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Ideal Setup

Setup: inference on parameter θ in a model for i.i.d. observations

P = {Pθ | θ ∈ Θ} Θ ⊂ Rk , P �smooth�

common robust technique:
use �rst order von-Mises (vM) expansion

De�nition

in�uence curves at Pθ:

Ψ2(θ) =
{
ψθ ∈ Lk

2
(Pθ) | Eθ ψθ = 0, Eθ ψθΛτθ = Ik

}
asymptotically linear estimators:

√
n (Sn − θ) =

1√
n

n∑
i=1

ψθ(xi ) + oPn

θ
(n0)
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In�nitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

Uc(θ, r , n) =
{

(1− r/
√
n )+Pθ + (1 ∧ r/

√
n )R

∣∣R ∈M1(A)
}

Robust optimality problem: supQ∈Uc
MSEQ(ψθ) = min!

here: supQ∈Uc
MSEQ(ψθ) = Eθ |ψθ|2 + r2 sup |ψθ|2

Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]

unique solution is an IC η̃θ of Hampel-type (HC-1), i.e.;

η̃θ = (AθΛθ − aθ)w w = min
{
1, bθ/|AθΛθ − aθ|

}
with Aθ, aθ, bθ such that Eθ η̃θ = 0, Eθ η̃θΛτθ = Ik , and

(MSE) r2bθ = Eθ

(
|AθΛθ − aθ| − bθ

)
+
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Limitations of First Order Approach

So far: asymptotics is of �rst order, for both ALE and MSE

Limitations (not a topic today): No indication

- for the quality/speed of the convergence � to what degree do
radius r , sample size n and clipping height b a�ect the
approximation?

- which construction (achieving an optimally�robust IC
asymptotically) to take

Questions for this talk:

(Q1) Can we enhance �nite sample performance using re�ned

asymptotics?

(Q2) Hampel's conjecture:

�with regard to the corners of (�rst-order) MSE solution�
Should not a �nitely optimal IC be smooth?
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Optimality: Classical vs. Robust
Uniform Expansions of the MSE

Does �rst order optimality imply second order optimality?

Classical Optimality (of IC of MLE):
�rst order setup:

risk-independence in Asympt. Convolution Theorem / for all
�bowl-shaped� risks in Asympt. Minimax Theorem

second order setup: Pfanzagl's catchword
�First order optimality implies second order optimality�

Robust Optimality (of ICs from class HC-1):
�rst order setup (R.& Rieder [& Kohl] (2004/2007))

risk-independence of the class
risk-dependence of the member within HC-1
radius-minimax ICs: risk-independence of the optimal member
for all �homogeneous� risks

second order setup:

(Q3) Does Pfanzagl's catchword apply to the robust setup,
and if so in which way?
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Uniform Expansions of the MSE

Theorem (R. [05(a,b,c)])

Let θ 7→ ηθ be smooth in L1(Pθ),

Sn be an M- or a k-step-estimator to ηθ, and

let starting estim. θ
(0)
n for the k-step-estimator be

uniformly n1/4+δ-consistent on Ũc for some δ > 0
uniformly square-integrable in n and on Ũc

Then maxMSE(Sn) := n sup
Qn∈Ũc(r)

MSE(Sn)

= A0 + r√
n
A1 + 1

n
A2 + o( 1

n
)

for A0 = Eθ |ηθ|2 + r2 sup |ηθ|2 and A1, A2 are constants

depending on ηθ, r , and, for k-step-est., also on θ
(0)
n
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Second Order Optimality - Symmetric Case

Corollary

Let Pθ and ψ be symmetric:

Then A1 = 2r2b2 + v2
0

+ b2

i.e., a convex and isotone function in ‖η‖L2 and ‖η‖L∞� the

same terms arising in �rst order term A0.

Consequence:
(ad Q3) Pfanzagl's �rule� for class HC-1:
Second order optimal (s-o-o) IC is of HC-1-form

AΛmin{1, c1/|Λ|}
but with adjusted s-o-o clipping height c1 determined as

r2c1

(
1 +

r2 + 1

r2 + r
√
n

)
= E(|Λ| − c1)+
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Second Order Optimal Clipping

If h(c) := E(|Λ| − c)+ is di�erentiable in the f-o-o c0,

c1 = c0

(
1− 1√

n

r3 + r

r2 − h′(c0)

)
+ o(

1√
n

)

=⇒ As h′ < 0, c1 < c0 always

i.e.; �rst order asymptotics is too optimistic

as c1 is optimal, s-o risk behaves locally as a parabola with
vertex in c1; hence the risk-improvement of c1 compared to c0
is O(1/n)

same goes for t-o-o clipping height c2 =⇒ risk-improvement of
c2 compared to c1 is O(1/n2)

(ad Q1) there is �albeit little� enhancement by higher order
asymptotics
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Optimal c 's and corresp. (num.) exact maxMSE at N (θ, 1)

�n = 20, r = 0.3�:

exact risk: asymptotic risk:
c relMSE

ex

n maxMSE
ex

n A0 A0+ r√
n

A1 A0+
r√
n
A1+

1
n
A2

Median 0+ 16.413% 1.911 1.712 1.942 1.875
ηc0 1.213 1.548% 1.667 1.290 1.556 1.615
ηc1 1.017 0.117% 1.643 1.299 1.544 1.596
ηc2 0.972 0.017% 1.642 1.299 1.544 1.596
ηcFZY 0.991 0.049% 1.642 1.301 1.545 1.596
ηcex 0.939 � 1.641 1.307 1.545 1.596

c0 f-o-o: by equation we just saw
c1 s-o-o: by equation we just saw
c2 third order: num. optimization of MSE in HC-1
cFZY num. optimization of a proposal by Fraiman et al.
cex num. optimization of the (num.) exact MSE
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One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let Sn be two-step estimator to IC ηθ
(with e.g. MAD as starting estimator)

Then maxMSE(Sn) = A0 + r√
n
A1 + o( 1√

n
)

for A0 = v20 + r2b2, v20 = Eθ η
2

θ , b = sup |ηθ|

A1 = v20 + b2(1 + 2r2) + b
∣∣∣l2 (3v20 + r2b2) + 2 v1

∣∣∣
for l2 = d2

dt2
Eθ ηt

∣∣
t=θ

, v1 = d
dt
Eθ η

2
t

∣∣
t=θ

Shifting di�erentiation to Pθ � integration by parts and scale invariance:

A1 = E η2 + b2(1 + 2r2) +

+ b
∣∣∣E η2(4− 2Λ) + E ηL2(3E η2 + r2b2)

∣∣∣
for Λ = ∂

∂θ log pθ, L2 = ∂2

∂θ2
log pθ
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Second Order Optimality Problems

MSE-2 Fn(η) := A0(η)+
r√
n
A1(η) = min ! η IC, η ∈ L3(P)

Structure of the problem suited for convex optimization

admitted functions form convex set
Fn is coercive  restriction to some bounded L∞-ball possible
eventually in n, Fn is weakly lower semicontinuous in L3 and
strictly convex =⇒ unique minimum solution exists
Slater condition ful�lled  Lagrange multipliers exist
equivalence to Hampel-problem: for rn = r√

n+r
and

Hn(η) = E η2 + rnb
(
2E η2(2− Λ) + E ηL2(3E η2 + r2b2)

)
HP-2 Hn(η) = min ! for η IC and sup |η| ≤ b
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Solution for �xed b

Solution to HP-1 for �xed b

�Hampel-type-1� (HC-1)

η̂ = Y min{1, b

|Y |
}

for
Y = AΛ− a

with scores Λ, Lagrange multipliers A, a, and bias bound b

Gaussian case:
Y = Ax2 − a

Peter Ruckdeschel Higher Order Optimal In�uence Curves



First Order Asymptotics In Robust Statistics
Higher Order Asymptotics

Second Order Optimality � Symmetric Case
Second Order Optimality � Non-Symmetric Case

One dimensional Scale
One dimensional Location and Scale
Summary

Solution for �xed b

Solution to HP-2 for �xed b

�Hampel-type-2� (HC-2)

η̂ = Yn min{1, b

|Yn|
}, Yn =

Y − rnbL2(r2b2 + 3v2
0

)/2

1 + rnb(4− 2Λ + 3l2)

for
Y = AΛ− a, v20 = EY 2, l2 = E L2

with scores Λ, Lagrange multipliers A, a, and bias bound b,
and second order radius term rn = r/(

√
n + r)

Gaussian case:

Yn =
Ax2 − a − rnb(x4 − 5x2 + 2)(3v2

0
+ r2b2)/2

1 + rnb(6− 2x2 + 3l2)
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Yn =
Ax2 − a − rnb(x4 − 5x2 + 2)(3v2

0
+ r2b2)/2

1 + rnb(6− 2x2 + 3l2)

Problem:∣∣∣ · ∣∣∣-expression in s-o-term A1 in maxMSE:

b in f-o-term A0 may be induced by positive or negative bias

i.e.; maxMSE(η) = A0(η) + r/
√
n max

(
A1(η,−b),A1(η, b)

)
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Positive or Negative Bias?

Situation 1

p s ≈≈ 0 n

●

Situation 2

n 0 p s

●F1((x))
F2((x))
max((F1((x)),,  F2((x))))

● min
x

max((F1((x)),,  F2((x))))

to be checked for any second-order MSE-solution

numerically for Gaussian scale case:
left situation (optimum in intersection point of parabolas)
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Hampel-type ICs Second Order Optimal?

(ad Q3) Possible gain in (s-o-)maxMSE w.r.t. s-o-clipping-adjusted
HC-1-type IC < 10−5 !!
�consequence:

may stay in class HC-1 of Hampel-type ICs
simply adjust clipping height w.r.t. �rst order optimal solution
Pfanzagl's �rule� for class HC-1

(ad Q2) General feature:

no matter whether optimal solution η̂ is of type HC-1 or HC-2:

Solution involves clipping!

if Y ′[n] 6= 0 in clipping points: non-smooth optimal IC

argument applies to arbitrary asymptotic order (3rd, 4th,. . . )
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may stay in class HC-1 of Hampel-type ICs
simply adjust clipping height w.r.t. �rst order optimal solution
Pfanzagl's �rule� for class HC-1

(ad Q2) General feature:

no matter whether optimal solution η̂ is of type HC-1 or HC-2:

Solution involves clipping!

if Y ′[n] 6= 0 in clipping points: non-smooth optimal IC

argument applies to arbitrary asymptotic order (3rd, 4th,. . . )

Peter Ruckdeschel Higher Order Optimal In�uence Curves



First Order Asymptotics In Robust Statistics
Higher Order Asymptotics

Second Order Optimality � Symmetric Case
Second Order Optimality � Non-Symmetric Case

One dimensional Scale
One dimensional Location and Scale
Summary

Second Order MSE-Optimal IC to r = 0.3
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Optimal b's and corresp. empirical maxMSE

emp. results for N (0, θ2) at n = 20, r = 0.3 at M = 90000 runs:

empirical risk: asymptotic risk:
b relMSE

sim

n maxMSE
sim

n A0 A0 + r√
n
A1

MAD 1.166 24.18% 1.822 [1.801; 1.843] 1.223 1.487
ηb0 1.671 27.48% 1.870 [1.836; 1.905] 0.892 1.075
ηb1 (HC-1) 1.530 8.75% 1.596 [1.572; 1.619] 0.905 1.057
ηb1 (HC-2) 1.531 8.63% 1.594 [1.571; 1.617] 0.906 1.060
ηbsim 1.346 � 1.467 [1.450; 1.484] 0.945 1.105

b0 f-o-o: optimized A0 within HC-1
b1 s-o-o: optimized A0 + r√

n

A1 within HC-1/HC-2

bsim num. optimization of the (empirical) maxMSE within HC-1

Consequences:

�rst order asymptotics too optimistic

(ad Q1) considerable enhancement by 2nd order asymptotics �

but: still room for improvement by 3rd order asymptotics
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One dimensional Location and Scale for symmetric F

Corollary (Second order optimality for one-dim. location and scale)

Let Sn be two-step estimator to IC ηθ (with e.g. (Median,MAD)

as starting estimator)

Then
maxMSE(Sn) = n sup

Qn∈Ũc(r)

MSE(Sn)

= A0 + r√
n
A1 + o( 1√

n
)

for A0 = Eθ |ηθ|2 + r2b2θ , bθ = sup |ηθ| and

A1 only slightly more complicated than in pure scale case
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Structure of the Solution

similar arguments as in scale case

location component is odd, scale component even

adaptivity also holds for second order asymptotics
(but nuisance part has to have bounded IC)

positive/negative bias: here right situation in the parabola
picture (optimum in a vertex of a parabola)

(ad Q3) possible gain in (s-o-)maxMSE w.r.t. s-o-clipping-adjusted
HC-1 IC � 1%!! �hence grossly speaking:

may stay in class HC-1 of Hampel-type ICs
simply adjust clipping height w.r.t. �rst order optimal solution
again: Pfanzagl's �rule� for class HC-1
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Second Order MSE-Optimal IC to r = 0.3
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2 )

Sample size n == 20
(starting) radius r == 0.3
(actual radius 0.067)

1st−order−opt in HC−1
2nd−order−opt in HC−1
1st−order−opt in HC−2
2nd−order−opt in HC−2
classic.−opt IC

(ad Q2)
coordinate−wise:
ηη̂loc,,  ηη̂sca: smooth

Euclidean length:

ηη̂loc

2
++ ηη̂sca

2
: non−smooth!
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Optimal b's and corresp. empirical maxMSE

emp. results for N (θloc, θ
2
sca

) at n = 20, r = 0.3 at M = 90000 runs:

empirical risk: asymptotic risk:
b relMSE

sim

n maxMSE
sim

n A0 A0 + r√
n
A1

(Median;MAD) 1.713 22.38% 3.747 [3.716; 3.777] 3.057 3.629
ηb0 2.221 37.37% 4.205 [4.117; 4.294] 2.154 2.768
ηb1 (HC-1) 2.116 23.52% 3.782 [3.713; 3.850] 2.161 2.757
ηb1 (HC-2) 2.103 19.51% 3.659 [3.590; 3.720] 2.167 2.753
ηbsim 1.744 � 3.061 [3.033; 3.090] 2.406 3.069

b0 f-o-o: optimized A0 within HC-1
b1 s-o-o: optimized A0 + r√

n

A1 within HC-1/HC-2

bsim num. optimization of the (empirical) maxMSE within HC-1

Consequences:

again: �rst order asymptotics too optimistic

(ad Q1) again: enhancement by 2nd order asymptotics �

but even 2nd order asymptotics probably not enough
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Summary: Answers to (Q1)-(Q3)

(Q1) Can we enhance �nite sample performance using re�ned

asymptotics?

Yes, we can � for location only a little, for scale and
location/scale considerably. . .

(Q2) Hampel's conjecture: �Should not a �nitely optimal IC be

smooth?�

Regarding higher order asymptotics: No, they should not.

(Q3) Does Pfanzagl's catchword �First order optimality implies

second order optimality� apply to the robust setup, and if so in
which way? Grossly speaking:
Yes, it does classwise for class (HC-1). However, �rst order
optimal clipping height is too optimistic.
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Uniform Expansions of the MSE II

Exact expressions for term A1 for 1-step-estimator

Let ηθ bounded and two times di�erentiable in L1(Pθ),

θ
(0)
n = θ + 1

n

∑
η̃θ(xi ) + o

L1(Ũc)
(n−1/2) for a bounded IC η̃θ,

Then

A1 = 2Covθ(ηθ, η̃θ)−Varθ η
2

θ + b2θ

+ 2bθ
d
dt
Covθ(ηt , η̃θ)

∣∣
t=θ

+ 2b̃θ
d
dt
Varθ ηt

∣∣
t=θ

+ d2

dt2
Eθ ηt

∣∣
t=θ

[
bθ Varθ η̃θ + 2b̃θ Covθ(ηθ, η̃θ)

]
+ r2b̃θbθ

[
2 + b̃θ

d2

dt2
Eθ ηt

∣∣
t=θ

]
where bθ = sup |ηθ|, b̃θ = lim sup

ε↓0
sup |η̃θ| I(|ηθ| ≥ bθ − ε)

M-est put η̃θ = ηθ
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Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:

total variation =̂ replacement outliers

maxMSE has a higher order expansion

asymmetric case

already in �rst order asymptotics di�erent solutions for convex
contamination and total variation [Ri:94]
asymmetric clipping for �rst order optimal optimal solution
[Ri:94]

symmetric case

A1 = 0 � �rst correction term in maxMSE of order O(n−1)
=⇒ faster convergence of maxMSE

(ad Q3) Pfanzagl's �rule� memberwise in HC-1
(ad Q1) no enhancement by second order asymptotics
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