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First Order Asymptotics In Robust Statistics Ideal Setup

Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Ideal Setup

Setup: inference on parameter 6 in a model for i.i.d. observations
P={Py|0c©} ©CRr  P“smooth”
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First Order Asymptotics In Robust Statistics Ideal Setup

Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Ideal Setup

Setup: inference on parameter 6 in a model for i.i.d. observations
P={Py|0c©} ©CRr  P“smooth”

@ common robust technique:
use first order von-Mises (vM) expansion

influence curves at Py:

Wy (0) = {4 € L3(Ps) | Eg oo = 0, Eg oo = I }
asymptotically linear estimators:

V(S =0) = <= 3 alx) + oy ()
i=1
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First Order Asymptotics In Robust Statistics el St

Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

Uc(O,r.n)={(1—r/V/n)sPy+(LAr/v/n)R|R e Mi(A)}
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First Order Asymptotics In Robust Statistics el St

Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Infinitesimal Robust Setup

Shrinking neighborhoods (Rieder[81,94], Bickel[83])

Uc(O,r.n)={(1—r/V/n)sPy+(LAr/v/n)R|R e Mi(A)}
Robust optimality problem:  supgc( MSEg(t)g) = min!
here: supgey, MSEq(vg) = Eg [1g]? + r? sup |1bg|?

Thm.s 5.5.1 and 5.5.7 (b), Rieder[94]

unique solution is an IC fjy of Hampel-type (HC-1), i.e.;

ﬁ():(AQ/\()*a())W W:min{l,be/‘A()/\()*a()‘}
with Ay, ap, by such that Ey g =0, Ey ﬁ@/\g = Iy, and
(MSE)  r?by = Eg (|AgNg — ag| — by) .

v
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Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Limitations of First Order Approach

@ So far: asymptotics is of first order, for both ALE and MSE
e Limitations (not a topic today): No indication

- for the quality/speed of the convergence — to what degree do
radius r, sample size n and clipping height b affect the
approximation?

- which construction (achieving an optimally—robust IC
asymptotically) to take
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First Order Asymptotics In Robust Statistics el St

Infinitesimal Robust Setup and First Order Solutions
Limitations of First Order Approach

Limitations of First Order Approach

@ So far: asymptotics is of first order, for both ALE and MSE
e Limitations (not a topic today): No indication
- for the quality/speed of the convergence — to what degree do
radius r, sample size n and clipping height b affect the
approximation?
- which construction (achieving an optimally—robust IC
asymptotically) to take
@ Questions for this talk:
(Q1) Can we enhance finite sample performance using refined
asymptotics?
(Q2) Hampel's conjecture:
—with regard to the corners of (first-order) MSE solution—
Should not a finitely optimal IC be smooth?
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Higher Order Asymptotics Optimality: Classical vs. Robust
Uniform Expansions of the MSE

Does first order optimality imply second order optimality?

Classical Optimality (of IC of MLE):
o first order setup:
o risk-independence in Asympt. Convolution Theorem / for all
“bowl-shaped” risks in Asympt. Minimax Theorem
@ second order setup: Pfanzagl's catchword
“First order optimality implies second order optimality”

Peter Ruckdeschel Higher Order Optimal Influence Curves



Higher Order Asymptotics Optimality: Classical vs. Robust
Uniform Expansions of the MSE

Does first order optimality imply second order optimality?

Classical Optimality (of IC of MLE):
o first order setup:
o risk-independence in Asympt. Convolution Theorem / for all
“bowl-shaped” risks in Asympt. Minimax Theorem
@ second order setup: Pfanzagl's catchword
“First order optimality implies second order optimality”
Robust Optimality (of ICs from class HC-1):
o first order setup (R.& Rieder [& Kohl] (2004/2007))
o risk-independence of the class
o risk-dependence of the member within HC-1
e radius-minimax ICs: risk-independence of the optimal member
for all “homogeneous” risks
@ second order setup:

(Q3) Does Pfanzagl's catchword apply to the robust setup,
and if so in which way?
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Higher Order Asymptotics Optimality: Classical vs. Robust
Uniform Expansions of the MSE

Uniform Expansions of the MSE

Theorem (R. [05(a,
Let 0 +— 1y be smooth in L1(Py),
S, be an M- or a k-step-estimator to 1y, and

let starting estim. Hf,o) for the k-step-estimator be
o uniformly n'/*t9-consistent on U, for some § > 0

o uniformly square-integrable in n and on U,
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Higher Order Asymptotics Optimality: Classical vs. Robust
Uniform Expansions of the MSE

Uniform Expansions of the MSE

Theorem (R. [05(a,b,c)])
Let 0 +— 1y be smooth in L1(Py),
S, be an M- or a k-step-estimator to 1y, and
let starting estim. Hf,o) for the k-step-estimator be
o uniformly n'/**-consistent on U for some § > 0
e uniformly square-integrable in n and on U,

Then maxMSE(S,) = n sup MSE(S,)
QneUc(r)

= Ao+ﬁA1+%A2+O(%)

for Ay = Eg |ng|? + r?sup |ng|?> and A1, A, are constants
(0)

depending on 1y, r, and, for k-step-est., also on 0,
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One dimensional location
Second Order Optimal Clipping
E

Second Order Optimality — Symmetric Case (Nl Bt m

Second Order Optimality - Symmetric Case

Let Py and v be symmetric:
Then A; = 2r2b% + vg + b?
i.e., a convex and isotone function in ||n||r, and ||n||..,— the
same terms arising in first order term Ay.
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One dimensional location
Second Order Optima

Second Order Optimality — Symmetric Case (rafeellly) B mme

Second Order Optimality - Symmetric Case

Let Py and v be symmetric:
Then A; = 2r2b% + vg + b?
i.e., a convex and isotone function in ||n||r, and ||n||..,— the
same terms arising in first order term Ay.

Consequence:
(ad Q3) Pfanzagl's “rule” for class HC-1:
Second order optimal (s-0-0) IC is of HC-1-form

ANmin{1, c;/|A|}
but with adjusted s-0-o clipping height ¢; determined as

241
T Y —E(IN —
r2+rﬁ) (IAl = e1)+
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One dimensional location
Second Order Optimal Clipping

Second Order Optimality — Symmetric Case (Numerically) Exact maxMSE

Second Order Optimal Clipping

If h(c) := E(|A| — ¢)+ is differentiable in the f-0-0 ¢,

1 r34r 1
C1:C0(1—\ﬁr2_7hl(co))+0(ﬁ)

— As ' <0, ¢ < ¢y always

i.e.; first order asymptotics is too optimistic
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One dimensional location
Second Order Optimal Clipping

Second Order Optimality — Symmetric Case (Numerically) Exact maxMSE

Second Order Optimal Clipping

If h(c) := E(|A| — ¢)+ is differentiable in the f-0-0 ¢,

) +o()

i Ptr
Vi = H(c)

— As ' <0, ¢ < ¢y always

C1=C0(l—

i.e.; first order asymptotics is too optimistic

@ as ¢ is optimal, s-o risk behaves locally as a parabola with
vertex in cy; hence the risk-improvement of ¢; compared to ¢y

is O(1/n)
@ same goes for t-0-o clipping height coc = risk-improvement of
cp compared to ¢ is O(1/n?)
(ad Q1) there is —albeit little— enhancement by higher order
asymptotics
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One dimensional location
Second Order Optimal Clipping

Second Order Optimality — Symmetric Case (Numerically) Exact maxMSE

Optimal c¢'s and corresp. (num.) exact maxMSE at AV/(6,1)

—n =20, r =0.3—:
exact risk: asymptotic risk:
c relMSE;* | maxMSE$* Ao ‘ Aot oA A°+LHA1+%A2
Median 0+ 16.413% 1.911 1.712 1.942 1.875
Neo 1.213 1.548% 1.667 1.290 1.556 1.615
Nea 1.017 0.117% 1.643 1.299 1.544 1.596
Nea 0.972 0.017% 1.642 1.299 1.544 1.596
Newgy || 0.991 | 0.049% 1.642 1.301 | 1.545 1.596
New. | 0.939 — 1.641 1.307 | 1.545 1.596
co f-o-0: by equation we just saw
c1 s-0-o: by equation we just saw
c2 third order: num. optimization of MSE in HC-1
CRZY num. optimization of a proposal by Fraiman et al.
Cex num. optimization of the (num.) exact MSE
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let S, be two-step estimator to IC 1y
(with e.g. MAD as starting estimator)
Then maxMSE(S,) = Ao+ 7= AL +o(7-)
for
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let S, be two-step estimator to IC 1y
(with e.g. MAD as starting estimator)

Then maxMSE(S,) = Ao+ 7= AL+ o(ﬁ)
for Ag = V& +r2b% ve =Egn3, b=sup|n
Al = vg—l—b2(1—|—2r2)+b’/2 (3vg + r’h?) +2 v
2
for /2 = % E9 nt‘t:é)’ Vi = % Eg ’r}? ‘t:@

for
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

One dimensional Scale

Corollary (Second order optimality for one-dim. scale)

Let S, be two-step estimator to IC 1y
(with e.g. MAD as starting estimator)

Then maxMSE(S,) = Ao+ = AL+ o)

for Ay, = v§+r2b2. v02 = Ey /'/(2), b = sup |ng
A = 41427+ b‘IQ (V2 + r2b?) + 2 \
d? d 2
fOI’ /2 = FF‘U ]/t‘t:(/‘ Vi = %FU Nt |f:(/
Shifting differentiation to Py — integration by parts and scale invariance:
Al = EnpP+bQ1427)+

+ b’ En?(4 —2N) +EnlLy(3En? + r2b2)’

2
L, = a% log py

_ 9
for N\ = g5 log py,
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One dimensional Scale
One dimensional Location and Scale

imali : S ary
Second Order Optimality — Non-Symmetric Case Summary

Second Order Optimality Problems

Fo(n) := Ao(n)—i—\%Al(n) = min! n1C, n € L3(P)

Structure of the problem suited for convex optimization
@ admitted functions form convex set
@ F, is coercive ~ restriction to some bounded L,.-ball possible
@ eventually in n, F, is weakly lower semicontinuous in L3 and
strictly convex = unique minimum solution exists
o Slater condition fulfilled ~~ Lagrange multipliers exist
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One dimensional Scale
One di onal Location and Scale

Second Order Optimality — Non-Symmetric Case

Second Order Optimality Problems

Fo(n) := Ao(n)—i—\%Al(n) = min! n1C, n € L3(P)

Structure of the problem suited for convex optimization
@ admitted functions form convex set
@ F, is coercive ~ restriction to some bounded L..-ball possible
e eventually in n, F, is weakly lower semicontinuous in L3 and
strictly convex = unique minimum solution exists
@ Slater condition fulfilled ~~ Lagrange multipliers exist

@ equivalence to Hampel-problem: for r, = fn’H and

Ha(n) = En? + rnb<2E7]2(2 ~AN) +EnL(3En? + r2b2)>

HP-2 Hn(n) = min! for n IC and sup|n| < b
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One dimensional Scale
One dimensional Location and Scale

. . . S ary
Second Order Optimality — Non-Symmetric Case Summary

Solution for fixed b

Solution to for fixed b

“Hampel-type-1" (HC-1)

b
=Y min{l, —}
Y|
for
Y=AN—a

with scores A, Lagrange multipliers A, a, and bias bound b

Gaussian case:
Y = Ax® — a
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One dimensional Scale
One dimensional Location and Scale

. . . S ary
Second Order Optimality — Non-Symmetric Case Summary

Solution for fixed b

Solution to for fixed b

“Hampel-type-2" (HC-2)

L} Y = rpbly(rPb? +3v¢) /2
1Yol " 14 r,b(4 — 20N+ 3h)

7 = Yy min{1,

for
Y = AN — a, v =EY? h=EL

with scores A, Lagrange multipliers A, a, and bias bound b,
and second order radius term r, = r/(\/n+r)

Gaussian case;

Ax? — a — rpb(x* — 5x2 +2)(3v@ + r?b?)/2
Yo =
1+ rpb(6 — 2x2 + 3h)
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One dimensional Scale
One dimensional Location and Scale

. . . S ary
Second Order Optimality — Non-Symmetric Case Summary

Solution for fixed b

Solution to for fixed b

“Hampel-type-2" (HC-2)
Y — rabLy(r?b? 4 3v3) /2
1+ r,b(4 — 2N+ 3h)

b
ﬁ: Ynmin{l,v}, Yn:

| Yol
for
Y = AN — a, v =EY? h=EL,
Gaussian case:
Ax? — a — rpb(x* — 5x2 4+ 2)(3v@ + r?b?)/2

Y, =
" 1+ r,b(6 — 2x2 + 3h)

Problem:
@ | - |-expression in s-o-term A;j in maxMSE:

b in f-o-term Ap may be induced by positive or negative bias
e i.e.; maxMSE(n) = Ao(n) + r/\/n max (A1(n, —b), Ai(n, b))



One dimensional Scale
One dimensional Location and Scale
Summary

Second Order Optimality — Non-Symmetric Case

Positive or Negative Bias?

Situation 1 Situation 2

- = Fix

R 1 ¢ !
— max(Fy(x). F2(x)) /;
o minmax(Fy(x), F2(x)) ’
‘
’ ll
, ’
’ A} ’
’ N !
’ M 4
’ N !
. N 4
v * !
’ N ‘
\\\ . ’¢ \\ 1’
‘ : : T T T
o eto o+ n o p s

@ to be checked for any second-order MSE-solution

e numerically for Gaussian scale case:
left situation (optimum in intersection point of parabolas)
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One dimensional Scale
One dimensional Location and Scale

imali : S ary
Second Order Optimality — Non-Symmetric Case Summary

Hampel-type ICs Second Order Optimal?

(ad Q3) Possible gain in (s-0-)maxMSE w.r.t. s-o-clipping-adjusted
HC-1-type IC < 107° !
—consequence:

e may stay in class HC-1 of Hampel-type ICs
e simply adjust clipping height w.r.t. first order optimal solution
e Pfanzagl’s "rule” for class HC-1
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imali : S ary
Second Order Optimality — Non-Symmetric Case Summary

Hampel-type ICs Second Order Optimal?

(ad Q3) Possible gain in (s-0-)maxMSE w.r.t. s-o-clipping-adjusted
HC-1-type IC < 107° !
—consequence:

e may stay in class HC-1 of Hampel-type ICs
e simply adjust clipping height w.r.t. first order optimal solution
e Pfanzagl’s "rule” for class HC-1

(ad Q2) General feature:
e no matter whether optimal solution 7 is of type HC-1 or HC-2:

Solution involves clipping!

o if Y[’n] # 0 in clipping points: non-smooth optimal IC
o argument applies to arbitrary asymptotic order (3rd, 4th,...)
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One dimensional Scal

imali : 5 ary
Second Order Optimality — Non-Symmetric Case ummary

Second Order MSE-Optimal IC to r = 0.3

MSE-Optimal ICs in N(0,6?)

_______________ \- N
0 | A\ I/
—
e
—
v |
<= < .
=== ]1st-order-opt in HC-1
= 2nd-order-opt in HC-1
o - - 1st-order-optin HC-2
c 7 - - 2nd-order-opt in HC-2
= classic.—opt IC
n
s -
]
T T T T T T T
-6 -4 -2 0 2 4 6

X
n=20, r=0.3
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

Optimal b’s and corresp. empirical maxMSE

emp. results for N'(0,60%) at n = 20, r = 0.3 at M = 90000 runs:

empirical risk: asymptotic risk:

b rel MSE:™ maxMSE:= Ao \ Ao + = Ay
MAD 1.166 24.18% 1.822 [1so1; 1.843] || 1.223 1.487
Mbo 1.671 27.48% 1.870 [1.83; 1.905] || 0.892 1.075

e, (HC-1) || 1.530 8.75% 1.596 [1572; 1.619] || 0.905 1.057
e, (HC-2) || 1.531 8.63% 1594 s71; 16171 || 0.906 1.060

Nbgi 1.346 — 1.467 [1.450; 1.484] 0.945 1.105
bo f-0-o0: optimized Ag within HC-1
by s-0-o0: optimized Ag + L"Al within HC-1/HC-2
bgim num. optimization of the (empirical) maxMSE within HC-1

Consequences:
o first order asymptotics too optimistic
(ad Q1) considerable enhancement by 2nd order asymptotics —
@ but: still room for improvement by 3rd order asymptotics
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One dimensional Scale
One dimensional Location and Scale
Summary

Second Order Optimality — Non-Symmetric Case

One dimensional Location and Scale for symmetric F

Corollary (Second order optimality for one-dim. location and scale)

Let S, be two-step estimator to IC ng (with e.g. (Median,MAD)
as starting estimator)

| maxMSE(S,) = n sup MSE(S,)

QnEUc(r)

Ao + = A+ o)

for Ay = Eg |ng|? + r2b2, by = sup |ng| and

A1 only slightly more complicated than in pure scale case
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

Structure of the Solution

@ similar arguments as in scale case
@ location component is odd, scale component even

@ adaptivity also holds for second order asymptotics
(but nuisance part has to have bounded IC)

@ positive/negative bias: here right situation in the parabola
picture (optimum in a vertex of a parabola)
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

Structure of the Solution

@ similar arguments as in scale case
@ location component is odd, scale component even

@ adaptivity also holds for second order asymptotics
(but nuisance part has to have bounded IC)

@ positive/negative bias: here right situation in the parabola
picture (optimum in a vertex of a parabola)
(ad Q3) possible gain in (s-0-)maxMSE w.r.t. s-o-clipping-adjusted
HC-1 IC <« 1%!! —hence grossly speaking:
e may stay in class HC-1 of Hampel-type ICs

o simply adjust clipping height w.r.t. first order optimal solution
e again: Pfanzagl's "rule” for class HC-1
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Second Order Optimality — Non-Symmetric Case

One dimensional Sca

One dimensional Location and Scale

Summary

Second Order MSE-Optimal IC to r = 0.3

Location-component

Eucl. length of the IC

Al

10

ter Ruckdeschel Higher Order Optimal Influence Curves

Ascal)

Scale-component

Relative information of location

05 10 15 20

-05

2
R IR x 100%
0% 20% 40% 60% 80%

MSE-Optimal ICs in N (6o, 6

Sample size n=20

starting) radius r=0.3
actual radius 0.067)

1st-order—opt in HC-1
2nd-order-opt in HC-1
1st-order-opt in HC-2
2nd-order-opt in HC-2
classic.—opt IC

2
S

ca)

(ad Q2)
coordinate-wise:
n n

Nioes Nsca: SMOOtH

Euclidean length:

2 2
VAioe + Alsea: NON-smooth!




One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case SO

Optimal b’s and corresp. empirical maxMSE

emp. results for N (., 62

sca

) at n =20, r = 0.3 at M = 90000 runs:

empirical risk: asymptotic risk:

b rel MSE:™ maxMSE:= Ao \ Ao + = Ay
(Median;MAD) || 1.713 22.38% 3.747 [3.716; 3.777] || 3.057 3.629
s 2.221 37.37% 4205 [4117; 4204] 2.154 2.768

e, (HC-1) || 2.116 23.52% 3.782 3713 3s8s0] || 2.161 2.757
e, (HC-2) || 2.103 19.51% 3.659 [3.590; 3.720] || 2.167 2.753

Nbgi 1.744 — 3.061 [3.033; 3.090] 2.406 3.069
bo f-0-o0: optimized Ag within HC-1
by s-0-o0: optimized Ag + L" Ay within HC-1/HC-2
bgim num. optimization of the (empirical) maxMSE within HC-1

Consequences:
@ again: first order asymptotics too optimistic
(ad Q1) again: enhancement by 2nd order asymptotics —
@ but even 2nd order asymptotics probably not enough
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case Summary

Summary: Answers to (Q1)-(Q3)

(Q1) Can we enhance finite sample performance using refined
asymptotics?
Yes, we can — for location only a little, for scale and
location/scale considerably. . .

(Q2) Hampel's conjecture: “Should not a finitely optimal IC be
smooth?”
Regarding higher order asymptotics: No, they should not.

(Q3) Does Pfanzagl's catchword “First order optimality implies
second order optimality” apply to the robust setup, and if so in
which way? Grossly speaking:

Yes, it does classwise for class (HC-1). However, first order
optimal clipping height is too optimistic.
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One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case Summary
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Thank you for your attention!
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One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case Summary

Uniform Expansions of the MSE Il

Exact expressions for term Ay for 1-step-estimator
Let 7y bounded and two times differentiable in L1(Pp),

0 =0+ 5 X2 0(x5) + 0, (0™ /?) for a bounded IC 7y,
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One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case Summary

Uniform Expansions of the MSE Il

Exact expressions for term Ay for 1-step-estimator
Let 7y bounded and two times differentiable in L1(Pp),

05" = 0+ 5 320(x) + 01, gy (n~*/2) for a bounded IC i
Then
A1 = 2Covy(ng,iig) — Vargnj + bj

+2bg & Covg(ine, iio)|,_, + 2bo & Vargme|,_,
+ S Bone,_y [be Varg fig + 2bg Covg(1s, 779)}
+ r2bybg 2+ b 5722 Eo ¢ |,_,]

where by = sup|ma|, by = |imlSOUP sup |ig| I(|me| > by — €)

c
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Second Order Optimality — Non-Symmetric Case Summary

Uniform Expansions of the MSE Il

Exact expressions for term Ay for 1-step-estimator
Let 7y bounded and two times differentiable in L1(Pp),

05" = 0+ 5 320(x) + 01, gy (n~*/2) for a bounded IC i
Then
A1 = 2Covy(ng,iig) — Vargnj + bj

+2bg & Covg(ine, iio)|,_, + 2bo & Vargme|,_,
+ S Bone,_y [be Varg fig + 2bg Covg(1s, 779)}
+ r2bybg 2+ b 5722 Eo ¢ |,_,]

where by = sup|ma|, by = |imlSOUP sup |ig| I(|me| > by — €)

c

M-est put 7jg = 9
Peter Ruckdeschel Higher Order Optimal Influence Curves



One dimensional Scale
One dimensional Location and Scale

Second Order Optimality — Non-Symmetric Case Summary

Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:
o total variation = replacement outliers

@ maxMSE has a higher order expansion
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Second Order Optimality — Non-Symmetric Case Summary

Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:
o total variation = replacement outliers
@ maxMSE has a higher order expansion

@ asymmetric case

e already in first order asymptotics different solutions for convex
contamination and total variation [Ri:94]

e asymmetric clipping for first order optimal optimal solution
[Ri:94]
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Second Order Optimality — Non-Symmetric Case Summary

Outlook: Total Variation Neighborhoods

PhD project of M. Brandl; preliminary results:
o total variation = replacement outliers
@ maxMSE has a higher order expansion

@ asymmetric case
e already in first order asymptotics different solutions for convex
contamination and total variation [Ri:94]
e asymmetric clipping for first order optimal optimal solution
[Ri:94]
@ symmetric case

o A; = 0 — first correction term in maxMSE of order O(n™1)
— faster convergence of maxMSE
(ad Q3) Pfanzagl's “rule” memberwise in HC-1
(ad Q1) no enhancement by second order asymptotics
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