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Abstract

We compare various approaches for the determination of finite-sample risks of one-
dimensional location M-estimators on convex contamination and total variation neighbor-
hoods. As risks we consider mean squared error (MSE) and certain over-/undershooting
probabilities as in Huber (1968) and Rieder (1980). Our comparison consists of (numer-
ically) exact formulae (via FFT, Ruckdeschel and Kohl (2010)), Edgeworth expansions,
saddlepoint approximations as in Field and Ronchetti (1990), an approach by Fraiman
et al. (2001), first-, second- and third order asymptotics as well as Monte-Carlo simula-
tions.
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1. Introduction

1.1. Motivation

Only in exceptional cases, the exact value (up to numerical errors) of the maximal
finite-sample risk of a (robust) estimator on a typical robust neighborhood is accessible.
This is why Robust Statistics usually recurs to asymptotics, possibly refined to higher
order asymptotics, to simulations, and to bootstrapping and other resampling techniques.
There are such exceptional cases, though, and it is worthwhile studying them in order to
get a more precise idea of the finite-sample error incurred by any of the mentioned ways
out.

The most prominent exception are M-estimators of (one-dimensional) location to a
monotone ψ-function as already studied in Huber (1964), where we have (more or less)
explicit formulae for their distribution in both ideal, and, for certain types of neighbor-
hoods, i.e. convex contamination (gross error) and total variation, also in a least favorable
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situation. Hence, we can compute corresponding risks like maximal MSE or the over-
/undershooting risk of Huber (1968). More specifically these M-estimators also comprise
the corresponding minimax procedure minimizing the maximal risk.

Although very simple in structure, the corresponding distributions are computation-
ally somewhat demanding as they have both non-trivial (absolutely) continuous and
discrete parts, and hence require careful treatment. In this paper, we discuss some im-
plementations to R of these distributions as well as functions to compute the respective
risks.

With these at hand, we can make quite precise statements about the errors involved in
first to third order asymptotics. To get the same precision by means of crude Monte-Carlo
simulation we would need billions of replications. Of course, more refined simulation
techniques could reduce the respective number of simulations, but still the numerical
approach is conceptually simpler as it does not need to take into account special features
of the (ideal) distribution.

1.2. Other approaches

1.3. Organization of the paper

2. Setup

2.1. Ideal model

We consider one-dimensional location, i.e. for sample size n we have i.i.d. observa-
tions yi (i = 1, . . . , n) composed by errors ui and an unknown location parameter θ ∈ R,
i.e. yi = θ + ui. For simplicity, our reference ideal model distribution will be Gaussian,

that is ui
i.i.d.∼ F = N (0, 1). However, all numerical results are valid for arbitrary F with

finite Fisher-information of location and with log-concave densities which is the setting
of Huber (1981, Ch. 4, Ex. 5.2).

2.2. Deviations from the ideal model

Following Rieder (1980), we introduce the following types of neighborhoods of Pθ as
deviations from the ideal model.

Definition 2.1. For given numbers ε, δ ∈ [0, 1) with ε+ δ ∈ (0, 1),

Ucv(θ) = Ucv(θ; ε; δ) =
{
Q ∈M1(B)

∣∣Q(dy) ≥ (1− ε)Pθ(dy)− δ
}

(2.1)

Remark 2.2. (a) These neighborhoods include contamination (δ = 0), abbreviated by sub-
script c in the sequel, as well as total variation neighborhoods (ε = 0), abbreviated by subscript v.
A generic type will be indicated by subscript ∗. If δ = 0, we write Uc(θ) = Uc(θ; ε), and if ε = 0,
we write Uv(θ) = Uv(θ; δ). In case of the MSE-risk introduced below, we write r for ε to be
consistent with the literature.

(b) In case of asymptotic considerations we replace ε and δ by εn = ε/
√
n, resp. δn = δ/

√
n .

(c) Due to the translation invariance of both ideal model and neighborhoods, we may reduce
ourselves to the parameter value θ = 0; cf. Rieder (1994, Section 7.2.3), resp. Kohl (2005,
Section 7.1.2 ) where this is verified for the linear regression model. �
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As shown in Ruckdeschel (2010b), we have to thin out the original neighborhood if the
loss function is unbounded, in order to obtain uniform convergence for the risk on the
whole neighborhood. In case of the MSE-risk introduced below, we limit ourselves to
∗ = c. To specify this thinning-out, we may – as usual – interpret Qn ∈ Uc(0, εn) as the
distribution of the random variable Y defined as

Y := (1− U)Y id + UY di (2.2)

for Y id, U , Y di stochastically independent, Y id ∼ N (0, 1), U ∼ Bin(1, εn), and Y di ∼ P di

for some arbitrary P di ∈ M1.1 The balls Uc(ε;n) defined as
{
Qnn | Qn ∈ Uc(0, εn)

}
are

then thinned out to the sets Ũc(ε;n) of

Qn = L{[(1− Ui)Y id

i + UiY
di

i ]i

∣∣∣ ∑Ui < n/2 } (2.3)

that is only those samples are retained where less than half the sample is contaminated;
cf. Ruckdeschel (2010b, Section 2; e.g. Proposition 2.1 and Theorem 3.4).

2.3. Considered risks

We consider two types of finite-sample risks – (maximal) MSE (maxMSE) and the
probability of over-/undershooting a certain bound. In the risk definitions we suppress
the dependence on the size of the neighborhood and assume ε, δ ∈ [0, 1) respectively
0 < r <

√
n given. For the maximal MSE at sample size n, we obtain as risk of an

estimator Sn : Rn → R,

maxMSE(Sn) := sup nEQ S
2
n, Q ∈ Ũc(n) (2.4)

For the over-/undershooting finite-sample risk at sample size n we define Risk (Sn) :=
supθ∈R Riskθ(Sn) with

Riskθ(Sn) = sup max
{
Qnθ (Sn > θ + τ), Qnθ (Sn < θ − τ)

}
, Qθ ∈ Ucv(θ) (2.5)

for a given constant τ ∈ (0,∞).

Remark 2.3. Again, for an asymptotic version of this risk, we replace τ by some τn = τ/
√
n .

In addition, the over-/undershooting bounds are allowed asymmetric; i.e., we have two bounds
τ ′n, τ

′′
n of sum 2τn. For more details see Rieder (1980).

2.4. Minimax-Estimators

For both risks considered here, the minimax estimator may be realized as an M-
estimator to monotone scores ψ. That is, following the notation in Huber (1981, pp. 46),
for ψt(x) = ψ(x− t), let

S′n := sup
{
t
∣∣∣ ∑
i≤n

ψt(xi) > 0
}
, S′′n := inf

{
t
∣∣∣ ∑
i≤n

ψt(xi) < 0
}

(2.6)

and the minimax estimator is an equal randomization between S′n and S′′n.

1
id referring to ideal , di alluding to disturbing
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In the Gaussian location model, for all types of risks and neighborhoods considered
here, the minimax scores are of Huber form

ψ(c)(u) = umin {1, c/|u|} (2.7)

The corresponding influence curve (IC) in sense of Rieder (1994, Definition 4.2.10) reads

η(c)(u) = Aumin {1, b/(A|u|)} (2.8)

where b = Ac.

Remark 2.4. The assertion that the minimax estimator may be realized as an M-estimator
to scores of form (2.7) is drawn from several references: For risk (2.5), this is shown in Huber
(1968); in a corresponding asymptotic setup the same class of estimators arises in Rieder (1980).
There is also an extension to (univariate) linear regression, cf. Rieder (1989, 1995) and Kohl
(2005). For the first order asymptotic maximal MSE the assertion is shown in Rieder (1994,
Theorem 5.5.7) and in the construction part in Section 6.2.1 (ibid.). For the second order
asymptotic maximal MSE it is shown in Ruckdeschel (2010a,b). For the third order asymptotic
maximal MSE we do not know whether the assertion holds. �

2.4.1. MSE Risk

Higher Order Expansion for M-Estimators. In the location model of Section 2.1 – with
F not necessarily Gaussian –, in Ruckdeschel (2010b), we obtain an expansion for
maxMSE(Sn) for M-estimators to monotone scores of form

maxMSE(Sn) = r2b2 + v0
2 + r√

n
A1 + 1

n A2 + o(n−1) (2.9)

where b is the sup-norm and v0 the L2(P )-norm of the corresponding IC and A1 and A2

are certain constants (in n) depending on r and the IC. The expansion up to o(1) will be
called first-order, up to o(1/

√
n ) second-order and up to o(1/n) third-order asymptotics.

Explicit expressions for A1 and A2 can be found in Ruckdeschel (2010b). The Gaussian
case is spelt out in Appendix A.1.

Asymptotically optimal c. Given expansion 2.9 we may, depending on r, determine first-,
second-, and third-order optimal clipping bounds c. Details on these bounds are spelt
out in Appendix A.2.

Approach of Fraiman et al. (2001). In Fraiman et al. (2001), the authors work in a
similar setup, that is, the one-dimensional location problem, where the center distribution
is F = N (0, σ2). They search for an M-estimator Sn to skew symmetric scores ψ which
minimizes the maximal risk on a neighborhood about F . Contrary to our approach, the
authors work with convex contamination neighborhoods V = V(F, ε) of fixed radius ε.
Some more details on this approach are gathered in Appendix A.3 To be able to compare
their procedure to ours, for fixed sample size n, we translate their radius ε into our r/

√
n,

and determine the optimal ψ̂a,b,c,t(x) and the corresponding cFYZ for the Huber-scores

ψ(c) “next” to ψ̂a,b,c,t(x). Anyway, ψ̂a,b,c,t(x) and ψ(c) are practically indistinguishable;
see Fraiman et al. (2001, simplification 2, p. 206).
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2.4.2. Over-/Undershooting Risk

Contamination Case. Finite Sample Setup: For the minimax solution as in Huber
(1968), cfic is the unique solution to

εn
1− εn

= exp(−2cfic τn)Φ(τn − cfic )− Φ(−τn − cfic ) (2.10)

Asymptotic Setup: In an asymptotic setup corresponding to this over-/undershooting
risk (cf. Rieder (1980)), cas

c is found as the unique solution to

ε = 2τ
[
ϕ(cas

c )− cas
c Φ(−cas

c )
]

(2.11)

The derivation of this result can be found in Kohl (2005, Section 10.3). Some relations
between finite and asymptotic bounds are listed in Appendix A.4.

Total Variation Case. Finite Sample Setup: For the minimax solution as in Huber
(1968), cfiv is the unique solution to[

1 + exp(−2cfivτn)
]
δn = exp(−2cfivτn)Φ(τn − cfiv)− Φ(−τn − cfiv) (2.12)

Asymptotic Setup: cas
v is the unique solution to

δ = τ
[
ϕ(cas

v )− cas
v Φ(−cas

v )
]

(2.13)

For a derivation of this result see Kohl (2005, Section 10.3).

3. Computation of the finite-sample risk for M-estimators

In this core section of the paper, we present algorithms for the computation of the
(maximal) finite-sample risks of the preceding sections. Algorithms A and B can be used
for the computation of over-/undershooting risk (2.5), and Algorithms C and D for the
maxMSE of (2.4). We also present checks for the accuracy of these algorithms.

3.1. Exact expressions

We fix n ∈ N and radius εn [δn] ∈ [0, 1) (∗ = c), [(∗ = v)]. Given some clipping bound
c ∈ (0,∞), we consider M-estimators S to scores of form (2.7) with equal randomization
between the smallest and the largest solutions.
In case of risk (2.5), we are interested in the finite-sample minimax estimator S̃fi

∗ , the
asymptotic minimax estimator S̃as

∗ and the estimator based on the O(n−1/2)[O(n−1)]-
corrected (∗ = c) [(∗ = v)] asymptotic optimal clipping bound. Suppressing the depen-
dency on the radius ε resp. δ, risk (2.5) of our M-estimator Sn for given τn ∈ (0,∞)
reads,

Risk (Sn; ∗) = max

{
sup

Q−τn∈U∗(−τn)

Qn−τn(Sn > 0), sup
Qτn∈U∗(τn)

Qnτn(Sn < 0)

}
(3.1)

For MSE risk (2.4), we obtain

maxMSE(Sn) = supn

∫
S2
n dQn, Qn ∈ Ũc(r;n) (3.2)

which we evaluate for M-estimators Sn to scores of form (2.7) where c is one of cfo, cso,
cto, co, cFYZ defined as in Appendix A.2.
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3.1.1. Preparations

For any M-estimator S that is based on a score function χθ(u), which is measurable
in u and monotone increasing in θ ∈ R, from strictly positive to strictly negative values,
the following inclusions hold

{S′>θ} ⊆
{ n∑
i=1

χθ(yi)>0
}
⊆ {S′≥θ}, {S′′>θ} ⊆

{ n∑
i=1

χθ(yi)≥0
}
⊆ {S′′≥θ} (3.3)

for any given y1, . . . , yn; see Huber (1981, pp. 45). By equivariance, we have χθ(y) =
χ0(y − θ). Therefore, we obtain for any such M-estimator S and any Q−τn ∈ U∗(−τn),
respectively Qτn ∈ U∗(τn),

Qn−τn(S > 0) = 1
2

[
Qn−τn(S′ > 0) +Qn−τn(S′′ > 0)

]
(3.4)

≤ 1
2

[
Qn−τn

(∑n
i=1 χ0(yi) > 0

)
+Qn−τn

(∑n
i=1 χ0(yi) ≥ 0

)]
(3.5)

≤ 1
2

[
Qn−τn(S′ ≥ 0) +Qn−τn(S′′ ≥ 0)

]
(3.6)

and corresponding relations for Qnτn(S < 0).

3.1.2. Q maximizing over-/undershoooting risk

By monotonicity of χ0, the probability of
∑n
i=1 χ0(yi) > [≥] 0 under Q−τn ∈ U∗(−τn)

is maximal if

Q−τn(χ0(y) = c) = Q−τn(y ≥ c) = Q0(y ≥ c+ τn) = max! (3.7)

and Qτn(
∑n
i=1 χ0(yi) < [≤] 0) is maximal in U∗(τn) if Q0(y ≤ −c − τn) is maximal. So

we are lead to least favorable pairs Q′−τn ∈ U∗(−τn) and Q′′τn ∈ U∗(τn) which in case
(∗ = c) may be written as

Q′−τn=(1− εn)N (−τn, 1) + εnH
′
−τn , Q′′τn = (1− εn)N (τn, 1) + εnH

′′
τn (3.8)

with H ′−τn and H ′′τn concentrated on [τn + c,∞) and (−∞, −τn − c], respectively.
In case (∗ = v), this leads us to Q′−τn and Q′′τn having cdf (cf. Rieder (1994, pp. 174))

Q′−τn(t)=
(
Φ(t+ τn)− δn

)
+

+ δnH
′
−τn(t), Q′′τn(t)=

[
Φ(t− τn) + δnH

′′
τn(t)

]
∧ 1 (3.9)

with H ′−τn and H ′′τn as in case (∗ = c).

Remark 3.1. We obtain equality in (3.5) and (3.6) if Qθ ∈ U∗(θ) (θ ∈ R) is absolutely
continuous (a.c.) (cf. Huber (1981, Lemma 10.6.1)). Else, we may have inequalities. However,
as shown in Kohl (2005, Remark 11.3.2), for any given non-a.c. H ′−τn or H ′′τn , we can specify
an a.c. distribution which is stochastically larger, respectively smaller than H ′−τn or H ′′τn such
that equality holds in (3.5) and (3.6) for this new distribution. Also, there is at least equality
in (3.6) even if H ′−τn or H ′′τn is not a.c. But, (3.4) could be really smaller than (3.5). That is,
to make sure that the finite-sample risk is really attained under Q′−τn and Q′′τn , (at least) 0 has
to be a continuity point of the distributions of S′ and S′′ under Q′−τn and Q′′τn . �
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3.1.3. Terms for risk calculation

As a first step, we state the distribution of χ0 under Q′−τn and Q′′τn where in case
(∗ = c) we have

Q′−τn(χ0(y) = −c) = (1− εn)Φ(−c+ τn) (3.10)

Q′−τn(−c < χ0(y) < t) = (1− εn)
[
Φ(t+ τn)− Φ(−c+ τn)

]
t ∈ (−c, c) (3.11)

Q′−τn(χ0(y) = c) = (1− εn)Φ(−c− τn) + εn (3.12)

and correspondingly for Q′′τn (Kohl, 2005, (11.3.24)–(11.3.26)).
In case (∗ = v) we get,

Q′−τn(χ0(y) = −c) =
(
Φ(−c+ τn)− δn

)
+

(3.13)

Q′−τn(−c < χ0(y) < t) =
(
Φ(t+ τn)− δn

)
+
−
(
Φ(−c+ τn)− δn

)
+

t ∈ (−c, c) (3.14)

Q′−τn(χ0(y) = c) = 1−
(
Φ(c+ τn)− δn

)
+

(3.15)

and correspondingly for Q′′τn (Kohl, 2005, (11.3.30)–(11.3.32)).

3.2. Numerical algorithms for over/-undershooting risk

With the preparations of the preceding subsection we may now formulate our two
algorithms for the numerical computation of the finite-sample risk (2.5).

3.2.1. Algorithm A

This procedure directly uses the distribution of χ0 under Q′−τn / Q′′τn , which can
be read off from equations (3.10)–(3.15). The n-fold convolution of this distribution is
calculated using Algorithm 3.4 of Ruckdeschel and Kohl (2010) which is based on fast
Fourier transform.

This algorithm wrongly assumes absolute continuity of the distribution of χ0 under
Q′−τn / Q′′τn . More precisely, it first discretizes the distribution to an equally-spaced grid,
applies the Discrete Fourier Transformation (DFT) for convolutions and finally smoothes
out the resulting discrete convolution distribution using splines. Despite discretization
and smoothing, this algorithm has proven to produce very accurate results already for
very small sample sizes (cf. ibid.).

Remark 3.2. Since the law of ψ̃∗ (∗ = c, v) under Q′−τn and Q′′τ puts mass at the points
−c∗, c∗, for even n, we obtain

(Q′−τn)n
( n∑
i=1

ψ̃∗(yi) > 0

)
< (Q′−τn)n

( n∑
i=1

ψ̃∗(yi) ≥ 0

)
(3.16)

and similarly for (Q′′−τn)n. Hence the corresponding non-randomized estimate 1
2
(S′+S′′) is not

minimax; see also Huber (1968, Section 4). In contrast, if n is odd, there is no mass at zero and
equality holds in (3.16). Anyway, for increasing n the difference between LHS and RHS in (3.16)
becomes small very fast as the mass at zero decays exponentially in n. This immediately follows
from Hall (1992, Theorem 2.3). �
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3.2.2. Algorithm B

Algorithm B in contrast to Algorithm A does take into account the point masses,
representing the distributions as mixtures between the a.c. distribution of the restriction
Zi of a normal distribution to interval [−c, c] and a binomial random walk

∑
iWi with

step length c. Since all four cases (± τn, ∗ = c, v) may be treated analogously, we only
specify the case (Q′−τn)n and (∗ = c). To lighten the notation, we define R := Q′−τn . In
view of (3.10)–(3.12) we can rewrite,

Rn
( n∑
i=1

χ0(yi) > 0

)
= Rn

( n∑
i=1

[
(1− Vi)Zi + ViWi

]
> 0

)
(3.17)

with the following stochastically independent random variables

Vi
i.i.d.∼ Bin (1, p1,n), Zi

i.i.d.∼ L
(
Z̃i
∣∣ Z̃i ∈ [−c, c]

)
, Z̃i

i.i.d.∼ N (−τn, 1) (3.18)

Wi := 2cW̃i − c, W̃i
i.i.d.∼ Bin (1, p2,n) (3.19)

where
p1,n := (1− εn)

[
Φ(−c+ τn) + Φ(−c− τn)

]
+ εn (3.20)

p2,n :=
[
(1− εn)Φ(−c− τn) + εn

]/
p1,n (3.21)

We abbreviate sums of these random variables of length m ≤ n by a superscript (m)
at the random variable. By stochastic independence we get,

Rn
( n∑
i=1

χ0(yi) > 0

)
= Rn

(
Z(n) > 0

)
Rn
(
V (n) = 0

)
+Rn

(
W̃ (n) > n/2

)
Rn
(
V (n) = n

)
+

+

n−1∑
j=1

[ j∑
k=0

Rn−j
(
Z(n−j) > c(j − 2k)

)
Rj
(
W̃ (j) = k

)]
Rn
(
V (n) = j

)
(3.22)

Of course, we can do the same calculations for > replaced by ≥. Thus, the finite
simple risk by absolute continuity of the law of Z(m) under Rm reads,

Risk(S; c) = Rn
(
Z(n) > 0

)
Rn
(
V (n) = 0

)
+ 1

2

[
Rn
(
W̃ (n) > n/2

)
+Rn

(
W̃ (n) ≥ n/2

)]
×

×Rn
(
V (n) = n

)
+

n−1∑
j=1

j∑
k=0

Rn−j
(
Z(n−j) > c(j − 2k)

)
Rj
(
W̃ (j) = k

)
Rn
(
V (n) = j

)
(3.23)

The m-fold convolution of the law of Zi is calculated using the FFT-Algorithm as in
the case of Algorithm A.

Remark 3.3. If n is even, the law of W̃ (n) puts mass at n/2. Thus,

Rn
(
W̃ (n) > n/2

)
< Rn

(
W̃ (n) ≥ n/2

)
(3.24)

and again it follows that the non-randomized estimate 1
2
(S′ + S′′) is not minimax; for more

details see Remark 3.2. �
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3.2.3. Checks
Algorithm B allows to compute the finite-sample risk numerically exactly. This can

be checked at least for sample size n = 2 where analytic calculations yield

R2
(
Z(2) > 0

)
= 1−R2

(
Z(2) ≤ 0

)
=

= 1−
2
∫ 0
−
√

2 c
ϕ(y +

√
2 τ2)Φ(y +

√
2 c) dy − Φ(

√
2 τ2) + Φ

(√
2 (τ2 − c)

)[
Φ(c+ τ2)− Φ(−c+ τ2)

]2 (3.25)

Moreover, if we choose ε, respectively δ such that the corresponding optimal clipping
bound c∗ = τ2 (∗ = c, v) we obtain

R2(Z(2) ≤ 0) =
[
1− 4Φ(

√
2 c∗)Φ(−

√
2 c∗)

]/(
2Φ(2c∗)− 1

)2
(3.26)

We only compute the finite-sample risk of the asymptotic minimax estimator S̃as
∗ since

cas
∗ = τ2 leads to a larger radius than cfi∗ = τ2 for which Algorithm A is less accurate.

The absolute deviation of the finite-sample risk obtained with Algorithm A, respectively
Algorithm B from the numerically exact finite-sample risk Risk\(S̃as

∗ ; ∗) is denoted by
errorA resp. errorB . The results are contained in Table 1 where 2q denotes the number
of grid points used in Step 2 of the FFT-Algorithm of Ruckdeschel and Kohl (2010).

(∗ = c) ε τ2 cas
c Risk\(S̃as

c ; c) q errorA errorB

10 5.1e−05 2.4e−08
0.0480 2.000 2.000 0.052560 12 1.3e−05 1.5e−09

14 3.2e−06 9.5e−11

10 8.4e−05 3.9e−08
0.2357 1.000 1.000 0.294290 12 2.1e−05 2.4e−09

14 5.2e−06 1.5e−10

(∗ = v) δ τ2 cas
v Risk\(S̃as

v ; v) q errorA errorB

10 2.6e−05 2.6e−08
0.0240 2.000 2.000 0.027821 12 6.6e−06 1.6e−09

14 1.6e−06 1.0e−10

10 3.9e−05 5.6e−08
0.1178 1.000 1.000 0.206917 12 9.7e−06 3.5e−09

14 2.4e−06 2.2e−10

Table 1: Precision of the computation for risk (2.5) for n = 2
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Remark 3.4. (a) Algorithms A and B yield small, respectively very small errors for sample
size n = 2 which underlines the precision of the FFT-Algorithm for both types ∗ = c, v.

(b) Huber (1968, p. 278) determines the finite-sample risk of the finite-sample minimax
estimator S̃fi

∗ in case of n = 2, τ2 = 1.0 and ε2 = 0.0430, respectively δ2 = 0.0396 which
by (2.10), respectively (2.12) leads to cfic = 1.0, respectively cfiv = 1.0. Our calculations yield
Risk\(S̃fi

c ; c) = 0.140359, respectively Risk\(S̃fi
v ; v) = 0.142338 confirming Huber’s results. �

As the FFT-Algorithm maintains its high precision with increasing convolution power,
we expect the same behavior as for n = 2 for increasing sample size. To check this,
we consider the finite-sample risk of the asymptotic minimax estimator in case ∗ = c.
Moreover, we choose one “typical” situation as the results are almost independent of
τ and ε. That is, we fix τ = Φ−1(0.995) ≈ 2.576 and ε = 0.2 which by (2.11) leads
to cas

c = 1.374 and determine the distance distAB between the results of Algorithm A
and Algorithm B. Table 2 shows the corresponding results where RiskB denotes the
finite-sample risk of Sas

c computed with Algorithm B. For yet another cross check for
the results of our algorithms, we also calculate empirical confidence intervals by Monte-
Carlo simulations. That is, we simulate 1e 06 samples of size n, solve the M equation and
compute corresponding 95% confidence intervals for the empirical finite-sample risk. As
it turns out, the results of Algorithms A and B always lie well within the 95% confidence
interval.

n emp. risk 95% conf. int. q RiskB distAB

10 0.090029 3.4e−05
3 0.0899 [0.0892, 0.0904] 12 0.090029 8.6e−06

14 0.090029 2.1e−06

10 0.063232 3.3e−05
5 0.0634 [0.0628, 0.0638] 12 0.063232 8.3e−06

14 0.063232 2.1e−06

10 0.038605 2.0e−05
10 0.0387 [0.0382, 0.0391] 12 0.038605 4.9e−06

14 0.038605 1.2e−06

Table 2: A comparison between Algorithm A and Algorithm B in case (∗ = c).

Remark 3.5. Obviously, Algorithm B is more accurate than Algorithm A (cf. Table 1) but
Algorithm A is clearly faster. Moreover, the differences between Algorithm A and Algorithm B
are small and decrease quickly with increasing sample size n. Hence, in subsequent computations
we use q = 12 and Algorithm B for n ≤ 10 and A for n > 10. �

3.3. Numerical algorithms for MSE-risk

3.3.1. Qn maximizing MSE Risk

As shown in Ruckdeschel (2010b), for an M-estimator Sn to scores of form (2.7),
in order to maximize MSE up to remainders of order o(1/n), it suffices to take P di

concentrated on [c + O(
√

log(n)/n ),∞). In our examples, a smeared Dirac measure in

100 will largely suffice. In particular, on an event Ω̃n such that the contribution of Ω̃cn
to the MSE-integral is o(1/n), ψ ≡ c [P di]. Let Q̂n ∈ Ũc(r;n) be constructed with an
arbitrary such distribution P di.
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3.3.2. MSE knowing
∑
Ui = k

By integration by parts, neglecting o(1/n) remainders,

maxMSE(Sn) =

∫
S2
n Q̂n(Sn ∈ dx) =

∫ ∞
0

Q̂n(|Sn| ≥
√
t ) dt (3.27)

The probability that we have k outliers in Ũc(r;n) is just

ρk;n := P (
∑
i Ui = k) = P (Bin(n, rn) = k)/P (Bin(n, rn) < n/2) (3.28)

with rn = r/
√
n and hence, under the precautions of Remark 3.1

Q̂n(Sn ≥ u ) =
∑

1≤k<n/2

Q̂n(
∑
i:Ui=0

ψ(c)(Yi − u) + kc > 0,
∑
i Ui = k) =

=
∑

1≤k<n/2

ρk;n F
n(

n−k∑
i=1

ψ(c)(yi − u) > −kc) (3.29)

3.3.3. Algorithm C

Hence for a u-grid uν , ν = 1, . . . , N and for k = 0, . . . , n/2, we proceed as in Algo-
rithm B: We change τn into −uν in formula (3.18) and obtain in analogy to (3.18) and
(3.21)

p1;ν :=
[
Φ(−c− uν) + Φ(−c+ uν)

]
, p2;ν := Φ(−c− uν)/p1;ν (3.30)

We correspondingly introduce the random variables

Zi;ν
i.i.d.∼ L

(
Z̃i;ν

∣∣ Z̃i;ν ∈ [−c, c]
)
, Z̃i;ν

i.i.d.∼ N (uν , 1) (3.31)

Wi;ν := 2cW̃i;ν − c W̃i;ν
i.i.d.∼ Bin (1, p2;ν), Vi;ν

i.i.d.∼ Bin (1, p1;ν) (3.32)

and again use the superscript (m)-abbreviation for sums of these random variables. Thus,
as in (3.22), we get

Fn(

n−k∑
i=1

ψ(c)(yi − u) > −kc) = Q̂n
( n−k∑
i=1

[
(1− Vi;ν)Zi;ν + Vi;νWi;ν

]
> −kc

)
=

= Rn
(
Z

(n−k)
ν > −kc

)
Rn
(
V

(n−k)
ν = 0

)
+Rn

(
W̃

(n−k)
ν > n/2− kc

)
Rn
(
V

(n−k)
ν = n− k

)
+

+

n−1−k∑
l=1

[ l∑
h=0

Rn−k−l
(
Z

(n−k−l)
ν > c(l − k − 2h)

)
Rl
(
W̃

(l)
ν = h

)]
Rn
(
V

(n−k)
ν = l

)
(3.33)

Now for j = 1, . . . , n and ν = 1, . . . , N and s = −(n − 1), . . . , (n − 1), by means of the
FFT-Algorithm, we determine the triple array

Rν;s;j := Rj
(
Z(j)
ν > sc

)
(3.34)

and then evaluate (3.33) respectively (3.29) term by term.

Remark 3.6. (a) This triple loop over ν, s, j for Rν;s;j and over k, l, h for (3.29) and (3.33)
makes this approach prohibitively slow already for n about 30.
(b) As far as we can see, we cannot avoid this triple loop as the Ui are no longer stochastically
independent after having thinned out the neighborhoods. This dependence however is rather
weak and may be neglected for n ≥ 30.
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3.3.4. Algorithm D

On the other hand, the contribution of the event
∑
Ui > n/2 is decaying exponen-

tially, and the same goes for the probability that 0 is a mass point of ψ(c) under Q̂nn.
Hence, even for n about 30 we only make a minor error by neglecting these events. Then,
we may directly consider the c.d.f. R(t) of ψ(Y −u) under Q̂n on a u-grid, which is given
by

R(t) = I{−c≤t<c}(1− rn)Φ(t+ u) + I{t>=c} (3.35)

and correspondingly its convolutional powers.

3.3.5. Calculation of MSE

Both Algorithms C and D, after having determined Q̂n(Sn ≥ u ) on the u-grid,
proceed by numerical integration of (3.27) for which we use R-function integrate (cf.
R Development Core Team (2010)).

4. Higher order approximations of densities/cdf’s

As noted before, it is very difficult or even impossible to determine the exact finite-
sample risk for sample size n ≥ 3 analytically. Thus, one might think of higher order
approximations of the distributions or densities provided by Edgeworth expansions or
saddlepoint approximations to compute (at least) an approximation of the exact finite-
sample risk.

4.1. Edgeworth expansions

With some χ0(u) of form (2.7), we consider

ξi =
(
χ0(yi)− ER χ0

)/√
VarR χ0 (4.1)

and assume R = Q′−τn , Q
′′
τn of form (3.8)–(3.9) to be a.c. Thus, ER |ξi|5 < ∞ and the

resp. Edgeworth expansion may be read off from Ibragimov (1967, Theorem 1) and Field
and Ronchetti (1990, p. 16). That is, we obtain

Rn
( n∑
i=1

ξi <
√
n t

)
+ O(n−3/2) =

= Φ(t)− ϕ(t)

[
ρR

6
√
n

(t2 − 1) +
1

n

(
κR
24

(t3 − 3t) +
ρ2
R

72
(t5 − 10t3 + 15t)

)]
(4.2)

where ρR = ER ξ
3
1 and κR = ER ξ

4
1 − 3. To determine an approximation of the finite-

sample risk (3.1), we have to choose t = −
√
nER χ0

/√
VarR χ0 .

Remark 4.1. If k is even, calculating ER χ
k
0 (k ∈ N) in case (∗ = v), we obtain EQ′−τn

χk0 =∫
χk0 dN (−τn, 1) and EQ′′τn χ

k
0 =

∫
χk0 dN (τn, 1), respectively. Probably, this also causes the

faster convergence of the finite-sample risks in case of total variation neighborhoods at least for
the Edgeworth expansions; see also Remark 5.1. �
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4.2. Saddlepoint approximations

Saddlepoint approximations are well known to give excellent accuracy in our context
down to very small samples, compare Field and Hampel (1982) and Field and Ronchetti
(1990). Assumptions A 4.1–A 4.5 of Field and Ronchetti (1990, Theorem 4.3) are fulfilled
for χt(y) = χ0(y − t) and R = Q′−τn , Q

′′
τn as defined in (3.8)–(3.9), where we assume R

to be absolutely continuous (i.e., dR = ρ dλ). Thus, we can read off an asymptotic
expansion of the density of the corresponding M estimator which is

fn(t) =

√
n

2π
c−n(t)

A(t)

σ(t)

[
1 + O(n−1)

]
t ∈ R (4.3)

where, for e(t, y) = exp{α(t)χt(y)}, c−1(t) =
∫
e(t, y) ρ(y) dy and

σ2(t) =

∫
χt(y)2c(t)e(t, y) ρ(y) dy, A(t) =

∫ [
∂
∂t
χt(y)

]
c(t)e(t, y) ρ(y) dy, (4.4)

and, for fixed t, α = α(t) is the solution α ∈ R to

0 =

∫
χt(y)e(t, y) ρ(y) dy (4.5)

Remark 4.2. (a) One key advantage of saddlepoint approximations for fixed summand
distribution, is that once the functions c(t), and A(t) and σ(t) of (4.4) are determined on a
sufficiently dense grid, this grid is invariant in n. This property gets lost in our shrinking
neighborhood setting, where the (least favorable) R is changing with n. So in fact little is
gained w.r.t. the FFT algorithm.
(b) Of course, saddlepoint approximations might also be used to fill the triple array Rν;s;j of
(3.34). However, for n ≤ 30 we do not loose too much time in using the FFT-Algorithm instead,
while for n > 30, we are not sure about the performance of the saddlepoint approximations. �

5. Numerical results

5.1. Over/-undershooting risk

We check the accuracy of the introduced higher order approximations via the very
accurate results obtained by our Algorithms A and B. Table 3 shows the results for
contamination neighborhoods (∗ = c) where we chose τ = Φ−1(0.95),Φ−1(0.995) ≈
1.645, 2.576 and ε = 0.1, 0.5.

For radius ε = 0.1 the saddle point approximation performs well down to sample size 5 or

even 3, while for radius ε = 0.5 we need about 5–10 observations to obtain a close approximation.

For smaller τ the results of the second-order Edgeworth expansion are comparable with the

results of the saddlepoint approximation; i.e., for ε = 0.1 already 3 observations are enough for

a reasonable approximation, whereas for ε = 0.5 we need about 5–10 observations. For τ = 2.576

and ε = 0.1 the second-order Edgeworth expansion performs a little worse than the saddle point

approximation, whereas for τ = 2.576 and ε = 0.5 the results are again comparable. First-

order Edgeworth expansion in all cases yields acceptable results down to sample size 10, but

needs 20–50 observations to obtain results comparable to the ones of the second-order expansion

and saddle point approximation, respectively.

The corresponding results for total variation neighborhoods (∗ = v) are very similar; see
also Table 3.
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Remark 5.1. (a) Apparently, the speed of convergence towards the asymptotic risk is much
faster in case of total variation neighborhoods, which confirms Lemmas A.1 and A.2. Moreover,
our numerical calculations yield that the same holds for S̃fi

∗ . Tables 3 and 7 indicate that this
is also true for S̃

as[.c]
∗

(b) Higher order approximations of the clipping height could improve the first-order ones, as
the first-order optimal estimator is too optimistic for small sample sizes; for more details see Kohl
(2005, Section 11.4), On the other hand, as the computation time of our Algorithm A and even
more of our Algorithm B strongly increases with increasing sample size one could also think of
saddle point approximations, respectively Edgeworth expansions to determine the finite-sample
risk of the finite-sample minimax estimator, especially for larger sample sizes (n > 20) since the
computation time of these approximations is independent of n. In particular, the results for the
Edgeworth expansions can be obtained with very little computational effort. �

5.2. MSE

Under R 2.11.0, we simulated M = 10000 runs of sample size n = 5, 10, 30, 100 in the
ideal location model. In a contaminated situation, we used observations stemming from

Qn = L{[(1− Ui)Y id

i + UiY
di

i ]i

∣∣∣ ∑Ui ≤ pn/2q− 1 } (5.1)

for Ui
i.i.d.∼ Bin(1, r/

√
n), Y id

i
i.i.d.∼ N (0, 1), Y di

i
i.i.d.∼ I{100} all stochastically independent

and for contamination radii r = 0.1. As already indicated in Section 3.3.1 for the
considered estimators to be introduced in a moment, a contamination point 100 will
largely suffice to attain the maximal MSE on Ũc(r;n).
As estimators we considered M-estimators to scores of type (2.7) with clipping heights
c = 0.7 (according to the H07-estimator from Andrews et al. (1972)) and cfo(r) = 1.9483,
the first-order optimal clipping height according to (A.3). All empirical MSE’s come with
an asymtptotic 95%–confidence interval, which is based on the CLT for the variables

empMSEn = n
10000

∑
j [Sn(samplej)]

2 (5.2)

To get an idea of the speed of the convergence of the MSE to its asymptotic values, we
consider the M-estimators for different sample sizes n.
The simulated empirical risk comes with an (empirical) 95% confidence interval and is
compared to the corresponding numerical approximations and to the first-order, second-
order, and third-order expansion in (2.9). The results are tabulated in Tables 4 and 5
on page 16.

5.3. Finite sample distribution of minimax estimators to over-/undershooting risk

We finally use Algorithm A to compute the cumulative distribution function of∑n
i=1 ψ̃c(yi) under

(
Q′′τn

)n
for different values of n and compare the results with the

cumulative distribution function of the normal distribution which has minimum Kol-
mogorov distance. By symmetry it suffices to consider only the cumulative distribution
function of

∑n
i=1 ψ̃c(yi) under

(
Q′′τn

)n
. Moreover, we give only the two “extreme” situa-

tions ε = 0.1 (δ = 0.05), τ = 1.645 (see Figures 1 and 2) and ε = 0.5 (δ = 0.25), τ = 2.576
(see Figure 3 and 4). For the total variation case, in the first situation already 5 observa-
tions seem to be enough to get quite close to a normal distribution whereas in the second
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∗ = c ε τ cas
c n Risk\(S̃as

c ; c) RiskEW1 RiskEW2 RiskSP

0.1

1.645 1.484

3 12.08 11.83 12.05 12.22
5 10.62 10.43 10.57 10.57

10 9.36 9.26 9.35 9.34
100 7.89 7.88 7.89 7.89
asymptotic risk: 7.42

2.576 1.675

3 4.75 5.48 4.44 5.16
5 3.14 3.30 3.02 3.14

10 1.96 2.01 1.94 1.95
100 1.08 1.08 1.08 1.08
asymptotic risk: 0.91

0.5

1.645 0.663

3 37.10 37.19 38.07 39.36
5 32.74 32.41 33.10 33.37

10 28.24 27.84 28.23 28.20
100 21.28 21.25 21.28 21.28
asymptotic risk: 18.74

2.576 0.919

3 26.97 27.37 28.84 30.53
5 20.10 19.90 20.75 21.08

10 13.42 13.14 13.41 13.40
100 5.73 5.73 5.73 5.73
asymptotic risk: 3.98

∗ = v δ τ cas
v n Risk\(S̃as

v ; v) RiskEW1 RiskEW2 RiskSP

0.05

1.645 1.484

3 9.11 9.06 8.92 8.97
5 8.40 8.31 8.34 8.32

10 7.89 7.83 7.88 7.87
100 7.47 7.46 7.47 7.47
asymptotic risk: 7.42

2.576 1.675

3 2.62 2.82 2.60 2.66
5 1.75 1.82 1.72 1.73

10 1.25 1.29 1.24 1.24
100 0.93 0.94 0.93 0.93
asymptotic risk: 0.91

0.25

1.645 0.663

3 23.47 22.73 24.19 24.23
5 21.84 21.19 22.00 21.90

10 20.35 19.98 20.36 20.32
100 18.90 18.86 18.90 18.90
asymptotic risk: 18.74

2.576 0.919

3 11.88 12.35 12.79 13.29
5 8.80 8.83 8.79 8.92

10 6.20 6.20 6.16 6.18
100 4.17 4.17 4.17 4.17
asymptotic risk: 3.98

Table 3: Approximation quality of Edgeworth expansions and Saddlepoint approximations
[Risks are given in percent. Risk\(S̃as

∗ ; ∗) denotes risk (3.1) of S̃as
∗ , RiskEW1 and

RiskEW2 the approximations by means of Edgeworth expansions up to first/second
order and RiskSP by means of saddlepoint approximations.]
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Table 4: emp., num., and as. nmaxMSE at r = 0.1, c = cfo = 1.9483

n/ simulation numeric asymptotics

situation S̄m [low; up] Algo C Algo D n0 n−1/2 n−1

id 0.981 [0.954 ;1.009 ] 1.008 1.007 1.012 1.012 1.007
5

cont 1.471 [1.419 ;1.532 ] 1.501 1.612 1.054 1.292 1.331

id 1.001 [0.973 ;1.029 ] 1.010 1.009 1.012 1.012 1.010
10

cont 1.288 [1.248 ;1.328 ] 1.290 1.296 1.054 1.222 1.242

id 1.028 [1.000 ;1.057 ] 1.011 1.011 1.012 1.012 1.011
30

cont 1.192 [1.158 ;1.226 ] 1.165 1.167 1.054 1.151 1.158

id 0.984 [0.956 ;1.011 ] – 1.010 1.012 1.012 1.012
100

cont 1.081 [1.050 ;1.111 ] – 1.111 1.054 1.107 1.109

Table 5: emp., num., and as. nmaxMSE at r = 0.1, c = 0.7

n/ simulation numeric asymptotics

situation S̄m [low; up] Algo C Algo D n0 n−1/2 n−1

id 1.147 [1.114 ;1.179 ] 1.172 1.168 1.187 1.187 1.169
5

cont 1.403 [1.359 ;1.447 ] 1.434 1.535 1.205 1.342 1.345

id 1.179 [1.139 ;1.205 ] 1.177 1.174 1.187 1.187 1.178
10

cont 1.331 [1.292 ;1.369 ] 1.327 1.326 1.205 1.302 1.303

id 1.209 [1.175 ;1.242 ] 1.183 1.180 1.187 1.187 1.184
30

cont 1.301 [1.264 ;1.337 ] 1.265 1.262 1.205 1.261 1.261

id 1.161 [1.128 ;1.193 ] – 1.182 1.187 1.187 1.186
100

cont 1.212 [1.178 ;1.246 ] – 1.232 1.205 1.236 1.236
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situation we need a sample size of about 10. This indicates that the speed of convergence
in case of total variation neighborhoods is not only faster at zero (finite-sample risk) but
uniformly over the whole support of the law of

∑n
i=1 ψ̃v(yi) under

(
Q′′τn

)n
than under

convex contamination.

Remark 5.2. If H ′′τn is absolutely continuous, then also Q′′τn is absolutely continuous and by
Remark 3.1 the distribution of S̃fi

c under
(
Q′′τn

)n
and

∑n
i=1 ψ̃c(yi) under

(
Q′′τn

)n
coincide. �

To determine the minimum Kolmogorov distance normal distribution, we use a numerical
approximation; i.e., we compute the Kolmogorov distance dκ of the cumulative distribu-
tion functions of

∑n
i=1 ψ̃c(yi) under

(
Q′′τn

)n
and N (µ, σ2) on a grid of 1e05 points and

minimize this distance in µ and σ using the R function optim, compare R Development
Core Team (2010). As we see, in both cases about 10 observations are enough to get
already quite close to a normal distribution where the jumps included in the cumulative
distribution functions decay exponentially; see also Remark 3.2.

6. Application: comparison of different “optimal procedures”

6.1. MSE

For the finite-sample MSE risk, for the values of n = 5, 10, 50, 100 and r = 0.1, 0.5, 1.0,
we determine cfo, cso, cto, co, cFYZ and calculate the MSE-risk for the corresponding M-
estimators S.
We compare the resulting IC’s w.r.t. their clipping-c and the corresponding numerically
exact finite-sample MSE. As the absolute value of MSE is of secondary interest when we
want to find the optimal procedure, for all but the procedure with c = co we determine
the relative MSE, that is

relMSE(ψ(c)) = maxMSE(ψ(c))/maxMSE(ψ(co)) (6.1)

For n = ∞, we evaluate the corresponding first-order asMSE. As a cross-check the
clipping heights cfo, cso, cto are also determined for n = 108. In case of cFZY, for all
finite n’s the error tolerance used in optimize in R was 10−4, while for n = ∞ it was
10−12. For co and n = 108, an optimization of the (numerically) exact MSE would have
been too time-consuming and has been skipped for this reason. Also, for n = 5, the
radius r = 1.0, corresponding to ε = 0.447, is not admitted for an optimization of the
risk proposed by Fraiman et al. (2001) and thus no result is available in this case.

6.2. Over-/undershooting risk

To illustrate the relations between finite-sample and asymptotic results, we numer-
ically check the asymptotics against finite-sample results obtained for fixed neighbor-
hoods. To restrict the amount of results, we choose τ = Φ−1(0.95),Φ−1(0.995) such
that 2τ corresponds to the width of 90%, 99%-confidence intervals in case of the stan-
dard normal distribution. Moreover, we use q = 12 in Algorithms A and B.

We determine the finite-sample risk of the finite-sample minimax estimator S̃fi
c , the

asymptotic minimax estimator S̃as
c and the estimator Sas.c

c which is based on the O(n−1/2)-
corrected asymptotic optimal clipping bound and correspondingly for total variation
(with a O(n−1)-corrected bound).

17



Table 6: Optimal clipping heights and corresponding relMSEn

r n = 5 n = 10 n = 50 n = 100 n =∞
cfo 1.948 1.948 1.948 1.948 1.948

relMSEn(cfo) 8.679% 4.065% 0.836% 0.448% –
cso 1.394 1.484 1.663 1.724 1.948
relMSEn(cso) 0.833% 0.207% 0.014% 0.010% –

0.1
cto 1.309 1.428 1.644 1.713 1.948

relMSEn(cto) 0.332% 0.066% 0.004% 0.006% –
cFYZ 1.368 1.370 1.668 1.756 1.939
relMSEn(cFYZ) 0.658% 0.002% 0.021% 0.031% –
co 1.167 1.358 1.630 1.704 –
MSEn(co) 1.388 1.239 1.129 1.107 –

cfo 0.862 0.862 0.862 0.862 0.862

relMSEn(cfo) 2.930% 2.655% 0.446% 0.218% –
cso 0.650 0.690 0.767 0.790 0.862
relMSEn(cso) 0.756% 0.615% 0.036% 0.013% –

0.5
cto 0.547 0.620 0.744 0.777 0.862

relMSEn(cto) 0.230% 0.191% 0.008% 0.003% –
cFYZ 0.539 0.632 0.749 0.782 0.866
relMSEn(cFYZ) 0.200% 0.248% 0.011% 0.008% –
co 0.413 0.531 0.728 0.770 –
MSEn(co) 4.632 3.039 2.008 1.879 –

cfo 0.436 0.436 0.436 0.436 0.436

relMSEn(cfo) 2.716% 3.132% 0.348% 0.149% –
cso 0.320 0.340 0.380 0.394 0.436
relMSEn(cso) 1.411% 1.610% 0.076% 0.021% –

1.0
cto 0.255 0.291 0.361 0.382 0.436

relMSEn(cto) 0.876% 0.999% 0.027% 0.006% –
cFYZ – 0.281 0.344 0.387 0.440
relMSEn(cFYZ) – 0.892% 0.063% 0.012% –
co 0.001 0.125 0.334 0.366 –
MSEn(co) 12.627 8.445 4.296 3.787 –

A description to this table is located on page 17.

18



ε τ n cfic cas.c
c cas

c Risk\fi Risk\as.c Risk\as

0.1

1.645

3 0.903 0.837

1.484

11.327 11.337 12.079
5 1.021 0.983 10.188 10.192 10.617

10 1.148 1.130 9.156 9.156 9.357
100 1.374 1.372 7.872 7.872 7.888

2.576

3 0.788 0.621

1.675

3.845 3.871 4.748
5 0.953 0.859 2.610 2.621 3.143

10 1.142 1.098 1.751 1.753 1.958
100 1.497 1.493 1.067 1.067 1.078

0.5

1.645

3 0.198 0.113

0.663

36.695 36.699 37.100
5 0.287 0.237 32.161 32.167 32.741

10 0.386 0.362 27.866 27.869 28.244
100 0.570 0.568 21.239 21.239 21.284

2.576

3 0.232 0.022

0.919

26.461 26.468 26.966
5 0.347 0.224 19.006 19.033 20.099

10 0.487 0.428 12.669 12.683 13.419
100 0.769 0.763 5.667 5.667 5.731

Table 7: Comparison of optimal clipping bounds and corresponding finite-sample risks in case
(∗ = c). [Risks are given in percent.]

Convex contamination: Although there are clear differences between the clipping
bounds of the finite-sample and the asymptotic minimax estimator, the differences (in
absolute values) concerning the corresponding finite-sample risks are only small; see Fig-
ure 5 and Table 7. Moreover, the finite-sample risks of the estimator which is based on
the O(n−1/2)-corrected asymptotic optimal clipping bound are very close to the finite-
sample risk of the finite-sample minimax estimator.
Total variation: The differences between the finite-sample risks (in absolute values) are
small already for very small sample sizes (n ≤ 5); see Figure 6 and Table 8. In particular,
the finite-sample risks of Sas.c

v is very close to the finite-sample risk of S̃fi
v , already for

sample size n = 5.

7. Conclusion

Appendix A. Details to Minimax Estimators

Appendix A.1. Higher order expansion of MSE in Gaussian context

In the Gaussian case we get:

A1 =v0
2 + b2(1 + 2r2) (A.1)

A2 = 2
3
ρ1v0

3 + v0
4 (3 ṽ2 + l3) + [ v0

2
(
(3 ṽ2 + 2 l3 )b2 + 1

)
+ 5 b2 ] r2 +

(
l3
3
b4 + 3 b2

)
r4(A.2)

for
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δ τ n cfiv cas.c
v cas

v Risk\fi Risk\as.c Risk\as

0.05

1.645

3 1.120 0.903

1.484

8.879 8.972 9.106
5 1.232 1.135 8.306 8.321 8.399

10 1.340 1.310 7.863 7.864 7.891
100 1.467 1.466 7.465 7.465 7.465

2.576

3 0.984 0.049

1.675

2.214 2.654 2.618
5 1.160 0.700 1.588 1.761 1.754

10 1.351 1.188 1.201 1.215 1.247
100 1.630 1.627 0.934 0.934 0.935

0.25

1.645

3 0.467 0.394

0.663

23.347 23.360 23.471
5 0.532 0.502 21.762 21.766 21.843

10 0.591 0.583 20.326 20.326 20.350
100 0.655 0.655 18.898 18.898 18.898

2.576

3 0.477 0.043

0.919

11.559 11.658 11.882
5 0.595 0.393 8.484 8.589 8.796

10 0.722 0.656 6.099 6.110 6.203
100 0.893 0.892 4.168 4.168 4.170

Table 8: Comparison of optimal clipping bounds and corresponding finite-sample risks in case
(∗ = v). [Risks are given in percent.]

Ac = (2Φ(c)− 1)−1, b = Acc, v2
0 = 2b2(1− Φ(c)) +Ac(1− 2bϕ(c))

l3 = 2cϕ(c)/(2Φ(c)− 1), ṽ2 =
6Φ(c)− 4Φ(c)2 − 2− 2cϕ(c)

2c2(1− Φ(c)) + 2Φ(c)− 1− 2cϕ(c)

ρ1 =
3A3

c (1− 2Φ(c) + 2cϕ(c))

v3
0

+ 3v−1
0

for Φ and ϕ the cumulative distribution function (cdf) of N (0, 1) and its density, respectively.

Appendix A.2. Determining the optimal clipping height

For first-order asymptotics, cfo is determined such that

r2cfo = 2 E(u− cfo)+ = 2(ϕ(cfo))− cfoΦ(−cfo)) (A.3)

For second-order asymptotics, cso is determined such that

r2cso
(

1 +
r2 + 1

r2 + r
√
n

)
= 2(ϕ(cso))− csoΦ(−cso)) (A.4)

These results may be read off from Rieder (1994, Theorem 5.5.7), and Ruckdeschel (2010a,
Corollary 2.2), respectively. For third-order asymptotics, we determine cto by numerical op-
timization such that the corresponding numerical value of the third-order asymptotic MSE is
minimized.
By means of the implicit function theorem, one shows that

cso = cfo
(

1− 1√
n

r3 + r

r2 + 2Φ(cfo)

)
+ o(

1√
n

) (A.5)

cf. Ruckdeschel (2010a, equation (2.20)). Additionally, we also determine co by numerical op-
timization such that the corresponding numerical value of the (finite-sample) MSE itself is
minimized.
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Appendix A.3. Approach by Fraiman et al. (2001)
The authors propose risks constructed by means of a function g : R×R+ → R+ of asymptotic

bias b(G,ψ) and asymptotic variance v2(G,ψ) where

b(G,ψ)/
√
n := B = {β | (1− ε)

∫
ψβ dG+ εb = 0} (A.6)

v2(G,ψ) :=
[
(1− ε)

∫
ψ2
B dG+ εb2

]/[
(1− ε)2(

∫
ψ̇B dG)2] (A.7)

The risk of an M-estimator to IC ψ is taken as the function

Lg(ψ) = sup
G∈V

g(b(G,ψ), v(G,ψ)/n) (A.8)

A mean squared error-type risk is given by g(u, v) = u2 + v. It is not quite the MSE, as it
employs the asymptotic terms b(·), v(·). Differently to the scores of type (2.7), the solutions to
this problem are of form

ψa,b,c,t(x) = ψ̃a,b,t
(
xmin{1, c

|x|}
)
, ψ̃a,b,t(x) = a tanh(tx) + b[x− t tanh(tx)] (A.9)

but the solutions optimal in this approach are numerically quite close (up to 10−5) to corre-
sponding Huber-scores ψ(c).

Appendix A.4. Finitely and asymptotically optimal clipping bound in over-/undershooting
risk

Kohl (2005, Lemmas 11.1.3, 11.2.3) derives the following relations between finite-sample-
optimal and asymptotically-optimal clipping bounds:

Lemma A.1 (∗ = c). For εn ∈ (0, 1), τn ∈ (0,∞) (n ∈ N fixed) it holds,

cfic = cas
c + O(n−1/2) (A.10)

and the O(n−1/2)-corrected optimal asymptotic clipping bound is

cas.c
c := cas

c −
1√
n

ε(ε+ cas
c τ)

2τΦ(−cas
c )

(A.11)

where
cfic = cas.c

c + O(n−1) (A.12)

Lemma A.2 (∗ = v). For δn ∈ (0, 1), τn ∈ (0,∞) (n ∈ N fixed) it holds,

cas
v = cfiv + O(n−1) (A.13)

and the O(n−1)-corrected asymptotic optimal clipping bound is

cas.c
v = cas

v −
1

n

τ
[
2
(
cas
v

)2
δ + τϕ(cas

v )
]

6Φ(−cas
v )

(A.14)

where
cfiv = cas.c

v + O(n−3/2) (A.15)

Remark A.3. Lemma A.1 and Lemma A.2 show that there is a clear difference between con-
tamination and total variation neighborhoods concerning the speed of convergence of the optimal
clipping bounds (O(n−1/2) vs. O(n−1)). In the mean time, proceeding similarly as Ruckdeschel
(2010b), Brandl (2008) has translated the asymptotic expansion for the maximal MSE obtained
in the first reference from convex contamination to total variation setting and has obtained an
analogue result. As Brandl has found out, this effect is not due to the higher symmetry of the
total variation, a first conjecture of the authors of this paper, but rather due to the symmetry
of both ψ and F = N (0, 1). The effect also shows up by calculating the Edgeworth expansions;
cf. Remark 4.1. �

21



Acknowledgement

Both authors contributed equally to this work.

References

Andrews D.F., Bickel P.J., Hampel F.R., Huber P.J., Rogers W.H. and Tukey J.W. (1972): Robust
estimates of location. Survey and advances. Princeton University Press, Princeton, N. J.

Brandl M. (2008): Higher Order Asymptotics for the MSE of Robust M-Estimators of Location on
Shrinking Total Variation Neighborhoods. Dissertation, Universität Bayreuth, Bayreuth.

Field C. and Ronchetti E. (1990): Small sample asymptotics, Vol. 13 of IMS Lecture Notes - Monograph
Series.. Institute of Mathematical Statistics, Hayward, CA.

Field C.A. and Hampel F.R. (1982): Small-sample asymptotic distributions of M-estimators of location.
Biometrika, 69: 29–46.

Fraiman R., Yohai V.J. and Zamar R.H. (2001): Optimal robust M -estimates of location. Ann. Statist.,
29(1): 194–223.

Hall P. (1992): The bootstrap and Edgeworth expansion. Springer Series in Statistics. Springer-Verlag.
Huber P.J. (1964): Robust estimation of a location parameter. Ann. Math. Statist., 35: 73–101.
—— (1968): Robust confidence limits. Z. Wahrscheinlichkeitstheor. Verw. Geb., 10: 269–278.
—— (1981): Robust Statistics. Wiley Series in Probability and Mathematical Statistics. Wiley.
Ibragimov I. (1967): the Chebyshev-Cramér asymptotic expansions. Theor. Probab. Appl., 12: 454–469.
Kohl M. (2005): Numerical contributions to the asymptotic theory of robustness. Dissertation, Univer-

sität Bayreuth, Bayreuth.
R Development Core Team (2010): R: A language and environment for statistical computing. R Foun-

dation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
URL: http://www.R-project.org

Rieder H. (1980): Estimates derived from robust tests. Ann. Statist., 8: 106–115.
—— (1989): A finite-sample minimax regression estimator. Statistics, 20(2): 211–221.
—— (1994): Robust asymptotic statistics. Springer Series in Statistics. Springer.
—— (1995): Robustness in structured models. In: Rinne H. (Ed.) Grundlagen der Statistik und ihre

Anwendungen. Festschrift für Kurt Weichselberger., p. 172–187. Physica-Verlag, Berlin.
Ruckdeschel P. (2010a): Consequences of Higher Order Asymptotics for the MSE of M-estimators on

Neighborhoods. Submitted; ArXiV Nr. 1006.0123.
—— (2010b): Higher Order Asymptotics for the MSE of M-Estimators on Shrinking Neighborhoods.

Submitted; ArXiV Nr. 1006.0037.
Ruckdeschel P. and Kohl M. (2010): General Purpose Convolution Algorithm for Distributions in S4-

Classes by means of FFT. Submitted; available on the author’s web-page.

22



−2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

y

cd
f(

y)

µ = 1.089, σ = 0.545

dκ = 0.1788

n=2

−2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

y

cd
f(

y)

µ = 1.437, σ = 0.893

dκ = 0.0771

n=3

−4 −2 0 2 4 6

0.0

0.2

0.4

0.6

0.8

1.0

y

cd
f(

y)

µ = 1.776, σ = 1.209

dκ = 0.0403

n=4

−4 −2 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

y

cd
f(

y)
µ = 2.104, σ = 1.494

dκ = 0.0223

n=5

−5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

y

cd
f(

y)

µ = 3.338, σ = 2.423

dκ = 0.0074

n=10

−10 −5 0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

y

cd
f(

y)

µ = 5.045, σ = 3.627

dκ = 0.0034

n=20

cdf of

∑
i=1

n
ψc
~ (yi)



 under Qτn

″

n
    

cdf of N(µ, σ2 )

Figure 1: Finite sample distributions for radius ε = 0.1 and τ = 1.645 in case of contami-
nation neighborhoods.
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Figure 2: Finite sample distributions for radius δ = 0.05 and τ = 1.645 in case of total
variation neighborhoods.
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Figure 3: Finite sample distributions for radius ε = 0.5 and τ = 2.576 in case of contami-
nation neighborhoods.
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Figure 4: Finite sample distributions for radius δ = 0.25 and τ = 2.576 in case of total
variation neighborhoods.
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Figure 5: Finite sample risk for sample size n ≤ 25 given radius ε = 0.1, 0.5 (∗ = c) and
width τ = 2.576, 1.960, 1.645.
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Figure 6: Finite sample risk for sample size n ≤ 25 given radius δ = 0.05, 0.25 (∗ = v) and
width τ = 2.576, 1.960, 1.645.
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