Higher Order Optimal Influence Curves

Peter Ruckdeschel

Mathematisches Institut Peter.Ruckdeschel@uni-bayreuth.de www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL

ICORS 2007 Buenos Aires, September 19, 2007

Ideal Setup

Ideal Setup Infinitesimal Robust Setup and First Order Solutions Limitations of First Order Approach

Setup: inference on parameter θ in a model for i.i.d. observations

$$\mathcal{P} = \{ P_{\theta} \, | \, \theta \in \Theta \} \qquad \Theta \subset \mathbb{R}^k, \qquad \mathcal{P} \text{ "smooth"}$$

 common robust technique: use first order von-Mises (vM) expansion

Definition

influence curves at P_{θ} :

 $\Psi_2(\theta) = \{ \psi_{\theta} \in L_2^{i}(P_{\theta}) \mid E_{\theta} \psi_{\theta} = 0, \ E_{\theta} \psi_{\theta} \Lambda_{\theta}^{i} = \mathbb{I}_k \}$

asymptotically linear estimators:

$f_{\overline{n}}(S_n - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{\theta}(x_i) + o_{P_{\overline{n}}}(n^0)$

Ideal Setup

Ideal Setup Infinitesimal Robust Setup and First Order Solutions Limitations of First Order Approach

Setup: inference on parameter θ in a model for i.i.d. observations

$$\mathcal{P} = \{ P_{\theta} \, | \, \theta \in \Theta \} \qquad \Theta \subset \mathbb{R}^k, \qquad \mathcal{P} \text{ "smooth"}$$

 common robust technique: use first order von-Mises (vM) expansion

Definition

influence curves at P_{θ} :

$$\Psi_2(\theta) = \left\{ \psi_\theta \in L_2^k(P_\theta) \, | \, \operatorname{E}_\theta \psi_\theta = 0, \, \operatorname{E}_\theta \psi_\theta \Lambda_\theta^\tau = \mathbb{I}_k \right\}$$

asymptotically linear estimators:

$$\sqrt{n}(S_n - \theta) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_{\theta}(x_i) + o_{P_{\theta}^n}(n^0)$$

Ideal Setup Infinitesimal Robust Setup and First Order Solutions Limitations of First Order Approach

ヘロト ヘポト ヘヨト ヘヨト

э

Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

 $U_{c}(\theta, r, n) = \left\{ (1 - r/\sqrt{n})_{+} P_{\theta} + (1 \wedge r/\sqrt{n}) R \mid R \in \mathcal{M}_{1}(\mathcal{A}) \right\}$

Robust optimality problem: $\sup_{Q \in U_c} MSE_Q(\psi_{\theta}) = \min!$ here: $\sup_{Q \in U_c} MSE_Q(\psi_{\theta}) = E_{\theta} |\psi_{\theta}|^2 + r^2 \sup |\psi_{\theta}|^2$

Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]

unique solution is an IC $\tilde{\eta}_{\theta}$ of Hampel-type (HC-1), i.e.;

 $\widetilde{\eta}_{ heta} = (A_{ heta} \Lambda_{ heta} - a_{ heta}) w \qquad w = \min \left\{ 1, b_{ heta} / |A_{ heta} \Lambda_{ heta} - a_{ heta}|
ight\}$

with A_{θ} , a_{θ} , b_{θ} such that $E_{\theta} \tilde{\eta}_{\theta} = 0$, $E_{\theta} \tilde{\eta}_{\theta} \Lambda_{\theta}^{\tau} = \mathbb{I}_{k}$, and (MSE) $r^{2} b_{\theta} = E_{\theta} (|A_{\theta} \Lambda_{\theta} - a_{\theta}| - b_{\theta})_{+}$

Ideal Setup Infinitesimal Robust Setup and First Order Solutions Limitations of First Order Approach

イロト イポト イヨト イヨト

Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

$$U_{c}(\theta, r, n) = \left\{ (1 - r/\sqrt{n})_{+} P_{\theta} + (1 \wedge r/\sqrt{n}) R \mid R \in \mathcal{M}_{1}(\mathcal{A}) \right\}$$

Robust optimality problem: $\sup_{Q \in U_c} \operatorname{MSE}_Q(\psi_{\theta}) = \min!$ here: $\sup_{Q \in U_c} \operatorname{MSE}_Q(\psi_{\theta}) = \operatorname{E}_{\theta} |\psi_{\theta}|^2 + r^2 \sup |\psi_{\theta}|^2$

Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]

unique solution is an IC $\tilde{\eta}_{\theta}$ of Hampel-type (HC-1), i.e.;

$$ilde{\eta}_{ heta} = (A_{ heta} \Lambda_{ heta} - a_{ heta}) w \qquad w = \min \left\{ 1, b_{ heta} / |A_{ heta} \Lambda_{ heta} - a_{ heta}|
ight\}$$

with A_{θ} , a_{θ} , b_{θ} such that $E_{\theta} \tilde{\eta}_{\theta} = 0$, $E_{\theta} \tilde{\eta}_{\theta} \Lambda_{\theta}^{\tau} = \mathbb{I}_{k}$, and (MSE) $r^{2} b_{\theta} = E_{\theta} \left(|A_{\theta} \Lambda_{\theta} - a_{\theta}| - b_{\theta} \right)_{+}$

Ideal Setup Infinitesimal Robust Setup and First Order Solutions Limitations of First Order Approach

・ロト ・同ト ・ヨト ・ヨ

Limitations of First Order Approach

- So far: asymptotics is of first order, for both ALE and MSE
- Limitations (not a topic today): No indication
 - for the quality/speed of the convergence to what degree do radius r, sample size n and clipping height b affect the approximation?
 - which construction (achieving an optimally-robust IC asymptotically) to take
- Questions for this talk:
 - (Q1) Can we enhance finite sample performance using refined asymptotics?
 - (Q2) Hampel's conjecture:

—with regard to the corners of (first-order) MSE solution— Should not a finitely optimal IC be smooth?

Ideal Setup Infinitesimal Robust Setup and First Order Solutions Limitations of First Order Approach

・ロト ・同ト ・ヨト ・ヨ

Limitations of First Order Approach

- So far: asymptotics is of first order, for both ALE and MSE
- Limitations (not a topic today): No indication
 - for the quality/speed of the convergence to what degree do radius r, sample size n and clipping height b affect the approximation?
 - which construction (achieving an optimally-robust IC asymptotically) to take
- Questions for this talk:
 - (Q1) Can we enhance finite sample performance using refined asymptotics?
 - (Q2) Hampel's conjecture:

---with regard to the corners of (first-order) MSE solution----Should not a finitely optimal IC be smooth?

Does first order optimality imply second order optimality?

Classical Optimality (of IC of MLE):

- first order setup:
 - risk-independence in Asympt. Convolution Theorem / for all "bowl-shaped" risks in Asympt. Minimax Theorem
- second order setup: Pfanzagl's catchword

"First order optimality implies second order optimality"

Robust Optimality (of ICs from class HC-1):

- first order setup (R.& Rieder [& Kohl] (2004/2007))
 - risk-independence of the class
 - risk-dependence of the member within HC-1
 - radius-minimax ICs: risk-independence of the optimal member for all "homogeneous" risks
- second order setup:

(Q3) Does Pfanzagl's catchword apply to the robust setup, and if so in which way?

Does first order optimality imply second order optimality?

Classical Optimality (of IC of MLE):

- first order setup:
 - risk-independence in Asympt. Convolution Theorem / for all "bowl-shaped" risks in Asympt. Minimax Theorem
- second order setup: Pfanzagl's catchword

"First order optimality implies second order optimality"

Robust Optimality (of ICs from class HC-1):

- first order setup (R.& Rieder [& Kohl] (2004/2007))
 - risk-independence of the class
 - risk-dependence of the member within HC-1
 - radius-minimax ICs: risk-independence of the optimal member for all "homogeneous" risks
- second order setup:

(Q3) Does Pfanzagl's catchword apply to the robust setup, and if so in which way?

Optimality: Classical vs. Robust Uniform Expansions of the MSE

Uniform Expansions of the MSE

Theorem (R. [05(a,b,c)])

Let $\theta \mapsto \eta_{\theta}$ be smooth in $L_1(P_{\theta})$, S_n be an M- or a k-step-estimator to η_{θ} , and let starting estim. $\theta_n^{(0)}$ for the k-step-estimator be • uniformly $n^{1/4+\delta}$ -consistent on \tilde{U}_c for some $\delta > 0$ • uniformly square-integrable in n and on \tilde{U}_c hen $\max MSE(S_n) := n \sup MSE(S_n)$

for $A_0 = E_{\theta} |\eta_{\theta}|^2 + r^2 \sup |\eta_{\theta}|^2$ and A_1 , A_2 are constants depending on η_{θ} , r, and, for k-step-est., also on $\theta_n^{(0)}$

Optimality: Classical vs. Robust Uniform Expansions of the MSE

Uniform Expansions of the MSE

Theorem (R. [05(a,b,c)])

Let $\theta \mapsto \eta_{\theta}$ be smooth in $L_1(P_{\theta})$, S_n be an M- or a k-step-estimator to η_{θ} , and let starting estim. $\theta_n^{(0)}$ for the k-step-estimator be • uniformly $n^{1/4+\delta}$ -consistent on \tilde{U}_c for some $\delta > 0$ • uniformly square-integrable in n and on \tilde{U}_c Then $\max MSE(S_n) := n \sup_{Q_n \in \tilde{U}_c(r)} MSE(S_n)$

$$= A_0 + \frac{r}{\sqrt{n}} A_1 + \frac{1}{n} A_2 + o(\frac{1}{n})$$

for $A_0 = E_{\theta} |\eta_{\theta}|^2 + r^2 \sup |\eta_{\theta}|^2$ and A_1 , A_2 are constants depending on η_{θ} , r, and, for k-step-est., also on $\theta_n^{(0)}$

Second Order Optimality - Symmetric Case

Corollary

Let P_{θ} and ψ be symmetric:

Then $A_1 = 2r^2b^2 + v_0^2 + b^2$

i.e., a convex and isotone function in $\|\eta\|_{L_2}$ and $\|\eta\|_{L_{\infty}}$ — the same terms arising in first order term A_0 .

Consequence:

(ad Q3) Pfanzagl's "rule" for **class** HC-1: Second order optimal (s-o-o) IC is of HC-1-form

 $A\Lambda\min\{1,c_1/|\Lambda|\}$

but with adjusted s-o-o clipping height c_1 determined as

$$r^{2}c_{1}\left(1+\frac{r^{2}+1}{r^{2}+r\sqrt{n}}\right) = \mathrm{E}(|\Lambda|-c_{1})_{+}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Second Order Optimality - Symmetric Case

Corollary

Let P_{θ} and ψ be symmetric:

Then $A_1 = 2r^2b^2 + v_0^2 + b^2$

i.e., a convex and isotone function in $\|\eta\|_{L_2}$ and $\|\eta\|_{L_{\infty}}$ — the same terms arising in first order term A_0 .

Consequence:

(ad Q3) Pfanzagl's "rule" for class HC-1: Second order optimal (s-o-o) IC is of HC-1-form

 $A\Lambda\min\{1,c_1/|\Lambda|\}$

but with adjusted s-o-o clipping height c_1 determined as

$$r^{2}c_{1}\left(1+\frac{r^{2}+1}{r^{2}+r\sqrt{n}}\right) = \mathrm{E}(|\Lambda|-c_{1})_{+}$$

・ロト ・同ト ・ヨト ・ヨ

One dimensional location Second Order Optimal Clipping (Numerically) Exact maxMSE

Second Order Optimal Clipping

If $h(c):=\mathrm{E}(|\mathsf{A}|-c)_+$ is differentiable in the f-o-o c_0 ,

$$c_1 = c_0 \left(1 - \frac{1}{\sqrt{n}} \frac{r^3 + r}{r^2 - h'(c_0)} \right) + o(\frac{1}{\sqrt{n}})$$

 \implies As h' < 0, $c_1 < c_0$ always

i.e.; first order asymptotics is too optimistic

- as c₁ is optimal, s-o risk behaves locally as a parabola with vertex in c₁; hence the risk-improvement of c₁ compared to c₀ is O(1/n)
- same goes for t-o-o clipping height $c_2 \implies$ risk-improvement of c_2 compared to c_1 is $O(1/n^2)$

(ad Q1) there is —albeit little— enhancement by higher order asymptotics

One dimensional location Second Order Optimal Clipping (Numerically) Exact maxMSE

Second Order Optimal Clipping

If $h(c):=\mathrm{E}(|\mathsf{A}|-c)_+$ is differentiable in the f-o-o c_0 ,

$$c_1 = c_0 \left(1 - \frac{1}{\sqrt{n}} \frac{r^3 + r}{r^2 - h'(c_0)} \right) + o(\frac{1}{\sqrt{n}})$$

 \implies As h' < 0, $c_1 < c_0$ always

i.e.; first order asymptotics is too optimistic

- as c_1 is optimal, s-o risk behaves locally as a parabola with vertex in c_1 ; hence the risk-improvement of c_1 compared to c_0 is O(1/n)
- same goes for t-o-o clipping height $c_2 \implies$ risk-improvement of c_2 compared to c_1 is $O(1/n^2)$

(ad Q1) there is —albeit little— enhancement by higher order asymptotics

One dimensional location Second Order Optimal Clipping (Numerically) Exact maxMSE

Optimal c's and corresp. (num.) exact $\max MSE$ at $\mathcal{N}(heta, 1)$

-n = 20, r = 0.3-:

		exac	t risk:	asymptotic risk:			
	с	relMSE _n	$\max MSE_n^{ex}$	Ao	$A_0 + \frac{r}{\sqrt{n}}A_1$	$A_0 + \frac{r}{\sqrt{n}} A_1 + \frac{1}{n} A_2$	
Median	0+	16.413%	1.911	1.712	1.942	1.875	
η_{c_0}	1.213	1.548%	1.667	1.290	1.556	1.615	
η_{c_1}	1.017	0.117%	1.643	1.299	1.544	1.596	
η_{c_2}	0.972	0.017%	1.642	1.299	1.544	1.596	
$\eta_{c_{\rm FZY}}$	0.991	0.049%	1.642	1.301	1.545	1.596	
$\eta_{c_{ex}}$	0.939	_	1.641	1.307	1.545	1.596	

C0	f-o-o: by equation we just saw
C1	s-o-o: by equation we just saw
c2	third order: num. optimization of MSE in HC-1
cFZY	num optimization of a proposal by Fraiman et al.
c_{ex}	num optimization of the (num) exact MSE

(日) (同) (三) (三)

One dimensional Scale One dimensional Location and Scale Summary

One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let S_n be two-step estimator to IC η_{θ} (with e.g. MAD as starting estimator) Then maxMSE(S_n) = $A_0 + \frac{r}{\sqrt{n}} A_1 + o(\frac{1}{\sqrt{n}})$ for $\Lambda = \frac{\partial}{\partial \theta} \log p_{\theta}, \qquad L_2 = \frac{\partial^2}{\partial \theta^2} \log p_{\theta}$

One dimensional Scale One dimensional Location and Scale Summary

One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let
$$S_n$$
 be two-step estimator to $IC \eta_{\theta}$
(with e.g. MAD as starting estimator)
Then maxMSE $(S_n) = A_0 + \frac{r}{\sqrt{n}} A_1 + o(\frac{1}{\sqrt{n}})$
for $A_0 = v_0^2 + r^2 b^2$, $v_0^2 = E_{\theta} \eta_{\theta}^2$, $b = \sup |\eta_{\theta}|$
 $A_1 = v_0^2 + b^2(1 + 2r^2) + b | l_2 (3v_0^2 + r^2 b^2) + 2v_1 |$
for $l_2 = \frac{d^2}{dt^2} E_{\theta} \eta_t |_{t=\theta}$, $v_1 = \frac{d}{dt} E_{\theta} \eta_t^2 |_{t=\theta}$
Shifting differentiation to P_{θ} — integration by parts and scale invariance:
 $A_1 = E \eta^2 + b^2(1 + 2r^2) +$
 $+ b | E \eta^2(4 - 2\Lambda) + E \eta L_2(3 E \eta^2 + r^2 b^2) |$
for $\Lambda = \frac{\partial}{\partial \theta} \log p_{\theta}$, $L_2 = \frac{\partial^2}{\partial \theta^2} \log p_{\theta}$
Peter Ruckdeschel Higher Order Optimal Influence Curves

One dimensional Scale One dimensional Location and Scale Summary

One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let
$$S_n$$
 be two-step estimator to $IC \eta_{\theta}$
(with e.g. MAD as starting estimator)
hen $\max MSE(S_n) = A_0 + \frac{r}{\sqrt{n}} A_1 + o(\frac{1}{\sqrt{n}})$
for $A_0 = v_0^2 + r^2 b^2$, $v_0^2 = E_{\theta} \eta_{\theta}^2$, $b = \sup |\eta_{\theta}|$
 $A_1 = v_0^2 + b^2(1 + 2r^2) + b \left| l_2 (3v_0^2 + r^2 b^2) + 2v_1 \right|$
for $l_2 = \frac{d^2}{dt^2} E_{\theta} \eta_t \Big|_{t=\theta}$, $v_1 = \frac{d}{dt} E_{\theta} \eta_t^2 \Big|_{t=\theta}$

Shifting differentiation to P_{θ} — integration by parts and scale invariance:

$$A_{1} = E \eta^{2} + b^{2}(1 + 2r^{2}) + b \left| E \eta^{2}(4 - 2\Lambda) + E \eta L_{2}(3 E \eta^{2} + r^{2}b^{2}) \right|$$

for $\Lambda = \frac{\partial}{\partial \theta} \log p_{\theta}, \quad L_{2} = \frac{\partial^{2}}{\partial \theta^{2}} \log p_{\theta}$

One dimensional Scale One dimensional Location and Scale Summary

Second Order Optimality Problems

MSE-2

$$F_n(\eta) := A_0(\eta) + \frac{r}{\sqrt{n}} A_1(\eta) = \min ! \qquad \eta \ \mathsf{IC}, \ \eta \in L_3(P)$$

Structure of the problem suited for convex optimization

- admitted functions form convex set
- F_n is coercive \rightsquigarrow restriction to some bounded L_∞ -ball possible
- eventually in n, F_n is weakly lower semicontinuous in L₃ and strictly convex ⇒ unique minimum solution exists
- Slater condition fulfilled ~→ Lagrange multipliers exist
- equivalence to Hampel-problem: for $r_n = \frac{r}{\sqrt{n+r}}$ and

$$H_n(\eta) = \mathbb{E} \,\eta^2 + r_n b \left(2 \mathbb{E} \,\eta^2 (2 - \Lambda) + \mathbb{E} \,\eta L_2(3 \mathbb{E} \,\eta^2 + r^2 b^2) \right)$$

P-2 $H_n(\eta) = \min !$ for η IC and $\sup |\eta| \le b$

One dimensional Scale One dimensional Location and Scale Summary

Second Order Optimality Problems

MSE-2

HP

$$F_n(\eta) := A_0(\eta) + \frac{r}{\sqrt{n}} A_1(\eta) = \min ! \qquad \eta \mid \mathsf{C}, \ \eta \in L_3(P)$$

Structure of the problem suited for convex optimization

- admitted functions form convex set
- F_n is coercive \rightsquigarrow restriction to some bounded L_∞ -ball possible
- eventually in n, F_n is weakly lower semicontinuous in L₃ and strictly convex ⇒ unique minimum solution exists
- Slater condition fulfilled → Lagrange multipliers exist
- equivalence to Hampel-problem: for $r_n = \frac{r}{\sqrt{n+r}}$ and

$$H_n(\eta) = \operatorname{E} \eta^2 + r_n b \left(2 \operatorname{E} \eta^2 (2 - \Lambda) + \operatorname{E} \eta L_2 (3 \operatorname{E} \eta^2 + r^2 b^2) \right)$$

-2
$$H_n(\eta) = \min !$$
 for η IC and $\sup |\eta| \le b$

Solution for fixed *b*

Solution to HP-1 for fixed *b* "Hampel-type-1" (HC-1)

$$\hat{\eta} = Y \min\{1, \frac{b}{|Y|}\}$$

for

$$Y = A\Lambda - a$$

with scores Λ , Lagrange multipliers A, a, and bias bound b

Gaussian case:

$$Y = Ax^2 - a$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One dimensional Scale

One dimensional Location and Scale

Solution for fixed b

Solution to HP-2 for fixed *b* "Hampel-type-2" (HC-2)

$$\hat{\eta} = Y_n \min\{1, \frac{b}{|Y_n|}\}, \qquad Y_n = \frac{Y - r_n b L_2 (r^2 b^2 + 3v_0^2)/2}{1 + r_n b (4 - 2\Lambda + 3l_2)}$$

for

$$Y = A\Lambda - a, \qquad v_0^2 = \mathrm{E} Y^2, \qquad l_2 = \mathrm{E} L_2$$

with scores Λ , Lagrange multipliers A, a, and bias bound b, and second order radius term $r_n = r/(\sqrt{n} + r)$

Gaussian case:

$$Y_n = \frac{Ax^2 - a - r_n b(x^4 - 5x^2 + 2)(3v_0^2 + r^2 b^2)/2}{1 + r_n b(6 - 2x^2 + 3l_2)}$$

・ 同 ト ・ ヨ ト ・ ヨ

One dimensional Scale

One dimensional Location and Scale

Solution for fixed b

Solution to HP-2 for fixed *b* "Hampel-type-2" (HC-2)

$$\hat{\eta} = Y_n \min\{1, \frac{b}{|Y_n|}\}, \qquad Y_n = \frac{Y - r_n b L_2 (r^2 b^2 + 3v_0^2)/2}{1 + r_n b (4 - 2\Lambda + 3l_2)}$$

One dimensional Scale

One dimensional Location and Scale

for

$$Y = A\Lambda - a,$$
 $v_0^2 = E Y^2,$ $l_2 = E L_2$

Gaussian case:

$$Y_n = \frac{Ax^2 - a - r_n b(x^4 - 5x^2 + 2)(3v_0^2 + r^2b^2)/2}{1 + r_n b(6 - 2x^2 + 3l_2)}$$

Problem:

 | · |-expression in s-o-term A₁ in maxMSE: b in f-o-term A₀ may be induced by positive or negative bias
 i.e.; maxMSE(η) = A₀(η) + r/√n max (A₁(η,-b), A₁(η,b))

One dimensional Scale One dimensional Location and Scale Summary

Positive or Negative Bias?

- to be checked for any second-order MSE-solution
- numerically for Gaussian scale case: left situation (optimum in intersection point of parabolas)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

One dimensional Scale One dimensional Location and Scale Summary

Hampel-type ICs Second Order Optimal?

- (ad Q3) Possible gain in (s-o-)maxMSE w.r.t. s-o-clipping-adjusted HC-1-type IC $< 10^{-5}$!!
 - -consequence:
 - may stay in class HC-1 of Hampel-type ICs
 - simply adjust clipping height w.r.t. first order optimal solution
 - Pfanzagl's "rule" for class HC-1

(ad Q2) General feature:

- no matter whether optimal solution $\hat{\eta}$ is of type HC-1 or HC-2: Solution involves clipping!
- if $Y'_{[n]} \neq 0$ in clipping points: *non-smooth* optimal IC
- argument applies to arbitrary asymptotic order (3rd, 4th,...)

(日) (同) (三) (三)

One dimensional Scale One dimensional Location and Scale Summary

Hampel-type ICs Second Order Optimal?

- (ad Q3) Possible gain in (s-o-)maxMSE w.r.t. s-o-clipping-adjusted HC-1-type IC $< 10^{-5}$!!
 - -consequence:
 - may stay in class HC-1 of Hampel-type ICs
 - simply adjust clipping height w.r.t. first order optimal solution
 - Pfanzagl's "rule" for class HC-1

(ad Q2) General feature:

• no matter whether optimal solution $\hat{\eta}$ is of type HC-1 or HC-2:

Solution involves clipping!

- if $Y'_{[n]} \neq 0$ in clipping points: *non-smooth* optimal IC
- argument applies to arbitrary asymptotic order (3rd, 4th,...)

(日) (同) (三) (三)

One dimensional Scale One dimensional Location and Scale Summary

Second Order MSE-Optimal IC to r = 0.3

MSE–Optimal ICs in N(0, θ^2)

Peter Ruckdeschel Higher Order Optimal Influence Curves

One dimensional Scale One dimensional Location and Scale Summary

Optimal b's and corresp. empirical maxMSE

emp. results for $\mathcal{N}(0, heta^2)$ at n=20, r=0.3 at M=90000 runs:

		empirical risk:				asymptotic risk:		
	Ь	$\mathrm{relMSE}_{\textit{n}}^{\mathrm{sim}}$	$\max MSE_n^{sim}$			A ₀	$A_0 + \frac{r}{\sqrt{n}}A_1$	
MAD	1.166	24.18%	1.822	[1.801;	1.843]	1.223	1.487	
η_{b_0}	1.671	27.48%	1.870	[1.836;	1.905]	0.892	1.075	
η_{b_1} (HC-1)	1.530	8.75%	1.596	[1.572;	1.619]	0.905	1.057	
η_{b_1} (HC-2)	1.531	8.63%	1.594	[1.571;	1.617]	0.906	1.060	
$\eta_{b_{\rm sim}}$	1.346		1.467	[1.450;	1.484]	0.945	1.105	

b0 f-o-o: optimized A0 within HC-1

 b_1 s-o-o: optimized $A_0 + \frac{r}{\sqrt{n}}A_1$ within HC-1/HC-2

 b_{sim} | num. optimization of the (empirical) maxMSE within HC-1

Consequences:

• first order asymptotics too optimistic

(ad Q1) considerable enhancement by 2nd order asymptotics -

• but: still room for improvement by 3rd order asymptotics

One dimensional Scale One dimensional Location and Scale Summary

One dimensional Location and Scale for symmetric F

Corollary (Second order optimality for one-dim. location and scale)

Let S_n be two-step estimator to IC η_{θ} (with e.g. (Median, MAD) as starting estimator)

Then

$$\max \text{MSE}(S_n) = n \sup_{Q_n \in \tilde{U}_c(r)} \text{MSE}(S_n)$$
$$= A_0 + \frac{r}{\sqrt{n}} A_1 + o(\frac{1}{\sqrt{n}})$$

for $A_0 = \operatorname{E}_{ heta} |\eta_{ heta}|^2 + r^2 b_{ heta}^2$, $b_{ heta} = \sup |\eta_{ heta}|$ and

 A_1 only slightly more complicated than in pure scale case

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One dimensional Scale One dimensional Location and Scale Summary

Structure of the Solution

- similar arguments as in scale case
- location component is odd, scale component even
- adaptivity also holds for second order asymptotics (but nuisance part has to have bounded IC)
- positive/negative bias: here right situation in the parabola picture (optimum in a vertex of a parabola)

(ad Q3) possible gain in (s-o-)maxMSE w.r.t. s-o-clipping-adjusted HC-1 IC $\ll 1\%$!! —hence grossly speaking:

- may stay in class HC-1 of Hampel-type ICs
- simply adjust clipping height w.r.t. first order optimal solution
- again: Pfanzagl's "rule" for class HC-1

・ロト ・同ト ・ヨト ・ヨ

One dimensional Scale One dimensional Location and Scale Summary

Structure of the Solution

- similar arguments as in scale case
- location component is odd, scale component even
- adaptivity also holds for second order asymptotics (but nuisance part has to have bounded IC)
- positive/negative bias: here right situation in the parabola picture (optimum in a vertex of a parabola)
- (ad Q3) possible gain in (s-o-)maxMSE w.r.t. s-o-clipping-adjusted HC-1 IC $\ll 1\%$!! —hence grossly speaking:
 - may stay in class HC-1 of Hampel-type ICs
 - simply adjust clipping height w.r.t. first order optimal solution
 - again: Pfanzagl's "rule" for class HC-1

・ロト ・ 同ト ・ ヨト ・ ヨ

One dimensional Location and Scale

Second Order MSE-Optimal IC to r = 0.3

2.0

2

1.0 ĥ_{sca}(x)

0.5

0.5

-10 -5 0 5 10

Location-component

Scale-component

Relative information of location

Eucl. length of the IC

Sample size n = 20 (starting) radius r = 0.3 (actual radius 0.067)

- 1st-order-opt in HC-2
 - 2nd-order-opt in HC-2
- classic.-opt IC

(ad Q2) coordinate-wise. $\hat{\eta}_{loc}, \hat{\eta}_{sca}$: smooth Euclidean length: $\sqrt{\hat{\eta}_{loc}^2 + \hat{\eta}_{sca}^2}$: non-smooth!

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One dimensional Scale One dimensional Location and Scale Summary

Optimal b's and corresp. empirical maxMSE

emp. results for $\mathcal{N}(heta_{ ext{loc}}, heta_{ ext{sca}}^2)$ at n= 20, r= 0.3 at M= 90000 runs:

		empirical risk:				asymptotic risk:		
	Ь	$\mathrm{relMSE}_{\textit{n}}^{\mathrm{sim}}$	$\max MSE_n^{sim}$			A ₀	$A_0 + \frac{r}{\sqrt{n}}A_1$	
(Median;MAD)	1.713	22.38%	3.747	[3.716;	3.777]	3.057	3.629	
η_{b_0}	2.221	37.37%	4.205	[4.117;	4.294]	2.154	2.768	
η_{b_1} (HC-1)	2.116	23.52%	3.782	3.713	3.850]	2.161	2.757	
η_{b_1} (HC-2)	2.103	19.51%	3.659	[3.590;	3.720]	2.167	2.753	
$\eta_{b_{\rm sim}}$	1.744		3.061	[3.033;	3.090]	2.406	3.069	

b0 f-o-o: optimized A0 within HC-1

 b_1 s-o-o: optimized $A_0 + \frac{r}{\sqrt{n}} A_1$ within HC-1/HC-2

 b_{sim} | num. optimization of the (empirical) maxMSE within HC-1

Consequences:

• again: first order asymptotics too optimistic

(ad Q1) again: enhancement by 2nd order asymptotics —

• but even 2nd order asymptotics probably not enough

One dimensional Scale One dimensional Location and Scale Summary

Summary: Answers to (Q1)-(Q3)

(Q1) Can we enhance finite sample performance using refined asymptotics?

Yes, we can — for location only a little, for scale and location/scale considerably...

 (Q2) Hampel's conjecture: "Should not a finitely optimal IC be smooth?"
 Regarding higher order asymptotics: No, they should not.

(Q3) Does Pfanzagl's catchword "First order optimality implies second order optimality" apply to the robust setup, and if so in which way? Grossly speaking:
 Yes, it does classwise for class (HC-1). However, first order optimal clipping height is too optimistic.

(日) (同) (三) (三)

Bibliography

One dimensional Scale One dimensional Location and Scale Summary

- H. Rieder (1994): Robust Asymptotic Statistics. Springer.
- P. Ruckdeschel (2005(a)): Higher order asymptotics for the MSE of M estimators on shrinking neighborhoods. Submitted. Also available in http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/pubs/mest1.pdf.
- P. Ruckdeschel (2005(b)): Higher order asymptotics for the MSE of the median on shrinking neighborhoods. Submitted. Also available in http://www.uni-bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL/pubs/medmse.pdf.
- P. Ruckdeschel (2005(c)): Higher order asymptotics for the MSE of k-step-estimators on shrinking neighborhoods. In preparation.

For references please confer the handout to this talk on my web-page.

Thank you for your attention!

4 日 2 4 周 2 4 月 2 4 月

One dimensional Scale One dimensional Location and Scale Summary

Uniform Expansions of the MSE II

Exact expressions for term A_1 for 1-step-estimator Let η_{θ} bounded and two times differentiable in $L_1(P_{\theta})$, $\theta_n^{(0)} = \theta + \frac{1}{n} \sum \tilde{\eta}_{\theta}(x_i) + o_{L_1(\tilde{U}_c)}(n^{-1/2})$ for a bounded IC $\tilde{\eta}_{\theta}$, hen

$$\begin{array}{lll} A_{1} & = & 2\operatorname{Cov}_{\theta}(\eta_{\theta},\tilde{\eta}_{\theta}) - \operatorname{Var}_{\theta}\eta_{\theta}^{2} + b_{\theta}^{2} \\ & & + 2b_{\theta}\left.\frac{d}{dt}\operatorname{Cov}_{\theta}(\eta_{t},\tilde{\eta}_{\theta})\right|_{t=\theta} + 2\tilde{b}_{\theta}\left.\frac{d}{dt}\operatorname{Var}_{\theta}\eta_{t}\right|_{t=\theta} \\ & & + \left.\frac{d^{2}}{dt^{2}}\operatorname{E}_{\theta}\eta_{t}\right|_{t=\theta}\left[b_{\theta}\operatorname{Var}_{\theta}\tilde{\eta}_{\theta} + 2\tilde{b}_{\theta}\operatorname{Cov}_{\theta}(\eta_{\theta},\tilde{\eta}_{\theta})\right] \\ & & + r^{2}\tilde{b}_{\theta}b_{\theta}\left[2 + \tilde{b}_{\theta}\left.\frac{d^{2}}{dt^{2}}\operatorname{E}_{\theta}\eta_{t}\right|_{t=\theta}\right] \\ & \text{where} \qquad b_{\theta} = \sup|\eta_{\theta}|, \quad \tilde{b}_{\theta} = \limsup\sup_{\varepsilon\downarrow 0} \sup|\tilde{\eta}_{\theta}|\operatorname{I}(|\eta_{\theta}| \ge b_{\theta} - \varepsilon) \end{array}$$

M-est put $ilde{\eta}_{ heta} = \eta_{ heta}$

・ 同 ト ・ ヨ ト ・ ヨ

One dimensional Scale One dimensional Location and Scale Summary

Uniform Expansions of the MSE II

Exact expressions for term A_1 for 1-step-estimator

Let η_{θ} bounded and two times differentiable in $L_1(P_{\theta})$,

$$\theta_n^{(0)} = \theta + \frac{1}{n} \sum \tilde{\eta}_{\theta}(x_i) + \circ_{L_1(\tilde{U}_c)}(n^{-1/2})$$
 for a bounded IC $\tilde{\eta}_{\theta}$,

Then

$$\begin{array}{lll} A_{1} & = & 2\operatorname{Cov}_{\theta}(\eta_{\theta},\tilde{\eta}_{\theta}) - \operatorname{Var}_{\theta}\eta_{\theta}^{2} + b_{\theta}^{2} \\ & & + 2b_{\theta} \frac{d}{dt}\operatorname{Cov}_{\theta}(\eta_{t},\tilde{\eta}_{\theta})\big|_{t=\theta} + 2\tilde{b}_{\theta} \frac{d}{dt}\operatorname{Var}_{\theta}\eta_{t}\big|_{t=\theta} \\ & & + \frac{d^{2}}{dt^{2}}\operatorname{E}_{\theta}\eta_{t}\big|_{t=\theta} \left[b_{\theta}\operatorname{Var}_{\theta}\tilde{\eta}_{\theta} + 2\tilde{b}_{\theta}\operatorname{Cov}_{\theta}(\eta_{\theta},\tilde{\eta}_{\theta})\right] \\ & & + r^{2}\tilde{b}_{\theta}b_{\theta}\left[2 + \tilde{b}_{\theta} \frac{d^{2}}{dt^{2}}\operatorname{E}_{\theta}\eta_{t}\big|_{t=\theta}\right] \\ \text{where} \qquad b_{\theta} = \sup|\eta_{\theta}|, \quad \tilde{b}_{\theta} = \limsup\sup_{\varepsilon\downarrow 0} \sup|\tilde{\eta}_{\theta}|\operatorname{I}(|\eta_{\theta}| \ge b_{\theta} - \varepsilon) \end{array}$$

M-est put $\tilde{\eta}_{ heta} = \eta_{ heta}$

・ 同 ト ・ ヨ ト ・ ヨ

One dimensional Scale One dimensional Location and Scale Summary

Uniform Expansions of the MSE II

Exact expressions for term A_1 for 1-step-estimator

Let η_{θ} bounded and two times differentiable in $L_1(P_{\theta})$,

$$\theta_n^{(0)} = \theta + \frac{1}{n} \sum \tilde{\eta}_{\theta}(x_i) + o_{L_1(\tilde{U}_c)}(n^{-1/2})$$
 for a bounded IC $\tilde{\eta}_{\theta}$,

$$\begin{aligned} A_{1} &= 2\operatorname{Cov}_{\theta}(\eta_{\theta}, \tilde{\eta}_{\theta}) - \operatorname{Var}_{\theta} \eta_{\theta}^{2} + b_{\theta}^{2} \\ &+ 2b_{\theta} \frac{d}{dt} \operatorname{Cov}_{\theta}(\eta_{t}, \tilde{\eta}_{\theta})\big|_{t=\theta} + 2\tilde{b}_{\theta} \frac{d}{dt} \operatorname{Var}_{\theta} \eta_{t}\big|_{t=\theta} \\ &+ \frac{d^{2}}{dt^{2}} \operatorname{E}_{\theta} \eta_{t}\big|_{t=\theta} \left[b_{\theta} \operatorname{Var}_{\theta} \tilde{\eta}_{\theta} + 2\tilde{b}_{\theta} \operatorname{Cov}_{\theta}(\eta_{\theta}, \tilde{\eta}_{\theta})\right] \\ &+ r^{2} \tilde{b}_{\theta} b_{\theta} \left[2 + \tilde{b}_{\theta} \frac{d^{2}}{dt^{2}} \operatorname{E}_{\theta} \eta_{t}\big|_{t=\theta}\right] \\ \end{aligned}$$
where
$$b_{\theta} = \sup |\eta_{\theta}|, \quad \tilde{b}_{\theta} = \limsup \sup |\eta_{\theta}| \operatorname{I}(|\eta_{\theta}| \ge b_{\theta} - \varepsilon)$$

M-est put $ilde{\eta}_{ heta} = \eta_{ heta}$

Then

4 3 b

One dimensional Scale One dimensional Location and Scale Summary

Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:

- total variation $\hat{=}$ replacement outliers
- maxMSE has a higher order expansion
- asymmetric case
 - already in first order asymptotics different solutions for convex contamination and total variation [Ri:94]
 - asymmetric clipping for first order optimal optimal solution [Ri:94]
- symmetric case
 - $A_1 = 0$ first correction term in maxMSE of order $O(n^{-1})$
 - \Rightarrow faster convergence of $\max MSE$
- (ad Q3) Pfanzagl's "rule" memberwise in HC-1
- (ad Q1) no enhancement by second order asymptotics

・ロト ・同ト ・ヨト ・ヨ

One dimensional Scale One dimensional Location and Scale Summary

Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:

- total variation $\hat{=}$ replacement outliers
- maxMSE has a higher order expansion
- asymmetric case
 - already in first order asymptotics different solutions for convex contamination and total variation [Ri:94]
 - asymmetric clipping for first order optimal optimal solution [Ri:94]
- symmetric case
 - $A_1 = 0$ first correction term in maxMSE of order $O(n^{-1})$
 - \implies faster convergence of $\max MSE$
- (ad Q3) Pfanzagl's "rule" memberwise in HC-1
- (ad Q1) no enhancement by second order asymptotics

・ロト ・同ト ・ヨト ・ヨ

One dimensional Scale One dimensional Location and Scale Summary

Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:

- total variation $\hat{=}$ replacement outliers
- maxMSE has a higher order expansion
- asymmetric case
 - already in first order asymptotics different solutions for convex contamination and total variation [Ri:94]
 - asymmetric clipping for first order optimal optimal solution [Ri:94]
- symmetric case
 - $A_1 = 0$ first correction term in maxMSE of order $O(n^{-1})$
 - \implies faster convergence of $\max MSE$
- (ad Q3) Pfanzagl's "rule" memberwise in HC-1
- (ad Q1) no enhancement by second order asymptotics

4 日 2 4 周 2 4 月 2 4 月