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Abstract We provide an asymptotic expansion of the maximal mean squared error
(MSE) of the sample median to be attained on shrinking gross error neighborhoods
about an ideal central distribution. More specifically, this expansion comes in powers
of n−1/2, for n the sample size, and uses a shrinking rate of n−1/2 as well. This refines
corresponding results of first order asymptotics to be found in Rieder (1994).
In contrast to usual higher order asymptotics, we do not approximate distribution
functions (or densities) in the first place, but rather expand the risk directly.
Our results are illustrated by comparing them to the results of a simulation study and
to numerically evaluated exact MSE’s in both ideal and contaminated situation.
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1 Motivation/introduction

1.1 Simulations as starting point

This paper was initiated by a simulation study performed by the present author and
M. Kohl at Bayreuth university in 2003 for a presentation to be given in the frame-
work of an invitation by S. Morgenthaler to EPF Lausanne. The goal was to investi-
gate the finite sample behavior of procedures, which are distinguished as (first order)
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asymptotically optimal in infinitesimal robust statistics as to maximal MSE on
√

n-
shrinking (convex-contamination) neighborhoods. The results of this study for one
dimensional Gaussian location were so promising already for sample sizes n down
to about 20 that it seemed worthwhile to dig a little deeper. At closer inspection of
the results, we realized that the approximation quality of this first order asymptotics
could even be much enhanced down to sample sizes n = 5 and 10 if we ignored
samples where more than half the sample stemmed from a contamination.

Asymptotically, in our shrinking neighborhood setting, such events carry positive,
but exponentially-fast decaying probability for any sample size.

1.2 Description of the main result and discussion

These empirical findings can indeed be substantiated by theory, deriving a uniform
higher order asymptotic expansion for the MSE on correspondingly thinned out neigh-
borhoods for the median, location M-estimators for monotone scores, and one-step-
constructions.

This paper deals with the median case. It is separated from more general location
M-estimators, as the techniques used there are not available for the median due to
a failure of a Cramér condition. Although a very particular estimator it reveals that
smoothness assumptions on the influence function are not essential to our results,
which is of interest more generally.

Moreover, in higher order asymptotics, even for the ideal model, differences ap-
pear between diverse variants of the median used for even sample size, a fact which
to the author’s knowledge has not been spelt out in detail so far.

Denoting by Ũn(r) the neighborhoods thinned out by cutting away samples with
more than 50% contaminations, and by Mn a suitable variant of the median, the main
result of this paper is

sup
G(n)∈Ũn(r)

n [MSE(Mn,G(n))] = 1
4 f 2

0

(
(1 + r2) + r

√
n

a1 +
1
n a2
)
+ o( 1

n) (1.1)

with a1 and a2 certain functions in r, f0, f1 and, for a2, in f2, where r is the contam-
ination radius and fi are the values of the ideal density f and its first and second
derivatives evaluated at the ideal median.

As a byproduct of the main result, we are able to give necessary and sufficient
conditions for a contamination to attain the RHS of (1.1); it is astonishingly small:
all mass of the contaminating measures has essentially to be concentrated either left
of −const

√
log(n)/n or right of const

√
log(n)/n.

In formula (1.1), we already recognize the following features of the result:
The speed of convergence of the MSE to its asymptotic value is uniform on the whole
(modified) neighborhood, and is one order faster in the ideal model; besides, we may
work with the original risk (instead of using a modification as usually).

The expansion in powers of n−1/2, in the ideal model with first correction term at
n−1, comes surprising: Using first order von Mises expansions (compare (1.8) below),
in the context of quantiles (comprising the sample median), it can be shown by means
of Bahadur-Kiefer representations that the approximation error of this expansion is
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an exact OFn (n−1/4)—cf. e.g. Jurečková and Sen (1996). So one would expect that
under uniform integrability, the first correction term in an expansion of type (1.1) in
the ideal model would be of order n−1/4, too. In fact, Duttweiler (1973) showed that
the L2-norm of the remainder is of exact order O(n−1/4) in our scaled up setup. These
results are no contradiction to (1.1), though, as the remainder of course is correlated
with the asymptotic linear terms. We still do not see however how Bahadur-Kiefer
representations translate into (1.1).
In any case, the approximations of type (1.1) prove very reasonable when compared
to both numerical and simulated values of the MSE for finite n.
With the same techniques, we deal with a number of variants of the median for even
sample sizes, and specialize these results for the case of F = N(0, 1). For odd sample
size, we also derive asymptotics of this kind for the variance and bias separately.

Remark 1.1 It took some time to write things up in a readable fashion: The proof of the main theorem
involves tedious, lengthy asymptotic expansions which are hardly presentable in the framework of an
articles—they would slay down any reader by the vast number of terms. Mathematically they are not
difficult though and involve basic Taylor expansions at large. Still without the help of a computer algebra
software like MAPLE for the book-keeping the results would not have been achievable. In the proof section,
we hence describe verbally how we got them referring to a corresponding MAPLE script available on the
web-page to this article. To give you an idea of how tedious terms become, we have included a page of
MAPLE output on page 24 as a horrifying example.

1.3 Setup

We study the accuracy of the sample median as a location estimator on shrinking
neighborhoods: We work in an ideal location model P = {Pθ | θ ∈ R} with location
parameter θ, observations Xi

i.i.d.
∼ Pθ and errors ui given by

Xi = ui + θ, ui
i.i.d.
∼ F (1.2)

Due to translation equivariance in the location model we may limit ourselves to θ = 0.
We assume that

F(0) = 1/2 (1.3)

i.e.; the location parameter θ equals the median of the observation distribution, and
that F around 0 admits a Lebesgue density f with Taylor expansion about 0 as

f (x) = f0 + f1x + 1
2 f2x2 + O(x2+δ0 ), f0 > 0 (1.4)

for some δ0 > 0. Furthermore, Finally, we assume that there is a δ > 0 such that∫
|x|δ f (x) dx < ∞ (1.5)

Remark 1.2 (a) Condition (1.5) is taken from Jurečková and Sen (1982) and is both necessary
and sufficient for finiteness of EF |Mn |

γ for any γ > 0, where Mn is the sample median Medn to odd
sample size n, respectively any variant of the sample median considered in this paper for n even —for a
proof see subsection A.1.

(b) By the Hölder-inequality,
∫
|x|η F(dx) < ∞ for each 0 < η ≤ δ, so we may assume that δ < 1.
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We want to assess both variance and bias simultaneously, so we work with the setup
of shrinking neighborhoods as in Rieder (1994), i.e. as deviations from the ideal
model (1.2), we consider the set Qn = Qn(r) of distributions

G(n) :=
n⊗

i=1
Gn,i, Gn,i = (1 − r/

√
n )F + r/

√
n Hn,i (1.6)

for arbitrary, uncontrollable contaminating distributions Hn,i. As usual, we interpret
G(n) as the distribution of the vector (Xi)i≤n with components

Xi := (1 − Ui)X id
i + UiXdi

i (1.7)

for X id
i , Ui, Xdi

i stochastically independent, X id
i

i.i.d.
∼ F, Ui

i.i.d.
∼ Bin(1, r/

√
n), and (Xdi

i ) ∼
Hn for some arbitrary Hn ∈ M1(Bn). In this setup the median can be understood as
an asymptotically linear estimator with influence curve ψMed, allowing the expansion

Medn = 1
n
∑n

i=1 ψMed(Xi) + oFn (n−1/2), ψMed(x) =
sign(x)

2 f0
(1.8)

— cf. Rieder (1994, Thm. 1.5.1.). Using a clipped version of the quadratic loss func-
tion for the estimator S n = Medn,

MSEM(S n,G) := EG(min(n S 2
n,M)), (1.9)

we may proceed as outlined in Rieder (1994, p. 207), and obtain

lim
M→∞

lim
n→∞

supG(n) n [MSEM(Medn,G(n))] = (4 f 2
0 )−1(1 + r2) (1.10)

In this paper we want to (a) examine the approximation quality of (1.10), spelling out
higher order error terms and (b) discuss the accuracy of this approximation by com-
paring it to both numerical evaluations of the exact MSE’s and simulation results.
In contrast to usual higher order asymptotics, instead of giving approximations to
distribution functions (or densities) by Edgeworth expansions or using saddlepoint
techniques—cf. e.g. Field and Ronchetti (1990)—we proceed by expanding the risk
directly.
As indicated, for (a) we need to modify the neighborhoods, admitting only such sam-
ples where less than half of the sample is contaminated, that is

∑
Ui < n/2 in (1.7).

As a side effect of this modification, we will (c) get rid of the somewhat artificial, as
statistically unmotivated, modification of the loss function by clipping (1.10), which
is common in asymptotic statistics, see, among others, Le Cam (1986), Rieder (1994),
Bickel et al. (1998), van der Vaart (1998).

1.4 Organization of the paper

We start with discussing the mentioned modification in detail in section 2. The cen-
tral theoretical result, Theorem 3.2 is presented in section 3. We then present some
ramifications in section 3.2 covering in particular several variants of the sample me-
dian for even sample size in Theorem 3.4 and Proposition 3.5; also corresponding
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expansions are given for bias and variance separately in Proposition 3.10. Results are
spelt out in the special case of F = N(0, 1) in Corollaries 3.11 and 3.12. These theo-
retic findings are illustrated with numerical and simulated results in section 4. In the
appendix section A, we give proofs to all our assertions.

2 Modification of the shrinking neighborhood setup

The shrinking–neighborhood setup guarantees uniform weak convergence of any
as. linear estimator (ALE) to corresponding normal distributions on a representative
subclass of the neighboring distributions of form (1.6) — those distributions induced
by simple perturbations Qn(ζ, t), see Rieder (1994, p. 126).
By the continuous mapping theorem, uniform weak convergence of these ALE’s on
Qn entails uniform convergence of the risk for continuous, bounded loss functions
like the clipped version of the MSE (1.9). However, even this (uniform) weak con-
vergence does not entail convergence of the risk for an unbounded loss function like
the (unmodified) MSE in general, as we show in the following proposition:

2.1 Convergence failure of the MSE for the median

Proposition 2.1 Let P be the location model from (1.2) with f (0) > 0 and let Medn

be the sample median. Then for each odd n = 2m + 1 and to any C > 0 there is an
x0 ∈ R such that with G(n)

0 = [(1 − r
√

n )F + r
√

n I{x0}]
n

MSE(Medn,G
(n)
0 ) > C (2.1)

although, uniformly in Qn,
√

n
(
Medn −

1
n
∑n

i=1

∫
ψMed dGn,i

)
◦G(n) −→w N(0, (2 f (0))−2) (2.2)

2.2 Modification of the shrinking neighborhood setup

In view of proposition 2.1, a straightforward modification for finite n consists in per-
mitting only such realizations of U1, . . . ,Un, where K =

∑
Ui < n/2. More precisely,

for 0 < ε < 1/2, we consider the neighborhood system Q̃n(r, ε) of conditional distri-
butions

G(n) = L{[(1 − Ui)X id
i + UiXdi

i ]i

∣∣∣∣ lim sup
n

1
n

∑
Ui ≤ ε } (2.3)

If we apply the Hoeffding inequality (Hoeffding (1963, Thm. 2)) to K =
∑n

i=1 Ui for
the switching variables Ui from (1.7), we obtain

P(K > m)≤ exp
(
− 2n(ε − r

√
n )2

)
(2.4)

which shows the announced asymptotic exponential negligibility of this modification.
Thus all results on convergence in law of the shrinking neighborhood setup are not
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affected when passing from Qn(r) to Q̃n(r): Let Bn := {K < n/2}. Then we have for
any δ > 0 and any sequence of events An

P(An | Bn) = P(An ∩ Bn)/P(Bn) = P(An)(1 + O(e−2nε2/(1+δ)))

2.3 Connection to the breakdown point

Our definition of the neighborhood Q̃n(r) combines the shrinking neighborhood con-
cept, which will eventually dominate, with a sample–wise restriction; for some num-
ber ε ∈ (0, 1) depending on the estimator S n, we only allow for samples where strictly
less than ε(S n)n observations are contaminated. This number ε(S n) is actually just
the finite sample (ε-contamination) breakdown point of an estimator S n introduced
by Donoho and Huber (1983).
Thus the concept easily generalizes from the location case to other models: Let
P = {Pθ, θ ∈ Θ} be a parametric model and X id

i be Rk-valued observations distributed
according to the ideal situation Pθ. We are interested in the question whether for some
given estimator S n, we have uniform convergence of the risk

∫
`(S n−θ) dQn for some

loss ` ≥ 0 on some (thinned out) neighborhood or not. To this end we define Q̃n(r, ε)
analogously to (2.3). Assume that there is some ε̄ > 0 such that for each n ∈ N and
k ≤ k̄ := pnε̄q − 1

ε0(S n) := inf
{
ε∗(Xn−k, S n)

∣∣∣ Xn−k = (x1, . . . , xn−k) a possible sample

configuration, k ≤ k̄
}
≥ ε̄ > 0

(2.5)

where ε∗(X, S ) is the finite sample (ε-contamination) breakdown point of S at sample
X. Then, by an analogue argument to that of Proposition 2.1, the following proposi-
tion holds:

Proposition 2.2 Assume that ` is unbounded. Then for any ε ≥ ε0(S n) and r > 0, the
maximal risk of S n on Q̃n(r, ε) is unbounded; in particular, uniform convergence of
the risks does not hold.

The other direction of this connection is more involved and is deferred to a sub-
sequent paper. Under slight additional assumptions, for suitably constructed ALEs to
bounded influence curves and for continuous, polynomially growing loss functions,
uniform convergence of the risk holds on Q̃n(r, ε) for any ε < ε̄. Note that this thin-
ning out for continuous loss functions ` is not needed if ` is bounded.

3 Higher order asmyptotics for the MSE of the sample median

For H ∈ M1(Bn) and an ordered set of indices I = (1 ≤ i1 < . . . < ik ≤ n) denote HI

the marginal of H with respect to I.

Definition 3.1 Consider three sequences cn, dn, and κn inR, in (0,∞), and in {1, . . . , n},
respectively. We say that the sequence (H(n)) ⊂ M1(Bn) is κn–concentrated left [right]
of cn up to o(dn), if for each sequence of ordered sets In of cardinality in ≤ κn

1 − H(n)
In

(
(−∞; cn]in) = o(dn)

[
1 − H(n)

In

(
(cn,∞)in) = o(dn)

]
(3.1)
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3.1 Main theorem

Theorem 3.2 (a) In the location model (1.2) with ideal central distribution F of
finite Fisher information of location, we assume conditions (1.4) to (1.5). Then for
any ε < 1/2, for G(n) varying in Q̃n(r, ε) of (2.3) it holds

sup
G(n)

n [MSE(Medn,G(n))] =
1

4 f 2
0

(
1 + r2 +

r
√

n
a1 +

1
n

a2 + o(1/n)
)

(3.2)

for

a1 = 2(1 + r2) +
r2 + 3

2
| f1|
f 2
0

(3.3)

a2 = (−2 + 3r2 + 3r4) +
3r2(3 + r2)

2
| f1|
f 2
0

−
3 + 6r2 + r4

12
f2
f 3
0

+

+
5(3 + 6r2 + r4)

16
f 2
1

f 4
0

(3.4)

(b) The maximal contamination is achieved by any sequence of contaminating
measures (Hn), such that for k1 > 1 and k2 >

√
5/2, and for κn = pk1r

√
n q, eventu-

ally in n, either

(Hn) is κn–concentrated left of − k2
f0

√
log(n)/n up to o(n−1) (3.5)

or
(Hn) is κn–concentrated right of k2

f0

√
log(n)/n up to o(n−1) (3.6)

More precisely, if f1 < 0 [ f1 > 0], the maximal MSE is achieved up to O(n−2) by
contaminations according to (3.5) [(3.6)], and according to either of the two if f1 = 0.

Remark 3.3 (a) This result of course also covers the ideal model (r = 0), and is also relevant for
the fixed neighborhood approach: If for fixed n, we formally plug in r = s

√
n (for s small in comparison

to
√

n ) this gives a corresponding result for the maximal MSE of the sample median on a neighborhood
of fixed size s. (“formal”, as we cannot control the remainder for arbitrary s < 1.)

(b) If one is only interested in the behavior of n MSE up to order o(n−1/2), one may weaken assumption
(1.4) to: For some δ > 0,

f (x) = f0 + f1 x + O(x1+δ), f0 > 0 (3.7)

(c) Conditions (3.5) and (3.6) imply that it is sufficient to contaminate Fn by measures Hn the one
dimensional marginals of which are either concentrated right of C

√
log(n)/n or left of −C

√
log(n)/n for

some constant C > 0 in order to obtain a maximal MSE — an astonishingly modest contamination! With
respect to (1.8), this is plausible however, as |ψMed | attains its maximal value for any x , 0.
The thinning out of the marginals by means of Defintion 3.1 even tells us that of the n potentially con-
taminating Xdi

i only all subsets of cardinality roughly
√

n need to be “large” at all, the remaining coset (of
cardinality order n(1 + o(1))) of contaminations might even stem from the ideal situation!
As shown in Proposition 3.9, conditions (3.5) resp. (3.6) are almost necessary.

(d) The sample median for odd sample size as well as all variants of the median considered in Propo-
sition 3.4 come up with the same leading term (1 + r2)/(4 f 2

0 ) for n MSE— according to first order asymp-
totics (1.10) (with modified loss there!).

(e) In all variants of the sample median considered in Theorem 3.2 and Proposition 3.4, the second
order correction is positive, so that for any r > 0 we eventually underestimate the MSE by first order
asymptotics.
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3.2 Ramifications

As simulations in section 4.2 were made for even sample size, we present an analogue
to Theorem 3.2 for even sample size below. As there are infinitely many sample
medians for even sample size, we consider the following variants:

– the order statistics X[m:n]
– the order statistics X[(m+1):n]
– the randomized estimator M′n := UX[m:n] + (1 − U)X[(m+1):n] with some random-

ization U ∼ Bin(1, 1/2)
– the midpoint–estimator M̄n := (X[m:n] + X[(m+1):n])/2
– the bias corrected estimator M′′n := (X[m:n] + 1

2n f0
)

Proposition 3.4 Under the assumptions of Theorem 3.2, for even sample size n =

2m, for the sample median variants X[m:n], X[(m+1):n], M′n, M̄n, M′′n , here denoted by
Mn generically, for any ε < 1/2, for G(n) varying in Q̃n(r, ε) of (2.3) it holds

sup
G(n)

n [MSE(Mn,G(n))] =
1

4 f 2
0

{
(1 + r2) + r

√
n

(
a1,0 + a1,1

f1
f 2
0

)
+

+ 1
n

(
a2,0 + a2,1

f1
f 2
0

+ a2,2
f2
f 3
0

+ a2,3
f 2
1

f 4
0

)}
+ o( 1

n ) (3.8)

for some real numbers ai, j = ai, j(Mn) which are given in detail in Proposition 3.5.
In any variant, the maximal contamination is achieved by contaminating measures
Hn according to either condition (3.5) or (3.6) where the distinction between these
two is made as in the case of odd sample size.

Proposition 3.5 [Specification of the terms ai, j] Splitting up a2,0, a2,1, a2,2 according
to

a2,0 = a2,0,r + a2,0,c, a2,1 = a2,1,r + a2,1,c, a2,2 = a2,2,r + a2,2,c (3.9)

we get
(a) Identical terms for all variants:

a2,3 =
5(r4+6r2+3)

16 , a2,2,c = −1/4, a2,2,r = −
(r4+6r2)

12 (3.10)

(b) Varying terms in the ideal model:

a2,0,c(M′′n ) = −2, a2,0,c(M̄n) = −3
a2,0,c(X[m:n]) = a2,0,c(X[(m+1):n]) = a2,0,c(M′n) = −1 (3.11)

(c) Remaining ai, j for M̄n, M′n, and M′′n :

a1,0(M′′n ) = a1,0(M′n) = a1,0(M̄n) = 2(1 + r2),
a1,1(M′′n ) = a1,1(M′n) = a1,1(M̄n) = (r2 + 3) sign( f1)/2, (3.12)

a2,0,r(M′n) = a2,0,r(M̄n) = 3r4 + 3r2 = a2,0,r(M′′n ) − 2r2 sign( f1) (3.13)

a2,1,c(M′n) = a2,1,c(M̄n) = 0, a2,1,c(M′′n ) = 1,
a2,1,r(M′n) = a2,1,r(M̄n) =

3 r2(3+r2) sign( f1)
2 = a2,1,r(M′′n ) − r2 (3.14)
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(d) Remaining ai, j for X[m:n] and X[(m+1):n]:

a2,1,c(X[m:n]) = 3/2 = −a2,1,c(X[m:n]) (3.15)

For X[m:n] and X[(m+1):n], condition (3.5) [(3.6)] applies if 4 f 2
0 > [<] − (3 + r2) f1

Correspondingly, let

s′ =

{
1 for X[m:n]
−1 for X[(m+1):n]

(3.16)

and
s = sign((3 + r2) f1 + s′4 f 2

0 ) (3.17)
Then the remaining ai, j for X[m:n] and X[(m+1):n] are given by

a1,0 = 2 + 2s′s + 2r2, a2,1,r = 3s′s
((

3 + s
)
r2 + r4

)
/2

a2,0,r = 3r4 +
(
3 + 4s

)
r2 (3.18)

In case 4 f 2
0 = s′(3 + r2) f1, both condition (3.5) and (3.6) up to o(n−2) lead to the

same MSE.
Remark 3.6 In case of the sample median for odd sample size,

a1,0 = 2(1 + r2), a1,1 =
(r2+3) sign( f1)

2 a2,0,c = −2,

a2,0,r = 3r2 + 3r4, a2,1,c = 0, a2,1,r =
3r2(3+r2) sign( f1)

2 ,

a2,2,c = − 1
4 , a2,2,r = − 6r2+r4

12 , a2,3 =
5(3+6r2+r4)

16

Remark 3.7 It is a well-known consequence of the Jensen inequality that convexity of both loss and
admitted estimation (or more generally decision) domain entails that randomization cannot improve an
averaged estimator, compare e.g. Witting (1985, (1.2.98), p. 52). This is reflected by the fact that in both
ideal and contaminated situation, M̄n up to o(1/n2) has a smaller MSE than M′n— the only difference
arising in term a2,0,c.

Remark 3.8 In the ideal model, as shown in Cabrera et al. (1994, Theorem 1), one even has the pecu-
liarity that, in our notation

MSE(M̄2m, F) −MSE(M2m+1, F) = −
1

16m3 f 2
0

+ o(m−3) (3.19)

that is, evaluating the sample median at one more observation (from 2m to 2m + 1) deteriorates MSE! As
our expansion already stops at o(m−2), we cannot reproduce (3.19) to the given exactitude by means of our
representations (3.2) and (3.8).
After correcting (minor) typing errors in formulae (2.2), (2.5), and (2.6) in the cited reference, we obtain
(3.2) and (3.8) from (2.2) again; for details refer to the web-page to this article.

Conditions (3.5) / (3.6) almost characterize the risk-maximizing contaminations:

Proposition 3.9 Under the assumptions of Theorem 3.2, let δ0. Assume that, for K =∑n
i=1 Ui and k > (1 − δ)r

√
n,

Pr
( n∑

i=1

Ui I(Xdi
i ≤

√
log(n)/n/(2 f0)) ≥ 1

∣∣∣∣K = k
)
≥ p0 > 0 (3.20)

Then, eventually in n, no such sequence of contaminations G(n)
[
∈ Q̃(r), can attain the

maximal MSE in (3.2) as in condition (3.6) (i.e. with positive bias). More precisely,

sup
G(n)

n [MSE(Mn,G(n))] − n [MSE(Mn,G
(n)
[

)] ≥
p0

2n f0
√

2π
+ o(1/n) (3.21)

A corresponding relation holds for condition (3.5).
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With the same techniques we can also specify which parts of the MSE —up to order
1/n2— are due to variance and which are due to bias; to this end let Mn be the sample
median and the midpoint estimator M̄n for odd resp. even sample size.

Proposition 3.10 In the situation of Theorem 3.2, for contaminating measures Hn as
spelt out in (3.5), (3.6), leading to G(n)

0 in (2.3), it holds

n [Var(Mn,G
(n)
0 )] =

1
4 f 2

0

{
1 + r

√
n

(
2 + | f1 |

)
+

+ 1
n

(
3r2−(5−(−1)n)/2 +

3| f1 |r2

f 2
0
−

f2(r2+1)
4 f 3

0
+

f 2
1 (8r2+7)

8 f 4
0

)}
+ o( 1

n ) (3.22)

√
n

∣∣∣∣Bias(Mn,G
(n)
0 )

∣∣∣∣ =
1

2 f0

{
r + 1

√
n

(
r2 −

| f1 |(r2+1)
4 f 2

0

)
+

+ r
n

(
r2 −

| f1 | (r2+1)
2 f 2

0
+

f2(r2+3)
24 f 3

0
+

f 2
1 (r2+3)

8 f 4
0

)}
+ o( 1

n ) (3.23)

n [Bias2(Mn,G
(n)
0 )] =

1
4 f 2

0

{
r2 + r

√
n

(
2r2 +

| f1 |(r2+1)
2

)
+

+ 1
n

(
3r4 +

3| f1 |r2(r2+1)
2 f 2

0
−

f2r2(r2+3)
12 f 3

0
+

f 2
1 (5r4+14r2+1)

16 f 4
0

)}
+ o( 1

n ) (3.24)

We next specialize Theorem 3.2 and Proposition 3.4 for the case of F = N(0, 1) for
later comparison to numeric and simulated values.

Corollary 3.11 In the location model about F = N(0, 1),

sup
G(n)

n [MSE(Mn,G(n))] =
π

2

{
(1 + r2) + r

√
n a1,0 + 1

n

(
a2,0 + 2π a2,2

)}
+ o( 1

n ) (3.25)

Corollary 3.12 In the location model about F = N(0, 1), in the ideal model

n MSE(Medn, F) =
π

2
[1 + (

π

2
+ a2,0,c)/n] + o( 1

n ), (3.26)

As numerical evaluation of (3.26), we get in the three cases:

n MSE(Medn, F) � o( 1
n ) +


1.5708(1 − 0.4292/n) for Medn,M′′n
1.5708(1 + 0.5708/n) for X[m:n], X[(m+1):n],M′n
1.5708(1 − 1.4292/n) for M̄n

(3.27)

This means: We overestimate MSE(Medn, F) by the first order asymptotics for odd
sample size n and with estimator M′′n , and to an even higher degree, if we use M̄n.
The risk of estimators X[m:n], X[(m+1):n], M′n however is underestimated.

4 Illustration of the results

To illustrate the approximation, we consider the case of F = N(0, 1) with a number
of numerical evaluations and a small simulation study.
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num. error of asymptotics
n exact 1st/2nd order 3rd order

Varid
n absolute relative absolute relative

Mn

5 1.4341 1.366 E − 1 9.527 % 1.790 E − 3 0.125 %
11 1.5088 6.201 E − 2 4.110 % 7.194 E − 4 0.048 %

101 1.5641 6.687 E − 3 0.428 % 1.174 E − 5 0.001 %
X[n/2:n], X[(n/2+1):n], M′n

6 1.7210 −1.502 E − 1 −8.728 % −7.715 E − 4 −0.044 %
10 1.6610 −9.022 E − 2 −5.431 % −5.560 E − 4 −0.033 %

100 1.5798 −8.976 E − 3 −0.568 % −9.445 E − 6 −0.001 %
M′′n

6 1.4776 9.320 E − 2 6.307 % −1.917 E − 2 −1.297 %
10 1.5106 6.019 E − 2 3.984 % −7.233 E − 3 −0.479 %

100 1.5641 6.665 E − 3 0.426 % −7.681 E − 5 −0.005 %
M̄n

6 1.2884 −2.823 E − 1 −21.913 % −9.182 E − 2 −7.126 %
10 1.3832 −1.875 E − 1 −13.557 % −3.697 E − 2 −2.672 %

100 1.5488 −2.200 E − 2 −1.421 % −4.472 E − 4 −0.029 %

Table 1 Accuracy of the asymptotics in the ideal model

4.1 Numerical Results in the ideal model

In the ideal model, we have evaluated the integrals numerically, using formulas for
the densities in the ideal model to be derived later in section A: gn for the sample
median for odd sample size from (A.5) and gn for the midpoint estimator for even
sample size from (A.48). For the numerical calculations, we have used R 2.11.0.
Note that the limit up to five digits in this case is 1.5708. Further sample sizes are
available on the web-page to this article.

4.2 A simulation study

4.2.1 Simulation design

Under R 2.11.0, compare R Development Core Team (2010), we simulated M =

10000 runs of sample size n = 5, 10, 30, 100 in the ideal location model P = N(θ, 1)
at θ = 0. In a contaminated situation, we used observations stemming from

G(n)
s = L{[(1 − Ui)X id

i + UiXcont
i ]i

∣∣∣∣ ∑ Ui ≤ pn/2q − 1 }

for Ui
i.i.d.
∼ Bin(1, r/

√
n), X id

i
i.i.d.
∼ N(0, 1), Xcont

i
i.i.d.
∼ I{100} all stochastically independent

and for contamination radii r = 0.1, 0.5, 1.0. Further results for n = 30, 50 and/or r =

0.25, 0.5 are available on the web-page to this article. With respect to Remark 3.3 (c),
the contamination point 100 will largely suffice to attain the maximal MSE on Q̃n.
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n r sim [low; up] num n0 n−1/2 n−1

n = 5 0.00 1.423 [ 1.384 ;1.464 ] 1.434 1.571 1.571 1.436
0.10 1.652 [ 1.602 ;1.701 ] 1.671 1.587 1.728 1.613
0.50 3.014 [ 2.917 ;3.111 ] 3.045 1.963 2.842 3.258
1.00 4.525 [ 4.394 ;4.655 ] 4.509 3.142 5.952 8.853

n = 10 0.00 1.371 [ 1.333 ;1.410 ] 1.383 1.571 1.571 1.346
0.10 1.534 [ 1.491 ;1.578 ] 1.521 1.587 1.687 1.472
0.50 2.980 [ 2.882 ;3.078 ] 2.916 1.963 2.584 2.636
1.00 5.723 [ 5.568 ;5.879 ] 5.735 3.142 5.129 6.422

n = 30 0.00 1.518 [ 1.476 ;1.560 ] 1.501 1.571 1.571 1.496
0.10 1.614 [ 1.569 ;1.659 ] 1.579 1.587 1.644 1.573
0.50 2.400 [ 2.331 ;2.469 ] 2.390 1.963 2.322 2.339
1.00 5.391 [ 5.245 ;5.538 ] 5.255 3.142 4.289 4.720

n = 100 0.00 1.546 [ 1.503 ;1.589 ] 1.549 1.571 1.571 1.548
0.10 1.585 [ 1.541 ;1.629 ] 1.597 1.587 1.618 1.597
0.50 2.165 [ 2.106 ;2.223 ] 2.171 1.963 2.160 2.165
1.00 4.010 [ 3.911 ;4.108 ] 3.952 3.142 3.770 3.899

Table 2 Asymptotics compared to numerical and simulational evaluations

rel.err order r = 0.00 r = 0.10 r = 0.25 r = 0.50 r = 1.00
1% 1st order asy. 143 320 2449 10016 40127

2nd order asy. 143 133 85 124 479
3rd order asy. 17 17 25 48 124

5% 1st order asy. 29 9 92 406 1629
2nd order asy. 29 25 10 30 101
3rd order asy. 7 9 11 20 46

Table 3 Minimal n0 s.t. for n ≥ n0 the relative error using first to third order asymptotics for approximat-
ing maxMSE(Medn) on Q̃n(r, ε) is smaller than 1% resp. 5%

4.2.2 Results

The simulated results for n MSE(Medn,G
(n)
s ) come with an asymptotic 95%–confidence

interval, which is based on the CLT for the variable

empMSEn = n
10000

∑
j[Medn(sample j)]

2 (4.1)

We compare these results to the corresponding numerical “exact” values and to the
asymptotical values for approximation order n0, n−1/2, n−1 respectively. For even n we
take the midpoint–estimator which is the default procedure in R. For the numerical
evaluations we use density formulas from section A: gn,k,k for odd sample size from
(A.9) and the integrand from (A.50) for even sample size.
For the ideal situation we had simulation results available for all runs to r , 0, so the actual sample size
for r = 0 is 40000.

4.3 Discussion

The numerical results of subsection 4.1 show an excellent approximation quality of
our formulas (3.2) and (3.8) with specifications (3.9) to (3.14) in the ideal model. In
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Fig. 1 The mapping n 7→ rel.error(maxMSE(Medn)) for F = N(0, 1).

particular the different under/over–estimation properties of the different median vari-
ants are closely reflected by the numerical results. The approximation quality of the
midpoint estimator indicated in (3.27) is somewhat less well supported by the numer-
ical results, which is probably due to the fact, that by iterated numerical integration
the accuracy of the numerical approximation will be inferior to the other variants.
In the contaminated situation, empirical and numerical results also strongly support
our assertion of a good approximation quality down to moderate to very small sample
sizes, as long as the contamination radius r is not too large: For n = 5 upto radius
r = 0.1, for n = 10 (almost) upto r = 0.25, for n > 30 upto r = 0.5, all approxima-
tions up to o(n−1)–terms stay within an (empirical) 95%–confidence interval around
the (empirical) MSE (multiplied by n).
In any case, higher order asymptotics yield more accurate approximations than first
order ones, and upto case n = 5, the 1/n–terms improve the approximation with re-
spect to the 1/n1/2–terms.
A closer look is provided by figure 1 (and, zooming in for n ≥ 16, there is an addi-
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tional figure on the web-page). Indeed for all investigated radii r = 0, 0.10, 0.25, 1.00,
the relative error of our asymptotic formula w.r.t. the corresponding numeric figures
is quickly decreasing in absolute value in n; also, we notice a certain oscillation be-
tween odd and even sample sizes induced by the different definitions of the sample
median in these cases. In table 3, we have determined the smallest sample size n0
such that for n ≥ n0 the relative error using first to third order asymptotics for ap-
proximating maxMSE(Medn) on Q̃n(r) is smaller than 1% resp. 5% which shows that
for r ≤ 0.5 we need no more than 20 (50) observations to stay within an error corridor
of 5% (1%) in third order asymptotics. For first order asymptotics, however we need
considerable sample sizes for reasonable approximations unless the radius is rather
small.

A Proofs

A.1 Proof of Remark 1.2(a)

Let n = 2m + 1 and γ ∈ (0, 1). Necessity: With F̄ = 1− F, by integration by parts and Hölder inequality to
exponent m + 1, we obtain that for any T > 0, and some constants K′,K > 0 and α =

γ−1
m+1

EF |Medn |
γ = n

(
2m
m

) ∫
|x|γ F̄(x)mF(x)m F(dx) ≥

≥K max
( ∫ ∞

T
xγ−1F(−x)m+1 dx,

∫ ∞

T
xγ−1F̄(x)m+1 dx

)
≥ K′

( ∫
{|x|>T }
|x|α F(dx)

)m+1

Sufficiency: Under condition (1.5), for gδ(t) = |t|δF(t)F̄(t) and ĝδ := supt gδ(t) it holds —cf. Jurečková
and Sen (1982, (2.37))

ĝδ < ∞, lim
|t|→∞

gδ(t) = 0, Ib :=
∫

[F(t)F̄(t)]b dt < ∞ ∀b ≥ 1/δ (A.1)

Hence for any n > 1 + 2γ/δ, it follows b = m + (1 − γ)/δ > 1/δ and hence

EF |Medn |
γ = nγ

(
2m
m

) ∫ ∞

0
xγ−1[F̄m+1(x)Fm(x) + F̄m(−x)Fm+1(−x)] dx ≤

≤nγ
(
2m
m

)
ĝ(γ−1)/δ
δ

∫ ∞

−∞

[F̄(x)F(x)]b dx ≤ nγ
(
2m
m

)
ĝ(γ−1)/δ
δ Ib < ∞

The arguments for even sample size are similar. ut

A.2 Proof of Proposition 2.1

The assertion for uniform normality follows along the lines of Rieder (1994, Theorem 6.2.8): Although the
assumed uniform Lipschitz continuity of the scores ψ—(68), p. 231 in the cited reference—fails, a look
into the proof of the theorem shows that this condition only is needed to achieve conclusion dL(θ) = Ik on
p. 235, which in our situation is the case anyway.
Assertion (2.1) is shown by a breakdown-point argument: We interpret G(n) according to (1.7), where for
this proof Xdi

i
i.i.d.
∼ I{x0}. We observe that Medn ≥ x0 surely under G(n) as soon as K =

∑
Ui, the number of

observations stemming from I{x0}, is larger than m. But, K being a binomial variable, the event {K > m}
carries positive probability pn. So setting x0 :=

√
C/pn , we get

MSE(Medn,G
(n)
0 ) = EG(n)

0
(Med2

n) ≥ EG(n)
0

(Med2
n I{K>m}) ≥ x2

0 pn = C ut
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A.3 Outline of the proof of Theorem 3.2

As in the theorem we define n = 2m + 1 and first consider the situation knowing that exactly K =
∑

Ui = k
observations have been contaminated, to values say x̃1, . . . , x̃k . More specifically, it will be sufficient to
consider—for each fixed t—the number

j = jk(t) := #{x̃i : x̃i ≥ t} (A.2)

In this situation we will derive the (conditional) probability that the (unique) median Medn is not larger
than t and derive its density. We then fix some k1 > 1 and k2 >

√
5/2 and split up the proof according to

the following tableau

K ≤ k1r
√

n k1r
√

n < K ≤ ρ n K > ρ n

|t| < k2
√

log(n)/n/ f0 (I)
k2

√
log(n)/n/ f0 ≤ |t| ≤ n2 (II)

(III)
excluded

|t| ≥ n2 (IV)

For cases (II) to (IV), we will show that they contribute only terms of order o(n−1) to n MSE(Medn)
and hence can be neglected. Applying Taylor expansions at large, we derive an expression in which it
becomes clear, that independently from t and eventually in n, the maximal MSE is attained for jk(t) either
identically k or identically 0 for all t in (I)—or equivalently all x̃i are either smaller than − k2

f0

√
log(n)/n or

larger than k2
f0

√
log(n)/n. Integrating out first t and then k we obtain the result.

A.4 L(Medn) in ideal and contaminated situation

A.4.1 Ideal Situation

Lemma A.1 Let Xi
i.i.d.
∼ P real-valued random variables. Then

P(X[k:n] ≤ t) =
∑
l=k

(
n
l

)
P(t)l(1 − P(t))n−l (A.3)

If dP = p dλ, then X[k:n] has density

g(t) = np(t)
(
n − 1
k − 1

)
P(t)k−1(1 − P(t))n−k (A.4)

In particular the density of the sample median for odd sample size n = 2m+1 in the situation of Theorem 3.2
is

gn(t) = n f (t)
(
2m
m

)
F(t)m(1 − F(t))m (A.5)

Proof The proof is standard, but as we will need some terms later, we pass through the main steps here:
For fixed t ∈ R we introduce Yi := I{Xi≤t}. Then the following events are identical

{X[k:n] ≤ t} = {#i : {Xi ≤ t} ≥ k} = {

n∑
i=1

Yi ≥ k} (A.6)

The fact that Yi
i.i.d.
∼ Bin(1, P(t)) entails (A.3). (A.4) follows by simple differentiating, (A.5) by plugging in

k = m + 1. ut
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A.4.2 Contaminated situation

By (2.3), Xi = (1 − Ui)Xid
i + UiXdi

i , and thus fixing again t ∈ R, also

Yi = (1 − Ui)Y id
i + UiYdi

i (A.7)

with correspondingly defined variables. As we sum up the Yi in (A.6), only S n =
∑

Yi will matter. As
indicated in the outline, we split up the event {S n > m} by realizations of K, and in the section {K = k} we
may suggestively write S n = S id

n−k + S di
k , giving

{Medn ≤ t} =
⋃̇m

k=1{S
id
n−k + S di

k > m} ∩ {K = k}

Splitting up again this event by the realizations of S di
k , we get

{Medn ≤ t} =
⋃̇m

k=0
⋃̇k

j=0{S
id
n−k > m − j} ∩ {S di

k = j} ∩ {K = k} (A.8)

Thus, for the moment, we may consider the situation that exactly k observations, 0 ≤ k ≤ m, are contam-
inated, and exactly j = jk(t) of the contaminated observations are larger than t and denote that event with
D j,k,t . As {Xid

[m− j:n−k] ≤ t} is independent from D j,k,t , with F̄ = 1 − F, the the conditional density of Medn

knowing D j,k,t is

gn, j,k(t) := (n − k)
(
2m − k
m − j

)
F(t)m− jF̄(t)m+ j−k f (t) (A.9)

Thus abbreviating again jk(t) by j, we get the following representation

n MSE(Medn,G(n)) = n
m∑

k=0

k∑
j=0

∫
t2gn, j,k(t) dt P(S di

k = j) P(K = k) (A.10)

A.5 Auxiliary results

Before starting with the results we need some preparations

A.5.1 Stirling approximations

We start with writing down some approximations for the factorials and the binomial coefficients derived
from the Stirling formula to be found e.g. in Abramowitz and Stegun (1984, 6.1.37):(

2n − k
n − j

)
= ( 2n−k

max(n− j,1) )n− j( 2n−k
n+ j−k )n+ j−k

√
2n−k

(n+ j−k)(n− j)2π (1 + ρn, j,k), for − 1
2 −

1
48n ≤ ρn, j,k ≤

1
12n ,(A.11)

= ( 2n−k
n− j )n− j( 2n−k

n+ j−k )n+ j−k
√

2n−k
(n+ j−k)(n− j)2π (1 − 1

8n + o( 1
n )), for j, k = O(

√
n ), (A.12)

The next lemma will be needed to settle case (III):

Lemma A.2 Let
κ := k1 log k1 + 1 − k1 (A.13)

Then it holds that
Pr(Bin(n, r/

√
n ) > k1r

√
n) ≤ exp

(
− κ r

√
n + o(

√
n )

)
(A.14)

Proof We first note that κ > 0, as log(x) > 0 for x > 1 and κ =
∫ k1

1 log(x) dx. By Hoeffding’s inequality
(Hoeffding, 1963, Thm. 1, inequality (2.1)), we have for ξi, i = 1, . . . , n i.i.d. real–valued random variables,
|ξi | ≤ M, µ = E[ξ1] and 0 < ε < 1 − µ

P
( 1

n
∑

i ξi − µ ≥ ε
)
≤

{ (
µ
µ+ε

)µ+ε ( 1−µ
1−µ−ε

)1−µ−ε }n
(A.15)



17

Applying (A.15) to the case of n independent Bin(1, r/
√

n ) variables, we obtain for Bn ∼ Bin(n, r/
√

n )
and 0 < ε = (k1 − 1)r/

√
n < 1 − r/

√
n :

Pr(Bn > k1r
√

n ) ≤ exp
(
− k1r

√
n log(k1) + (n − k1r

√
n )

(
log(1 −

r
√

n
) − log(1 − k1

r
√

n
)
))

For x ∈ (0, 1), − x
1−x ≤ log(1− x) ≤ −x. Thus the difference of the logarithms is smaller than (k1r)/

(√
n (1−

k1r/
√

n )
)
− r/
√

n and

Pr(Bn > k1r
√

n ) ≤ exp
(
− κ r

√
n + o(

√
n )

)
ut

Corollary A.3 Let X ∼ Bin(n, r/
√

n). Then for each i ∈ N0

E[Xi I{X≥k1r
√

n}] = o(n−1) (A.16)

Proof E[Xi I{X≥k1r
√

n}] ≤ ni Pr(X > k1r
√

n)
(A.14)
≤ const ni exp(−κ r

√
n) ut

Lemma A.4 We have that for j, k = O(
√

n)

|
m− j

2m−k − F(t)| ≤ k2

√
log(n)

n (1 + o(n0)) ⇐⇒ |t| ≤ k2
f0

√
log(n)

n (1 + o(n0)) (A.17)

Proof Using the fact that j, k = O(
√

n ), we note that

m− j
2m−k = 1/2 +

k−2 j
4m +

k(k−2 j)
8m2 + o(n−1) (A.18)

By (1.4), (1.3), F(t) = 1/2 + f0t + o(t); thus | m− j
2m−k − F(t)| = |O( 1√

n
) − f0t|. ut

Lemma A.5 Let X ∼ Bin(n, p). Then, for p = r/
√

n,

E[X] = rn1/2, E[X2] = r2n + rn1/2 − r2, (A.19)

E[X3] = r3n3/2 + 3r2n + (r − 3r3)n1/2 − 3r2 + 2r3n−1/2, (A.20)

E[X4] = r4n2 + 6r3n3/2 + (7r2 − 6r4)n + (r − 18r3)n1/2 + +11r4 − 7r2 + 12r3n−1/2 − 6r4n−1 (A.21)

Proof Cf. the MAPLE-procedure Binmoment on the web-page. ut

Finally, we note the following Lemma for N(0, 1) variables

Lemma A.6 Let X ∼ N(0, 1). Then for k ∈ N and any c >
√

2,

E[|X|k I
{|X|≥c

√
log(n)}] = o(n−1) (A.22)

Proof Let Φ(x) := Pr(X ≤ x), Φ̄ := 1 −Φ, ϕ(x) the density of X. Then

E[Xk I
{X≥c
√

log(n)}] =


Pk(x)ϕ(x)

∣∣∣∣∞
c
√

log(n)
for k odd

Pk(x)ϕ(x) +
∏k/2

i=1(2i − 1)Φ(x)
∣∣∣∣∞
c
√

log(n)
k even

for some polynomial Pk of degree k−1. The assertion follows, as ϕ(c
√

log(n)) = ϕ(0)n−c2/2 = ϕ(0)n−(1+δ)

for some δ > 0, and because for the Φ(x)-term, Φ̄(x) ≤ ϕ(x)/x for x > 0. ut
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A.6 Proof for odd sample size

We recall the density gn, j,k from (A.9):

gn, j,k(t) := (n − k)
(
2m − k
m − j

)
F(t)m− jF̄(t)m+ j−k f (t)

So the integrand of interest is n t2 gn, j,k(t). Applying the Stirling approximation (A.12) to the constants, we
get (

2m − k
m − j

)
=

( 2m − k
m − j

)m− j( 2m − k
m − k + j

)m−k+ j
γn, j,k (A.23)

with
γn, j,k :=

√
2m−k

(m+ j−k)(m− j)2π (1 + ρm, j,k) (A.24)

for ρm, j,k from (A.12). As F(t)m− jF̄(t)m+ j−k suggests an asymptotic decay, we will expand gn, j,k at the
mode of F(t)m− jF̄(t)m+ j−k . Differentiating, we easily get that

F(t)m− jF̄(t)m+ j−k ≤
( m − j

2m − k

)m− j(m + j − k
2m − k

)m+ j−k
(A.25)

with equality iff t = xn, j,k for
xn, j,k := F−1( m− j

2m−k ) (A.26)

Introducing
∆Fn, j,k := F(t) − m− j

2m−k = F(t) − F(xn, j,k), (A.27)

we see that
gn, j,k(t) = (n − k)γn, j,k f (t)[1 + 2m−k

m− j ∆Fn, j,k]m− j[1 − 2m−k
m+ j−k ∆Fn, j,k]m+ j−k (A.28)

Case (III): For k ∈ [k1r
√

n, εn], 0 ≤ j ≤ k, we partition the terms according to (A.28) and see that on
|t| ≤ n2, the integrand n t2 gn, j,k(t) multiplied by n−4 is o(n0) for each fixed t and is dominated by f (t)
and hence by dominated convergence tends to 0 as n → ∞. But Lemma A.2 yields that Pr(K ≥ k1r

√
n)

decays exponentially in n, hence is even o(n−4), so as noted, (III) is indeed negligible asymptotically to
order o(n−1).

Case (II): Here k ≤ k1r
√

n and |t| > k2
f0

√
log(n)/n, or equivalently by Lemma A.4:

|∆Fn, j,k | > k2
√

log(n)/n (A.29)

Now for x > 0, log(1 + x) ≤ x and for 0 < x < 1, log(1− x) ≤ −x− x2/2. Hence, we obtain eventually in n

gn, j,k(t)/ f (t) ≤ (n− k)γn, j,k exp(− (2m−k)2

2m ∆F2
n, j,k)

(A.12)
(A.29)
≤ (n− k)

√
1

(m−k/2) (1 + 1
12m ) exp[− k2

2 log(m)] (A.30)

Plugging in that m − k/2 ≥ m − k1r
√

m/2 in (II), we get

gn, j,k(t)/ f (t) ≤ const m
1
2 −k2

2
(
1 + o(n0)

)
= o(n−2) (A.31)

where the last equality is a consequence of k2 >
√

5/2. So negligibility follows by dominated convergence.

Case (IV): We only treat the case t > n2; a corresponding relation holds for t < −n2. Under (2.3), for n
large enough, we obtain bound gn, j,k ≤ n2n f (t)F̄(t)[(1−2ε)n−1]/2. Let η = 1/2 − ε, b = 2/δ and δ′ ∈ (0, 1).
By choosing n large enough, we may achieve that F̄(n2) =: λn < 2−1/η and F(n2)2b > 1 − δ′. So by (A.1),
we get eventually in n and for some constant c and any η′ > 0, and gδ from the proof of Remark 1.2(a)

n
∫ ∞

n2
t2gn, j,k(t) dt ≤

n2

1 − δ′
2n

∫ ∞

n2
[tδF(t)F̄(t)]b[F(t)F̄(t)]b dtληn−1/2−2b

n ≤

≤
ĝb
δ Ibn2

(1 − δ′)λ1/2+2b
n

(2ληn)n = c exp(−| log λn |n
[
η −

log 2
| log λn |

− 1+4b
2n −

2 log n
n log λn

]
) ≤ exp(−η′n)
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Case (I): Here we restrict ourselves to the case that

k ≤ k1
√

nr, |
m− j

2m−k − F(t)| ≤ k2
√

log(n)/n (A.32)

Doing so, we set u := t − xn, j,k . As on (I), k = O(
√

n) as well as j, we make this magnitude explicit to
MAPLE in the function transf by introducing the bounded variables

k̃ := k/
√

m and ̃ := (k/2 − j)/
√

m (A.33)

This gives the expansion in powers of m−1/2

(m − j)/(2m − k) = 1/2 + ̃/(4
√

m) + k̃ ̃/(8m) + o(n−1) (A.34)

Thus, to get an approximation to xn, j,k = F−1( m− j
2m−k ), we expand this in a Taylor series in powers of m−1/2

(compare our MAPLE-procedure asquantile) which gives

xn, j,k =
̃

2 f0
√

m
+

2 f 2
0 ̃k̃− f1 ̃2

8 f 3
0 m

+
6 f 4

0 ̃k̃
2−6 f 2

0 f1 ̃2 k̃− f0 f2 ̃3+3 f 2
1 ̃

3

48 f 5
0 m3/2 + o(n−3/2) (A.35)

Furthermore,

f (xn, j,k) = f0 −
f1 ̃
/

(2 f0m1/2) +
(
− f 2

1 ̃
2 + 2 f1 f 2

0 ̃k̃ + f2 f0 ̃2
)
/(8 f 3

0 m) + o(1/n)

which implies that in (I), by (A.32), u lies in a shrinking compact, as

u = F−1(F(t)) − F−1(F(xn, j,k)) = f (xn, j,k)−1(F(t) − m− j
2m−k ) + o(

√
log(n)/n) = O(

√
log(n)/n).

Setting ∆Fn, j,k := F(t) − F(xn, j,k), and expanding this in a Taylor series around 0, we get

∆Fn, j,k = f0u + f1(u2/2 + uxn, j,k) + f2(u3/6 + (u2 xn, j,k + ux2
n, j,k)/2) + o(n−3/2)

and
f (t) = f0 + f1(u + xn, j,k) + f2((u + xn, j,k))2/2 + o(n−1)

We turn to the constant factors now; up to now, the terms arising by applications of the Stirling formulas
of subsection A.5.1 come with k–terms in the nominators. As we want to integrate over K later, however,
it is preferable to move these terms into the denominators by Taylor approximations —here performed by
the functions asympt and collect in MAPLE (compare our function asbinom):

n(n − k)
√

2πγn, j,k = 2
5
2 m3/2[1 − k̃

4m1/2 +
16 ̃2−k̃2+28

32m ] + o(n
1
2 ) (A.36)

(2m−k)2

2(m− j) +
(2m−k)2

2(m+ j−k) = 4m(1 − ̃+k̃
m1/2 +

̃2+ ̃k̃+ k̃2
2

m ) + o(n) (A.37)

(2m−k)3

3(m− j)2 −
(2m−k)3

3(m+ j−k)2 =
16k̃
√

m
3 − (8k̃2 + 16 ̃k̃) +

20k̃3+72 ̃k̃2+96 ̃2 k̃
3m1/2 + o(n−

1
2 ) (A.38)

Next we expand [1 + 2m−k
m− j ∆Fn, j,k]m− j[1 − 2m−k

m+ j−k ∆Fn, j,k]m+ j−k: We plug in (A.35), set

σ2
n := 8m f 2

0 , y := uσn (A.39)

and apply the Taylor expansion exp(x) = 1 + x + x2/2 + o(x2). This gives

[1 + 2m−k
m− j ∆Fn, j,k]m− j[1 − 2m−k

m+ j−k ∆Fn, j,k]m+ j−k = exp(−y2/2) h(y, ̃, k̃, n) + o(n−1)

with

h(y, ̃, k̃, n) = 1 +
( (

k̃
4 −

f1 ̃ y2

2 f02

)
y2 −

f1
8 f02

√
2y3

)
m−1/2 + P(y, k̃, ̃)m−1 (A.40)
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where P is some polynomial depending on f0, f1, f2 with deg(P)(y) = 6 the exact expression of which
may be drawn from the MAPLE-script. Accordingly, we define x̃n, j,k := xn, j,kσn, and, with ϕ the density of
N(0, 1), use the abbreviations

ϕ̃(t) = ϕ ◦ y ◦ u(t), h̃(t, ̃, k̃, n) = h(y ◦ u(t), ̃, k̃, n) (A.41)

We also introduce the integration domains

An, j,k =
{
t ∈ R

∣∣∣∣ | m− j
2m−k − F(t)| ≤ k2

√
log(n)

n

}
, Ãn, j,k =

{
|t| ≤ k2

√
log(n)

n (1 + o(n0))/ f0
}

(A.42)

Finally, applying (A.12) and (A.36), we derive an integration constant cn, j,k from γn, j,k from (A.24):

cn, j,k := 2−
5
2 m−

3
2 γn, j,k = 1 − k̃/(4m1/2) + (16 ̃2 − 16 ̃k̃ + 3k̃2 + 12)/(32m) (A.43)

Plugging this all together, we obtain∫
An, j,k

n t2gn, j,k(t) dt = (cn, j,k + o( 1
n ))

∫
Ãn, j,k

2
5
2 m3/2 t2 f (t) ϕ̃(t) h̃(t, ̃, k̃, n) dt

Substituting t(y) =
y+x̃n, j,k
σn

, we get∫
An, j,k

n t2gn, j,k(t) dt =

∫
cn, j,k

(
1 +

f1
f0

t(y) +
f2
f0

t(y)2 + o(n−1)
)
ϕ(y) h(y, ̃, k̃, n)

(y+x̃n, j,k)2

4 f 2
0

IÃn, j,k

(
t(y)

)
dy

As x̃n, j,k = O(n0),{
|y + x̃n, j,k | ≤ 2k2

√
log(n)(1 + o(n0))

}
=

{
|y| ≤ 2k2

√
log(n)(1 + o(n0))

}
=: A0

n

For the aggregation of the factors we use MAPLE, giving∫
An, j,k

n t2gn, j,k(t) dt =

∫
A0

n

[
( y +

√
2 ̃ )2

4 f02 + P1;n, ̃,k̃(y)m−1/2 + P2;n, ̃,k̃(y)m−1 + o(n−1)
]
ϕ(y) dy (A.44)

for polynomials in y, P1;n, ̃,k̃ and P2;n, ̃,k̃ obtained by our MAPLE-procedure getasintegrand, where
P1;n, ̃,k̃ is defined as

y2 k̃(y2−1)
16 f 2

0
+

√
2 y3 f1(2−y2)

32 f 4
0

+

( √
2y k̃(y2+1)

8 f 2
0

+
y2 f1(3−2y2)

8 f 4
0

)
̃ +

(
(3+y2)k̃

8 f 2
0

+
(4−5 y2)

√
2 f1 y

16 f 4
0

)
̃2 −

f1y2

4 f 4
0
̃3 −

f1
√

2 y
4 f 4

0
̃4

and P2;n, ̃,k̃ as

P2;n, ̃,k̃(y) =
k̃2(y6−2y4−y2)+y2(7−4y4)

128 f 2
0

+
f1 k̃
√

2y3(−2+5y2−y4)
128 f 4

0
+

f2y4(3−y2)
192 f 5

0
+

f 2
1 y6(y2−5)

256 f 6
0

+

+
( √2

(
k̃2y(9+6y2+3y4)+28y(3−y4)

)
192 f 2

0
+

k̃ f1 y2 (−2y4+5y2+3)
32 f 4

0
+

√
2 y3 f2(12−5y2)

192 f 5
0

+

√
2 y5 f 2

1 (3y2−13)

128 f 6
0

)
̃ +

+
( k̃2(45+18y2+3y4)−100y4−24y2+84

192 f 2
0

+
f1 k̃
√

2y(12−y2−5y4)
64 f 4

0
+

y2 f2(9−5y2)
48 f 5

0
+

f12y2(13y4−41y2−12)
128 f 6

0

)
̃2 +

+
( √2y(3−5y2)

12 f 2
0

−
k̃ f1y2 (y2+3)

16 f 4
0

+
f2
√

2y(10−9y2)
96 f 5

0
+

f 2
1

√
2y(3y4−5y2−4)

32 f 6
0

)
̃3 +

( 1−y2

4 f02 +
f2(1−3y2)

48 f05 +
f12 (2y4−1)

32 f06

)
̃4

By the restriction in A0
n, we obtain that |y| = O(

√
log(n)), while deg(P1;·; y) = 5 and deg(P2;·; y) = 8.

Hence, the integrand is apparently of form (y +
√

2 ̃)2/(4 f02) + O(
√

log(n)5/n ), and thus, eventually in n,
is maximized—up to O(

√
log(n)5/n )—for | ̃| maximal, i.e. | ̃| = k̃/2. Even more so, if f1 = 0, the m−1/2–

term, too, is maximized for | ̃| = k̃/2. As the highest power in P2;· occurring to y in a ̃–term without f1 is
4, the integrand is maximized up to O((log(n)4/n)) for | ̃| = k̃/2.
Condition | ̃| = k̃/2 is equivalent to jk(t) ≡ k or jk(t) ≡ 0. But this is the case—up to o(n−1)—if condition
(3.5) or (3.6) is in force, as then up to mass of order o(n−1) the contamination is either concentrated left
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of − k2
f0

√
log(n)/n or right of k2

f0

√
log(n)/n for any sample with no more than k1r

√
n contaminations. With

respect to (A.31), this suffices to obtain that (II) is o(n−1).
Later, after having integrated out y, we will see that if f1 = 0, the approximation up to order n−1 is identical
for jk(t) ≡ k and jk(t) ≡ 0, whereas if f1 > 0 it pays off for nature to contaminate by positive values and,
correspondingly, by negative values if f1 < 0. We consider jk(t) ≡ k here.
Up to o(n−1),

∫
An,k,k

n t2gn,k,k(t) dt is∫
A0

n

[
1

4 f 2
0

(y2 + k̃2/2) + Q1;n,k̃(y)m−1/2 + Q2;n,k̃(y)m−1 + g̃(n, k, y)
]
ϕ(y) dy (A.45)

with some skew-symmetric polynomial g̃ in y of degree 5 that is uniformly bounded in n on A0
n, and

for some even-symmetric polynomials Q1;n,k(y) and Q2;n,k(y); we only present the definition of Q1;n,k(y)
below; for Q2;n,k(y), we refer the reader to the corresponding MAPLE-procedure getasrisk.

Q1;n,k̃(y) = 3k̃3

32 f 2
0

+

(
f1(k̃3−3k̃)

32 f 4
0

+ k̃3−2k̃
32 f 2

0

)
y2 +

(
k̃

16 f 2
0

+
f1 k̃
8 f 4

0

)
y4

Using Lemma A.6 we see that we may drop the restriction |y| ≤ 2k2
√

log(n) and integrating y out, up to
o(n−1), we get that

∫
An,k,k

n t2gn,k,k(t) dt is

1+k̃2/2
4 f 2

0
+

[
( 1

8 f 2
0
−

3 f1
16 f 4

0
) k̃ + ( 1

8 f 2
0

+
f1

32 f 4
0

) k̃3
]
m−1/2 +

[
( −1

4 f 2
0
−

f2
32 f 5

0
+

15 f 2
1

128 f 6
0

) +

+( −3
16 f 2

0
+

3 f1
16 f 4

0
−

f2
32 f 5

0
+

15 f 2
1

128 f 6
0

) k̃2 + ( 3
32 f 2

0
−

f2
384 f 5

0
+

3 f1
64 f 4

0
−

5 f 2
1

512 f 6
0

) k̃4
]
m−1

Corollary A.3 gives that we may ignore the fact that k is restricted to k ≤ k1r
√

n and so with Lemma A.5,
we may simply integrate out k. After substituting n = 2m + 1 we thus indeed get

sup
G(n)

n [MSE(Medn,G(n))] =
1

4 f 2
0

{
(1 + r2) + r√

n

(
2(1+r2) +

f1(r2+3)
2 f 2

0

)
+

+ 1
n

((
3r4+3r2−2

)
+

3r2 f1(3+r2)
2 f 2

0
−

f2(r4+6r2+3)
12 f 3

0
+

5 f 2
1 (r4+6r2+3)

16 f 4
0

)}
+ o(n−1)

Considering both cases jk(t) ≡ k and jk(t) ≡ 0 simultaneously, we get (3.2) with (3.3) and (3.4). ut

A.7 Proof of Proposition 3.4—pure quantiles and randomization

The proof for the pure quantiles is just as in the odd case and thus skipped. We only draw the attention
to the different behaviour of the 1/

√
n-correction term for positive and negative contamination which

explains (3.17) in this case. For the bias corrected version M′′n , with the same techniques as in the proof of
Theorem 3.2, we calculate the bias of

√
n X[(m+1):n] under F. This gives

√
n
∣∣∣∣Bias(X[m+1:n], Fn)

∣∣∣∣ = Bn,1 +

Bn,2 for

Bn = Bn,1 + Bn,2, Bn,1 =
1

2 f0
√

n
, |Bn,2 | =

| f1 |
8 f 3

0
√

n
(A.46)

The same terms but with different signs are obtained for
√

n
∣∣∣Bias(X[m:n], Fn)

∣∣∣. We only consider Bn,1 here,
which arises no matter if we have symmetry or not and gives the bias corrected version M′′n with the ai, j
terms as in Proposition 3.5.

Remark A.7 We note that in all variants of the sample median up to now a minor deterministic improve-
ment is possible if f1 , 0, when we consider the bias-corrected estimators

M[
n := Mn −

1
√

n
Bn,2 = Mn +

f1
8 f 3

0 n
(A.47)

Except for the pure quantiles for even n, this renders all variants bias–free up to o(n−1) in the ideal model.
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A.8 Proof of Proposition 3.4—the midpoint-estimator

For the midpoint–estimator M̄n, we need the common law of the pure quantile estimators X[m:n] and
X[(m+1):n]. So more generally, we start with the common law of (Y,Z) := (X[ν1:n], X[ν2:n]) for 1 ≤ ν1 <

ν2 ≤ n, Xi
i.i.d.
∼ F, i = 1, . . . , n and F(dx) = f (x) dx, see David (1970, pp. 9–10), and in our case (n=̂2m,

ν1=̂m, ν2=̂m + 1) leads us to the density of the midpoint estimator M̄2m = (Y + Z)/2

gn(t) = (2m)2
(
2m − 1

m

) ∫ ∞

t

[
F(2t − u)

(
1 − F(u)

)](m−1) f (u) f (2t − u) du (A.48)

This gives for (2m) MSE(M̄2m, F), after substituting s = 2t − u, and using Fubini

(2m) MSE(M̄2m, F) =

2m2
(
2m − 1

m

) ∫ ∫ u

−∞

(u + s)2

4
[
F(s)

(
1 − F(u)

)](m−1) f (u) f (s) ds du (A.49)

We skip the argument showing how to choose a risk maximizing contamination. In the MAPLE script,
however, we have detailed out a corresponding argument for j(t) the number of contaminated observations
larger than t. Without loss of generality, we work with the case of contamination to the right. Analogue
arguments as in the preceding cases show that given we have k observations contaminated to∞, we get as
expression for the (conditional) MSE|K=k:

(2m) MSE|K=k = (2m)(2m − k)
(

2m−1−k

m−k

) ∫
F(u)(m−k)(1 − F(u)

)(m−1) f (u) ×

×

∫ u

−∞

(m−k)(u+s)2

4F(u)
(
1 − F(u)−F(s)

F(u)
)(m−1−k) f (s) ds du (A.50)

which we have written in a way to be able parallel the preceding subsections. Denote the value of the inner
integral by Hk(u) and

∆(s, u) := (F(u) − F(s))/F(u) (A.51)

In the inner integral, 0 ≤ ∆(s, u) ≤ 1, and for ∆(s, u) > α > 0, Hk(u) will decay exponentially while being
dominated, so if we introduce

δ(u) := sup
{
s < u

∣∣∣ F(s) ≤ (1 − α) F(u)
}

(A.52)

in fact we may restrict the inner integral to

Hk(u) = o(m−1) +
m − k
4F(U)

∫ u

δ(u)
(u + s)2 (

1 − ∆(s, u)
)(m−1−k) f (s) ds (A.53)

But then expanding log(1 − ∆(s, u)), and in order to get the right order for the expansion substituting
u = ũ/

√
m, s = s̃/

√
m—according to case (I), i.e.; |u| ≤ const

√
log(m)/m. Thus, for polynomials Q̄i in

s̃, ũ defined in analogy to the Qi in the to odd-sample case and with may be looked up in the MAPLE script,

∆(s, u) = 2 f0 (s̃−ũ)
√

m
+

Q̄0(s̃,ũ)
m +

Q̄1(s̃,ũ)
m3/2 +

Q̄2(s̃,ũ)
m2 + O(

( log(n)
n

)5/2)

Hence we get

(m − k − 1) log(1 − ∆(s, u)) −
√

m(2 f0 (s̃−ũ)) = logH21(s, u) + o(
√

log(n)/n ) (A.54)

for some function logH21, the exact expression of which may be produced in the corresponding MAPLE
script. Thus, denoting the term exp(2

√
m f0 (s̃ − ũ)) by H ;1(s, u), we get

(1 − ∆(s, u))(m−k−1) = H ;1(s, u) exp(logH21) × (1 + o(
√

log(n)/n)),

Now, if we write H ;2,2(s, u) for (s + u)2 f (s), and Hk;2,2(s, u) for exp(logH21), and if we introduce
Hk;2(s, u) := H ;2,1(s, u)Hk;2,2(s, u), we get

4F(u) Hk(u) = o(n−2) +

∫ u

δ(u)
H ;1(s, u) Hk;2(s, u) ds
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The next step is to integrate out s where we may drop the lower restriction again due to the exponential
decay far out for large values of s. After three times of integration by parts we come up with

4F(u) Hk(u) = o(n−2) +

2∑
i=0

(−1)i

(2
√

m f0)(i+1)
H ;1(s, u)

∂i

∂si Hk;2(s, u)
∣∣∣∣u
−∞

(A.55)

that is we may restrict ourselves to these terms for our purposes. These differentiations can be done by the
MAPLE command diff. Noting that essentially t = O(

√
log(n)/n), we hence get for the inner integral H

Hk(t) = t2 + 1
n [( f1

2 f0
− 1)t2 − 1

2 f0
t] − 1√

n3
k

2 f0
t + 1

n2
1

8 f 2
0

+ o(n−2)

So in formula (A.10) (with j ≡ k) we replace t2 by Hk(t) and arrive at

sup
G(n)

n MSE(M̄n,G(n)) = n
m∑

k=0

∫
Hk(t) gn,k,k(t) dt P(K = k) + o(n−1) (A.56)

Proceeding now just as in the preceding subsections, we obtain the assertion.

A.9 Proof of Proposition 3.9

For t >
√

log(n)/n/(2 f0), let

Ak,t :=
{∑

i

Ui
(
2 I(Xi ≤ t ) − 1) ≤ k − 1

}
(A.57)

Hence if t >
√

log(n)/n/(2 f0), by (3.20), for all k > (1 − δ)r
√

n,

Pr(Ak,t

∣∣∣∣ K = k) ≥ p0 (A.58)

Now we proceed as in the proof to Theorem 3.2. But t >
√

log(n)/n/(2 f0) ⇐⇒ y >
√

log n in (A.45).
Hence on the event Ak,t for y ∈ [

√
log n; k2

√
log n ), we get the bound ̃(t) ≤ (k − 1)/

√
n, while for

y ∈ (−k2
√

log(n);
√

log n ) respectively on cAk,t , we bound ̃(t) by k/
√

n. Integrating out these two y-
domains separately, we obtain

n
(
MSE[Medn,G

(n)
0

∣∣∣K = k ] −MSE[Medn,G
(n)
[

∣∣∣K = k ]
)
≥

≥
p0

2 f0

∫ k2
√

log n

√
log n

(
s/
√

n + k̃/
√

2n − 1/(2 f0n)
)
ϕ(s) ds + o(n−1)

But for 0 < a1 < a2 < ∞, ϕ(a1)/a2 − ϕ(a2)/a2 ≤
∫ a2

a1
ϕ(s) ds, so that with a1 = 2

√
log n, a2 = k2

√
log n ,

and as ϕ(a2) = o(n−1),

n
(
MSE[Medn,G

(n)
0

∣∣∣K = k ] −MSE[Medn,G
(n)
[

∣∣∣K = k ]
)
≥

p0

2
√

2π n f0
+ o(n−1)

By Lemma A.2, the restriction to (1 − δ)r
√

n < K < k1r
√

n may be dropped, and we obtain the assertion.
The case of an even sample size is proved similarly. ut

Extra Material

On [site of the journal] we have additional supplementary material for this article: This comprises extended
tables, details to points alluded to in remarks, but in particular a MAPLE script, referred to in the proofs.
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Fig. 2 A horrifying example: (The first two pages of) the expression for (A.44) got from MAPLE; of course,
after integration terms get much more treatable, as visible in Theorem 3.2.
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