Higher Order Comparison of maxMSE

Uniform expansion of MSE allows the following comparison

Theorem (R. 2005(b))

Let θ 7→ ηθ be k times differentiable in L1(Pθ).
Sn, S ′

n be the resp. M- and k-step estimator to ηθ.

θ
(0)
n to S ′

n be uniformly consistent and integrable as before
Then there exist expansions of order k of maxMSE for Sn, S ′

n and
maxMSE(S ′

n) = maxMSE(Sn) + o(n−(k−1)/2)

I preceding theorem covers n1/3-consistent θ
(0)
n s like

Least-Median-of-Squares-regression estimators
I we apply theorem to k = 3, as explicit expressions for expansions

available only up to order 3
I extension to non-L1-smooth ICs like Hampel-type-ICs for k = 3 by ad-hoc

methods



Optimal Robustness Combined With High Breakdown

I use of high-breakdown estimators slower than n−(1/4+δ)

Proposition (R.05: Acceleration of slow starting estimators)

Let θ̃(0)
n I uniformly nα-consistent on Ũc(r) for some 0 < α ≤ 1/4
I uniformly square-integrable as in the theorem

Then an m = d−1− log2 αe-step-estimator θ̃(m)
n to any L1(Pθ)-smooth IC

with θ(0)
n = θ̃

(0)
n is uniformly integrable and

becomes n1/4+δ-consistent,

=⇒ is admitted as starting estimator in preceding theorem

I high breakdown of θ̃(0)
n is inherited to k-step-estimators

(not true for M-estimators!)

=⇒ optimal uniform efficiency + optimal breakdown point



Simulation Design

I ideal model: P = N (θ, 1) at θ = 0
I M = 10000 runs; sample sizes: n = 5, 10, 30, 50, 100
I contamination radii: r = 0.1, 0.25, 0.5, 1.0
I contaminating distribution: Dirac at point 100
I ICs: Huber-type to c = 0.5, 0.7, 1, 1.5, 2
I estimators:

I M-estimator and
I 1-Step-estimator with sample median as starting estimator



Simulation Results I

Empirical and asymptotic maxMSE at n = 30, c = 0.5

r simulation asymptotics
r/
√

n
M/1step

maxMSEn [low; up] n0 n−1/2 n−1

0.00 1step 1.270 [1.235 ;1.306 ] 1.263 1.263 1.258
0.00 M 1.272 [1.237 ;1.307 ] 1.263 1.263 1.259
0.25 1step 1.553 [1.510 ;1.596 ] 1.369 1.519 1.544
0.05 M 1.545 [1.502 ;1.588 ] 1.369 1.514 1.532
1.00 1step 5.357 [5.214 ;5.500 ] 2.967 4.127 4.772
0.18 M 5.362 [5.219 ;5.505 ] 2.967 4.132 4.652

maxMSEn: average of emp. risks, low/up: emp. 95% confidence interval
asymptotics taken from leading terms of the preceding expansions:
A0 [ + rn−1/2 A1 ( + n−1A2)], respectively



Simulation Results II

Number of iterations In needed for M-Estimator at n = 30 and
c = 0.5, as well as n = 50 and c = 2.0

Iterations
r n = 30 and c = 0.5 n = 50 and c = 2.0

Īn [low; up] Īn [low; up]
0.00 7.00 [ 5; 9 ] 5.56 [ 4; 7 ]

0.10 8.62 [ 5; 12 ] 7.17 [ 4; 10 ]

0.25 9.93 [ 5; 12 ] 8.54 [ 5; 10 ]

0.50 10.56 [ 7; 12 ] 9.36 [ 6; 10 ]

1.00 10.70 [ 8; 13 ] 9.74 [ 8; 11 ]

=⇒ statist. unjustified computation time compared to 1-step
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