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Abstract: We present optimality results for robust Kalman filtering where
robustness is understood in a distributional sense, i.e.; we enlarge the dis-
tribution assumptions made in the ideal model by suitable neighborhoods.
This allows for outliers which in our context may be system-endogenous or
-exogenous, which induces the somewhat conflicting goals of tracking and
attenuation.

The corresponding minimax MSE-problems are solved for both types of
outliers separately, resulting in closed-form saddle-points which consist of
an optimally-robust procedure and a corresponding least favorable outlier
situation. The results are valid in a surprisingly general setup of state space
models, which is not limited to a Euclidean or time-discrete framework.

The solution however involves computation of conditional means in the
ideal model, which may pose computational problems. In the particular
situation that the ideal conditional mean is linear in the observation in-
novation, we come up with a straight-forward Huberization, the rLS filter,
which is very easy to compute. For this linearity we obtain an again sur-
prising characterization.
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1. Introduction

Robustness issues in Kalman filtering have long been a research topic, with first
(non-verified) hits on a quick search for “robust Kalman filter” on scholar.

google.com as early as 1962 and 1967, i.e.; the former even before the seminal
Huber (1964) paper, often referred to as birthday of Robust Statistics.

In the meantime there is an ever growing amount of literature on this topic
—Kassam and Poor (1985) have already compiled as many as 209 references
to that subject in 1985. Excellent surveys are given in, e.g. Kassam and Poor
(1985), Stockinger and Dutter (1987), Schick and Mitter (1994), Künsch (2001).

In these references you find many different notions of robustness, all some-
what related to stability but measuring this stability w.r.t. deviations of var-
ious “input parameters”; in this paper we are concerned with (distributional)
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minimax robustness; i.e.; we work with suitable distributional neighborhoods
about an ideal model, already used by Birmiwal and Shen (1993) and Birmiwal
and Papantoni-Kazakos (1994), and then solve the problem to find the proce-
dure minimizing the maximal predictive inaccuracy on these neighborhoods—
measured in terms of mean squared error (MSE)—in quite generality, com-
pare Theorems 3.2, 3.10, 4.1. In the particular situation that the ideal condi-
tional mean is linear in the observation innovation (for a definition see subsec-
tion 2.3.2), the minimax filter is a straight-forward Huberization, the rLS filter,
which is extremely easy to compute. For this linearity we obtain a surprising
characterization in Propositions 3.4 and 3.6. This motivates a corresponding
optimal test for linearity, Proposition 3.8. Even in situations where no or only
partial knowledge of the size of the contamination is available we can distinguish
an optimal procedure, compare Lemma 3.1.

2. General setup

2.1. Ideal model

In this section, we start with some definitions and assumptions. We are working
in the context of state space models (SSM’s) as to be found in many textbooks,
cf. e.g. Anderson and Moore (1979), Harvey (1991), and Durbin and Koopman
(2001).

2.1.1. Time Discrete, linear Euclidean Setup

The most prominent setting in this context is the linear, time–discrete, Eu-
clidean setup, which will serve as reference setting in this paper: An unobserv-
able p-dimensional state Xt evolves according to a possibly time-inhomogeneous
vector autoregressive model of order 1 (VAR(1)) with innovations vt and tran-
sition matrices Ft, i.e.,

Xt = FtXt−1 + vt (2.1)

The statistician observes a q-dimensional linear transformation Yt of Xt and in
this makes an additive observation error εt,

Yt = ZtXt + εt (2.2)

In the ideal model we work in a Gaussian context, that is we assume

vt ∼ Np(0, Qt), εt ∼ Nq(0, Vt), X0 ∼ Np(a0, Q0), (2.3)

X0, vs, εt, s, t ∈ N stochastically independent (2.4)

As usual, normality assumptions may be relaxed to working only with specified
first and second moments, if we restrict ourselves to linear unbiased procedures
as in the Gauss-Markov setting.
For this paper, we assume the hyper–parameters Ft, Zt, Qt, Vt, a0 to be known.
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2.1.2. Generalizations covered by the present approach

Parts of our results (more specifically, all of sections 3.2, 3.4) also cover much
more general SSMs; in this paragraph we sketch some of these. To begin with, as
long as MSE makes sense for the range of the states, these results cover general
Hidden Markov Models for arbitrary observation space as given by

P (X0 ∈ A) =

∫
A

pX0
0 (x)µ0(dx) (2.5)

P (Xt ∈ A|Xt−1 = xt−1, . . . , X0 = x0) =

∫
A

p
Xt|Xt−1=xt−1

t (x)µt(dx), (2.6)

P (Yt ∈ B|Xt = xt) =

∫
B

q
Yt|Xt=xt
t (y) νt(dy) (2.7)

In this setting, we assume known (and existing) [regular conditional] densities

pX0
0 , p

· | ·
t , q

· | ·
t w.r.t. known measures νt, µt on Bq and Bp, respectively. Dy-

namic (generalized) linear models as discussed in West et al. (1985) and West
and Harrison (1989) are covered as well —under corresponding assumptions as
to (conditional) densities and range of the states. In applications of Mathemat-
ical Finance we also need to cover continuous time settings, i.e.; there is an
unobservable state evolving according to an SDE

dXt = f(t,Xt) dt+ q(t,Xt) dWt (2.8)

where for X0 we assume (2.5), while Wt, is a Wiener process, and f and q are
suitably measurable, known functions, and observations Yt are either formulated
as a time-continuous observation process (as in Tang (1998)) or—more often—
at discrete, but not necessarily equally spaced times, compare, e.g. Nielsen et
al. (2000) and Singer (2002). In this context, but also for corresponding non-
linear time-discrete SSMs, a straightforward approach linearizes the correspond-
ing transition and observation functions to give the (continuous-discrete) Ex-
tended Kalman Filter (EKF) After this linearization we are again in the context
of a (time-inhomogeneous) linear SSM, hence the methodology we develop in
the sequel applies to this setting as well.

So far we do not cover approaches to improve on this simple linearization,
notably the second order nonlinear filter (SNF) introduced in Jazwinski (1970),
also cf. Singer (2002, sec. 4.3.1). the unscented Kalman filter (UKF) (Julier
et al., 2000) and Hermite expansions as in Aı̈t-Sahalia (2002), see also Singer
(2002, sec. 4.3).

Going one more step ahead, to cover applications such as portfolio optimiza-
tion, we may allow for controls Ut to be set or determined by the statistician,
and which are fed back in the state equations. In the context of the continuous
time model, this is also known as SDEX, cf. Nielsen et al. (2000), and for the ap-
plication of stochastic control to portfolio optimization, cf. Korn (1997). In this
setting, controls Ut are usually assumed measurable w.r.t. σ(Yt−); to integrate
them into our setting, we simply have to integrate them in the corresponding
condition vectors.



Peter Ruckdeschel/Optimally Robust Kalman Filtering 4

Finally, the question of specifying the order of conditioning left aside, we do
not make use of the linearity of time, so our minimax results also cover suitable
formulations of indirectly observed random fields.

2.2. Deviations from the ideal model

As usual with Robust Statistics, the ideal model assumptions we have specified
so far are extended by allowing (small) deviations, most prominently generated
by outliers. In our notation, suffix “id” indicates the ideal setting, “di” the
distorting (contaminating) situation, “re” the realistic, contaminated situation.

2.2.1. AO’s and IO’s

In SSM context (and contrary to the independent setting), outliers may or
may not propagate. Following the terminology of Fox (1972), we distinguish
innovation outliers (or IO’s) and additive outliers (or AO’s). Historically, AO’s
denote gross errors affecting the observation errors, i.e.,

AO :: εret ∼ (1− rAO)L(εidt ) + rAOL(εdit ) (2.9)

where L(εdi
t ) is arbitrary, unknown and uncontrollable (a.u.u.) and 0 ≤ rAO ≤ 1

is the AO-contamination radius, i.e.; the probability for an AO. IO’s on the
other hand are usually defined as outliers which affect the innovations,

IO :: vre

t ∼ (1− rIO)L(vid

t ) + rIOL(vdi

t ) (2.10)

where again L(vdi
t ) is a.u.u. and 0 ≤ rIO ≤ 1 is the corresponding radius.

We stick to this distinction for consistency with literature, although we rather
use these terms in a wider sense, unless explicitly otherwise stated: IO ’s denote
endogenous outliers affecting the state equation in general, hence distortion
propagates into subsequent states. This also covers level shifts or linear trends;
which if |Ft| < 1 are not included in (2.10), as IO’s would then decay geomet-
rically in t. We also extend the meaning of AO ’s to denote general exogenous
outliers which enter the observation equation only and thus do not propagate,
like substitutive outliers or SO ’s defined as

SO :: Y re

t ∼ (1− rSO)L(Y id

t ) + rSOL(Y di

t ) (2.11)

where again L(Y di
t ) is a.u.u. and 0 ≤ rSO ≤ 1 is the corresponding radius.

Apparently, the SO-ball of radius r consisting of all L(Y re
t ) according to (2.11)

contains the corresponding AO-ball of the same radius when Y re
t = ZtXt + εret .

However, for technical reasons, we make the additional assumption that

Y id

t , Y
di

t stochastically independent (2.12)

and then this relation no longer holds.
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2.2.2. Different and competing goals induced by endogenous and exogenous
outliers

In the presence of AO’s we would like to attenuate their effect, while when there
are IO’s, the usual goal in online applications would be tracking, i.e.; detect
structural changes as fast as possible and/or react on the changed situation. A
situation where both AO’s and IO’s may occur poses an identification problem:
Immediately after a suspicious observation we cannot tell IO type from AO
type. Hence a simultaneous treatment of both types will only be possible with
a certain delay—see Ruckdeschel (2010).

2.3. Classical Method: Kalman–Filter

2.3.1. Filter Problem

The most important problem in SSM formulation is to reconstruct the unob-
servable states Xt based on the observations Yt. For abbreviation let us denote

Y1:t = (Y1, . . . , Yt), Y1:0 := ∅ (2.13)

Then using MSE risk, the optimal reconstruction is distinguished as

E
∣∣Xt − ft

∣∣2 = minft , ft measurable w.r.t. σ(Y1:s) (2.14)

Depending on s this is a prediction (s < t), a filtering (s = t) and a smoothing
problem (s > t). In the sequel we will confine ourselves to the filtering problem.

2.3.2. Kalman–Filter

It is well-known that the general solution to (2.14) is the corresponding condi-
tional expectation E[Xt|Y1:s]. Except for the Gaussian case, this exact condi-
tional expectation may be computational too expensive. Hence similar to the
Gauss-Markov setting, it is common to restrict oneself to linear filters. In this
context, the seminal work of Kalman (1960) (discrete-time setting) and Kalman
and Bucy (1961) (continuous-time setting) introduced effective schemes to com-
pute this optimal linear filter Xt|t. In discrete time, we reproduce it here for
later reference:

Init.: X0|0 = a0, Σ0|0 = Q0 (2.15)

Pred.: Xt|t−1 = FtXt−1|t−1, Σt|t−1 = FtΣt−1|t−1F
τ
t +Qt (2.16)

Corr.: Xt|t = Xt|t−1 +M0
t ∆Yt, Σt|t = (Ip −M0

t Zt)Σt|t−1 (2.17)

for ∆Xt = Xt −Xt|t−1, ∆Yt = Yt − ZtXt|t−1 = Zt∆Xt + εt,

∆t = ZtΣt|t−1Z
τ
t + Vt, M0

t = Σt|t−1Z
τ
t ∆−t (2.18)

and where ∆Xt is the prediction error, ∆Yt the observation innovation, and
Σt|t = Cov(∆Xt), Σt|t−1 = Cov(Xt − Xt|t−1), ∆t = Cov(∆Yt); M

0
t is the so-

called Kalman gain, and ∆−t stands for the Moore-Penrose inverse of ∆t.
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2.3.3. Optimality of the Kalman–Filter

Realizing that M0
t ∆Yt is an orthogonal projection, it is not hard to see that the

(classical) Kalman filter solves problem (2.14) (for s = t) among all linear filters.
Using orthogonality of {∆Yt}t once again, we may setup similar recursions for
the corresponding best linear smoother; see, e.g. Anderson and Moore (1979),
Durbin and Koopman (2001). Under normality, i.e.; assuming (2.3), we even
haveXt|t[−1] = E[Xt|Y1:t[−1]], i.e.; the Kalman filter is optimal among all Y1:t[−1]-
measurable filters. It also is the posterior mode of L(Xt|Y1:t) and Xt|t can also
be seen to be the ML estimator for a regression model with random parameter;
for the last property, compare Duncan and Horn (1972).

2.3.4. Features of the Kalman–Filter

The Kalman filter stands out for its clear and understandable structure: it comes
in three steps, all of which are linear, hence cheap to evaluate and easy to
interpret. Due to the Markovian structure of the state equation, all information
from the past useful for the future may be captured in the value of Xt|t−1, so
only very limited memory is needed.
From a (distributional) Robustness point of view, this linearity at the same time
is a weakness of this filter—y enters unbounded into the correction step which
hence is prone to outliers. A good robustification of this approach would try to
retain as much as possible from these positive properties of the Kalman filter
while revising the unboundedness in the correction step.

3. The rLS as optimally-robust filter

3.1. Definition

3.1.1. robustifying recursive Least Squares: rLS

In a first step we limit ourselves to AO’s. Notationally, where clear from the
context, we suppress the time index t. As no (new) observations enter the ini-
tialization and prediction steps, these steps may be left unchanged. In the cor-
rection step, we will have to modify the orthogonal projection present in (2.17).
Suggested by H. Rieder and worked out in Ruckdeschel (2001, ch. 2), the follow-
ing robustification of the correction step is straightforward: Instead of M0∆Y ,
we use a Huberization of this correction

Hb(M
0∆Y ) = M0∆Y min{1, b/

∣∣M0∆Y
∣∣} (3.1)

for some suitably chosen clipping height b. Apparently, this proposal removes
the unboundedness problem of the classical Kalman filter while still remaining
reasonably simple, in particular this modification is non-iterative, hence espe-
cially useful for online-purposes.
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3.1.2. Choice of the clipping height b

For the choice of the clipping height b, we have two proposals. Both are based
on the simplifying assumption that Eid[∆X|∆Y ] is linear, which will turn out
to only be approximately right. The first one, an Anscombe criterion, chooses
b = b(δ) such that

Eid

∣∣∆X −Hb(M
0∆Y )

∣∣2 !
= (1 + δ) Eid

∣∣∆X −M0∆Y
∣∣2 (3.2)

δ may be interpreted as “insurance premium” to be paid in terms of loss of
efficiency in the ideal model compared to the optimal procedure in this (ideal)
setting, i.e.; the classical Kalman filter.

The second criterion for a given radius r ∈ [0, 1] of the (SO-) neighborhood
USO(r) determines b = b(r) such that

(1− r) Eid(|M0∆Y | − b)+
!
= rb (3.3)

Assuming linear ideal conditional expectations, this will produce the minimax-
MSE procedure for USO(r) according to Theorem 3.2 below.

One might object that (3.3) assumes r to be known, which in practice hardly
ever is true. If r is unknown however, we translate an idea worked out in Rieder
et al. (2008): Assume we have limited knowledge about r, say r ∈ [rl, ru], 0 ≤
rl < ru ≤ 1. Then we distinguish a least favorable radius r0 defined in the
following expressions

r0 = argmins∈[rl,ru]ρ0(s), ρ0(s) = max
r∈[rl,ru]

ρ(r, s), (3.4)

ρ(r, s) =
maxP∈USO(r) MSEP

(
rLS(b(s))

)
maxP ′∈USO(r) MSEP ′

(
rLS(b(r))

) (3.5)

and use the corresponding b(r0). Procedure rLS(b(r0)) then minimizes the max-
imal inefficiency ρ0(s) among all procedures rLS(b(r)), i.e.; each rLS for some
clipping height b(r) 6= b(r0) has an inefficiency no smaller than ρ0(r0) for some
r′ ∈ [rl, ru]. Radius r0 can be computed quite effectively by a bisection method:
Let

Ar = Eid

[
tr Covid[∆X|∆Y id] + (|M0∆Y id| − b(r))2+

]
(3.6)

Br = Eid

[
|M0∆Y id|2 − (|M0∆Y id| − b(r))2+

]
+ b(r)2 (3.7)

Then the following analogue to Kohl (2005, Lemma 2.2.3) holds:

Lemma 3.1. In equations (3.4) and (3.5), let r, s vary in [rl, ru] with 0 ≤ rl <
ru ≤ 1. Then

ρ0(r) = max{Ar/Arl , Br/Bru} (3.8)

and there exists some r̃0 ∈ [rl, ru] such that Ar̃0/Arl = Br̃0/Bru . This r̃0 is least
favorable, i.e., minr∈[rl,ru] ρ0(r) = ρ0(r̃0). Moreover, if ru = 1, r0 = ru.

In particular, the last equality shows that one should restrict ru to be strictly
smaller than 1 to get a sensible procedure.
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3.2. (One-Step)-Optimality of the rLS

The (so-far) ad-hoc robustification proposed in the rLS filter has some remark-
able optimality properties: Let us first forget about the time structure and
instead consider the following simplified, but general “Bayesian” model:

We have an unobservable but interesting signal X ∼ PX(dx), where for tech-
nical reasons we assume that in the ideal model E |X|2 < ∞. Instead of X we
rather observe a random variable Y taking values in an arbitrary space of which
we know the ideal transition probabilities; more specifically, we assume that
these ideal transition probabilities for almost all x have densities w.r.t. some
measure µ,

PY |X=x(dy) = π(y, x)µ(dy) (3.9)

Our approach uses MSE as accuracy criterion for the reconstruction, so is limited
to ranges of X where this makes sense. On the other hand it is this reduction to
the “Bayesian” model which makes the generalizations sketched in section 2.1
possible. As (wide-sense) AO model, we consider an SO outlier model, i.e.;

Y re = (1− U)Y id + UY di, U ∼ Bin(1, r) (3.10)

for U independent of (X,Y id) and (X,Y di) and some distorting random variable
Y di for which, in a slight variation of condition (2.12) we assume

Y di, X stochastically independent (3.11)

and the law of which is arbitrary, unknown and uncontrollable. As a first step
consider the set ∂USO(r) defined as

∂USO(r) =
{
L(X,Y re) |Y re acc. to (3.10) and (3.11)

}
(3.12)

Because of condition (3.11), in the sequel we refer to the random variables Y re

and Y di instead of their respective (marginal) distributions only, while in the
common gross error model as present in (2.9) or (2.10), reference to the respec-
tive distributions would suffice. Condition (3.11) also entails that in general,
contrary to the usual setting, L(X,Y id) is not element of ∂USO(r), i.e.; not
representable itself as some L(X,Y re) in this neighborhood. As corresponding
(convex) neighborhood we define

USO(r) =
⋃

0≤s≤r

∂USO(s) (3.13)

Of course, USO(r) contains L(X,Y id). In the sequel where clear from the context
we drop the superscript SO and the argument r.

With this setting we may formulate two typical robust optimization problems:
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Minimax-SO problem Minimize the maximal MSE on an SO-neighborhood,
i.e.; find a measurable reconstruction f0 for X s.t.

maxU Ere |X − f(Y re)|2 = minf ! (3.14)

Lemma5-SO problem As an analogue to Hampel (1968, Lemma 5), mini-
mize the MSE in the ideal model but subject to bound on the bias to be fulfilled
on the whole neighborhood, i.e.; find a measurable reconstruction f0 for X s.t.

Eid |X − f(Y id)|2 = minf ! s.t. supU
∣∣Ere f(Y re)− EX

∣∣ ≤ b (3.15)

The solution to both problems can be summarized as

Theorem 3.2 (Minimax-SO, Lemma5-SO). (1) In this situation, there is a

saddle-point (f0, P
Y di

0 ) for Problem (3.14)

f0(y) := EX +D(y)wr(D(y)), wr(z) = min{1, ρ/|z|} (3.16)

PY
di

0 (dy) := 1−r
r (
∣∣D(y)

∣∣/ρ − 1)+ PY
id

(dy) (3.17)

where ρ > 0 ensures that
∫
PY

di

0 (dy) = 1 and

D(y) = Eid[X|Y = y]− EX (3.18)

The value of the minimax risk of Problem (3.14) is

tr Cov(X)− (1− r) Eid

[
|D(Y id)|2wr(Y id)

]
(3.19)

(2) f0 from (3.16) also is the solution to Problem (3.15) for b = ρ/r.
(3) If Eid[X|Y ] is linear in Y , i.e.; Eid[X|Y ] = MY for some matrix M , then

necessarily
M = M0 = Cov(X,Y ) VarY − (3.20)

or in SSM formulation: M0 is just the classical Kalman gain and f0 the
(one-step) rLS.

3.2.1. Identifications for the SSM context

Identifying X in model (3.9) with ∆Xt and π(y, x)µ(dy) with L(Zt∆Xt +
εt)(dy), our “Bayesian” Model (3.9) covers the SSM context. Hence, if ∆Xt

is normal, (3) applies and rLS is SO-minimax.

3.2.2. Example for SO-least favorable densities

To illustrate the result of Theorem 3.2, we have plotted the ideal density of PY
id

,
the (least favorable) contaminated density of PY

re

0 , and the (least favorable)

contaminating density of PY
di

0 in Figure 1.
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Yre

Fig 1. Densities of PY
id

, PY
re

0 , PY
di

0 for PX = P ε = N (0, 1), r = 0.1; note the “thin” tails.

Remark 3.3. (a) Without using this name, SO neighborhoods have already been
used by Birmiwal and Shen (1993) and Birmiwal and Papantoni-Kazakos (1994), al-
though only in a one-dim. model.
(b) Explicit solutions to robust optimization problems in a finite sample setting are
rare, which is why one usually appeals to asymptotics instead. Important exceptions
are Huber (1968), Huber and Strassen (1973), and even there, in the former case one is
limited to a special loss function and to one dimension. Our results however are valid
in a finite sample context and in whole generality.
(c) Although the structure of our model resembles a location model—interpreting X
as a random location parameter—our saddle-point differs from the one obtained in
Huber (1964). To see this, let us look at the tails of the least favorable PY

re

0 assuming
a Gaussian model for simplicity: while in Huber’s setting the tails decay as ce−k|x| for

some c, k > 0, in our setting they decay as c′|x|e−x
2/2 so appear even “less harmful”

than in the location case.
(d) Attempts to solve corresponding optimization problems in a (narrow-sense) AO
neighborhood are much more difficult and only partial results in this context have been
obtained in Donoho (1978), Bickel (1981), and Bickel and Collins (1983); in particular

one knows, that in the setup of our example the least favorable P̃ ε = P ε
di

0 must be
discrete with only possible accumulation points ±∞. In addition, existence of a saddle-
point follows from abstract compactness and continuity arguments, but in order to
obtain specific solutions one has to recur to numeric approximation techniques as e.g.
worked out in Ruckdeschel (2001, sec. 8.3); in particular, one obtains redescending
optimal filters.
(e) Redescenders are also used in the ACM filter by Masreliez and Martin (1977)
which formally translates the Huber (1964) minimax variance result to this dynamic
setting (formally, because of the randomness of the “location parameter” ∆X). It
should be noted though that the least-favorable SO-situation for the ACM then is not
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in the tails but rather where the corresponding ψ function takes its maximum in ab-
solute value. An SO outlier could easily place contaminating mass on this maximum,
while this is much harder if not impossible to achieve in a (narrow-sense) AO situa-
tion. Hence in simulations where we produce “large” outliers, the ACM filter tends to
outperform the rLS filter, as these “large” outliers are least favorable for the rLS but
not for the ACM. The “inliers” producing the least favorable situation for the ACM
on the other hand will be much harder to detect on näıve data inspection than “large”
outliers, in particular in higher dimensions.

3.3. Back in the ∆X Model for t > 1

So far, in this section, we have ignored the fact that our X in model (3.9) resp.
∆Xt in the SSM context will stem from a past which has already used our
robustified version of the Kalman filter. In particular, the law of ∆Xt (even in
the ideal model) is not straightforward and hence (ideal) conditional expectation
appearing in the optimal solution f0 in Theorem 3.2 in practice are not so easily
computable.

3.3.1. Approaches to go back

The issue to assess the law ∆Xt from a non-linear filter past is common to other
robustifications, and hence there already exist a couple of approaches to deal
with it: Masreliez and Martin (1977) and Martin (1979) assume L(∆Xt) normal
and propose using robust location estimators (with redescending ψ-function) as
alternatives to the linear correction step. Contradicting this assumption in the
rLS case, we have the following proposition

Proposition 3.4. Whenever in one correction step in the ∆Xt past one has
used the rLS-filter, then {∆Xt} (as a process) cannot be normally distributed;
this assertion cannot even hold asymptotically, as long as

0 < lim inf
t

bt ≤ lim sup
t

bt <∞ (3.21)

Similar assertions can also be proven for particular ψ-functions used in the
ACM filter of Masreliez and Martin (1977) and Martin (1979).

Schick (1989) and Schick and Mitter (1994) use Taylor-expansions for non-
normal L(∆Xt); doing so they end up with stochastic error terms but do not
give an indication as to uniform integrability. Hence it is not clear whether
the approximation stays valid after integration. More importantly, at time in-
stance t, they come up with a bank of (at least t) Kalman–filters which is not
operational.

Birmiwal and Shen (1993) work with the exact L(∆Xt) and hence have to
split up the integration according to the the history of outlier occurrences which
yields 2t different terms—which is not operational either.

Remark 3.5. One of the features of the ideal Gaussian model is that Eid[∆Xt|Y1:t]
is Markovian in the sense that Eid[∆Xt|Y1:t] = Eid[∆Xt|∆Yt] hence only depends on
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the one value of ∆Yt. When using bounded correction steps, however, this property
gets lost, hence the restriction to strictly recursive procedures as is the rLS filter is a
real restriction.

Theorem 3.2 does not make any normality assumptions, but in assertion (3),
we have seen that the rLS would result optimal once we can show that Eid[∆Xt|∆Yt]
for ∆X stemming from an rLS past is linear. This leads to the question: When
is Eid[∆X|∆Y ] linear? Omitting time indices t, the answer is

Proposition 3.6. Assume rk(Ip −MZ) = p, p = q and rkZ = p, and that

Lid(ε) = Nq(0, V ), ε independent of ∆X (3.22)

Then Eid[∆X|∆Y ] is linear

⇐⇒ Lid(∆X) is normal (3.23)

⇐⇒ M3(e) := Eid

[(
eτ (∆X − E[∆X|∆Y ])

)3 ∣∣∆Y =y
]

= 0 ∀ e ∈ Rp (3.24)

Remark 3.7. (a) Assumption rk(Ip −MZ) = p is fulfilled in most situations; oth-
erwise there is a one-dimensional projection of the filter error that is 0 almost sure.
(b) For Z non-invertible, in particular for p 6= q, equivalence (3.23) still holds, if we
require

Lid(Π∆X) = Np(0,ΠΣΠ), Π∆X independent of Π̄∆X (3.25)

where Π is the projector onto kerZ and Π̄ = Ip −Π. In fact we prove Proposition 3.6
in this more general case. Assumption (3.25) is needed, as Π∆X is invisible for ∆Y .
(c) Equivalence (3.23) together with Proposition 3.4 shows that, stemming from an
rLS-past, rLS can only be SO-optimal in the very first time step.
(d) Simulations however show that rLS gives very reasonable results. So in fact we
could/should be close to an ideal linear conditional expectation. “Closeness” to lin-
earity could be quantified by the second derivative ∂2/∂y2 Eid[∆X|∆Y = y], which in
fact leads us to expression (3.24).
(e) Equivalence (3.24), i.e.; conditional unskewedness of ∆X, is somewhat surprising,
as it seems much weaker than normality of the prediction error.
(f) Condition (3.22) could be relaxed to ε ∼ P , P some infinitely divisible distri-
bution, and the normality assumption in (3.25) be dropped. Equivalence (3.23) would
then become: For each M ∈ Rp×q there can be at most one distribution Q = Q(M,P )
on Bp, such that E[∆X|∆Y ] = M∆Y for L(Π̄∆X) = Q; for p = q = 1 and Z 6= 0,
there always is such a Q; see Ruckdeschel (2001, Thm. 1.3.1).

3.3.2. A test for linearity

In particle filter context where you simulate many stochastically independent
filter realizations in parallel, Proposition 3.6 suggests the following test for lin-
earity/normality:

Proposition 3.8. Let ∆X\
i , i = 1, . . . , n be an i.i.d. sample from L(∆Xt),

the law of the prediction errors of some filter at time t; let Σ = Cov(∆Xt),
σ2 its maximal eigenvalue and e a corresponding eigenvector (of norm 1); let
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Σ̂n, σ̂2
n, and ên the corresponding empirical counter parts (all assumed consis-

tent). Define the test statistic Tn = 1
n

∑n
i=1(êτn∆X\

i )
3. Then under normality of

L(∆Xt), √
nTn −→w N (0, 15σ6) (3.26)

and the test
I(|Tn| >

√
15/n σ̂3

nuα/2) (3.27)

for uα the upper α-quantile of N (0, 1) is asymptotically most powerful among
all unbiased level-α-tests for testing

H0 : sup
|e|=1

M3(e) = 0 vs. H1 : sup
|e|=1

|M3(e)| > 0 (3.28)

3.4. Way out: eSO-Neighborhoods

One explanation for the good empirical findings for the rLS is given by a further
extension of the original SO-neighborhoods—the extended SO or eSO–model :
In this model, we also allow for model deviations in X, i.e.; we assume a realistic
(Xre, Y re) according to

(Xre, Y re) := (1− U)(X id, Y id) + U(Xdi, Y di) (3.29)

for X id ∼ PX
id

, Y id according to equation (3.9), Xdi ∼ PX
di

, Y di ∼ PY
di

,
U ∼ Bin(1, reSO), where

U and (X id, Y id) independent as well as (mutually) U,Xdi, Y di (3.30)

and the joint law PX
id,Y id

and the radius r = reSO are known, while PX
di

, PY
di

are arbitrary, unknown and uncontrollable; however, we assume that

EdiX
di = EidX

id, Edi |Xdi|2 ≤ G (3.31)

for some known 0 < Eid |X id|2 ≤ G <∞, and accordingly define

U eSO(r) :=
⋃

0≤s≤r

∂U eSO(s), ∂U eSO(r) := { L(Xre, Y re) acc. to (3.29)–(3.31) }

(3.32)

Remark 3.9. At first glance, moment condition (3.31) seems to violate (distribu-
tional) robustness; however, this condition has not been introduced to induce a higher
degree of robustness, but rather to extend the applicability of Theorem 3.2.

Theorem 3.10 (minimax-eSO). The pair (f0, P
Y di

0 ), optimal in the Minimax-

SO-problem to radius rSO = r from Theorem 3.2, extended to
(
f0, P

Y di

0 ⊗PXdi

0

)
for any PX

di

0 such that Edi |Xdi|2 = G, remains a saddle-point in the correspond-
ing Minimax-Problem on the eSO-neighborhood U eSO to the same radius r—no
matter what bound G in equation (3.31) holds. The value of the minimax risk is

tr CovidX
id + r(G− Eid |X id|2)− (1− r) Eid

[
|D(Y id)|2wr(Y id)

]
(3.33)
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As an application of Theorem 3.10, we now invoke a coupling idea: In the
Gaussian setup, i.e.; we assume (2.3), we no longer regard the (SO–) saddle-point
solution to an U(r)-neighborhood around L(∆X) stemming from an rLS-past,
but use Theorem 3.10 as follows:

Proposition 3.11. Assume that for each time t there is a (fictive) random
variable ∆XN ∼ Np(0,Σ) such that ∆XrLS

t stemming from an rLS-past can be
considered an Xdi in the corresponding eSO-neighborhood around ∆XN with
radius r. Then, rLS is exactly minimax for each time t.

Remark 3.12. (a) Existence of ∆XN ∼ Np(0,Σ) in a general setting is not yet
proved. To this end one has to show moment condition (3.31) and that

supλ
(
p∆XNt / p∆Xt

)
≥ 1− r (3.34)

where p∆XNt , p∆Xt are the corresponding Lebesgue densities and supλ is the corre-
sponding essential supremum w.r.t. Lebesgue measure in the respective dimension.
Clearly condition (3.34) is the difficulty, while condition (3.31) is not hard to fulfill—
we only need to check that Eid ∆Xt = 0, which for the rLS follows from symmetry of
the distributions in the ideal model, and that the second moment is bounded—which
also clearly holds.
(b) As to the choice of covariance Σ for ∆XNt , we have two candidates: Σ = Cov ∆XrLS

t

and Σ = Σt|t−1 from the classical Kalman filter. While the former takes up the actual
error covariances, the latter is much easier to compute. In our numerical examples
in Ruckdeschel (2001), we could not find any significant advantages for the former in
terms of precision and hence propose the latter for computational reasons.
(c) For p = 1, (3.34) could be checked numerically in a number of models, cf. Ruck-
deschel (2001, Table 8.1). For p > 1, particle filter techniques should be helpful.

4. IO-optimality

In this section, we translate the preceding optimality results to the IO situation.
We have already noted that in this case, instead of attenuating (the influence
of) a dubious observation we would rather want to follow an IO outlier as fast
as possible. It is well-known that the Kalman filter tends to be too inert for
this task and faster tracking filters are needed. To do so, let us go back to our
“Bayesian” model (3.9) but now we specify the transition densities π(y, x) to
come from an observation Y which is built up additively as

Y = X + ε (4.1)

Equation (4.1) reveals a remarkable symmetry of X and ε which we are going
to exploit now: Apparently

E[X|Y ] = Y − E[ε|Y ] (4.2)

This is helpful if we are now assuming that ε will be ideally distributed, and
instead the states X get corrupted. To this end, we retain the SO-model from the
preceding sections, i.e., Y id will be replaced from time to time by Y di. Contrary
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to the AO formulation however, we now assume that this replacement by Y di

reflects a corresponding change in X, as we now want to track the distorted
signal. As a consequence this gives the following IO-version of the minimax
problem (where the only visible difference is the superscript “re” for X).

maxU Ere |Xre − f(Y re)|2 = minf ! (4.3)

But, using Xre = Y re − ε, and setting f̃(y) = y − f(y) we obtain the equivalent
formulation

maxU Ere |ε− f̃(Y re)|2 = minf̃ ! (4.4)

and we are back in the situation of subsection (3.2) with the respective rôles of
X and ε interchanged. That is; the corresponding theorems translate word by
word. Skipping the Lemma 5 solution we obtain

Theorem 4.1 (Minimax-IO). (1)’ In this situation, there is a saddle-point

(f1, P
Y di

1 ) for Problem (4.3)

f1(y) := y − D̃(y) min{1, ρ̃/
∣∣D̃(y)

∣∣} (4.5)

PY
di

1 (dy) := 1−r
r (
∣∣D̃(y)

∣∣ /ρ̃ − 1)+ PY
id

(dy) (4.6)

where ρ̃ > 0 ensures that
∫
PY

di

1 (dy) = 1 and

D̃(y) = y − Eid[X|Y = y] (4.7)

(3)’ If Eid[X|Y ] is linear in Y , i.e.; Eid[X|Y ] = MY for some matrix M , then
necessarily

M = M0 = Cov(X,Y ) VarY − (4.8)

—or in the SSM formulation: M0 is just the classical Kalman gain and
f1 the (one-step) rLS.IO defined below.

Note that contrary to Theorem 3.2 where EX need not be 0, here E ε = 0,
which simplifies the definition of D̃ in (4.7). Details on how to use this for a
corresponding IO-robust variant of rLS are given in Ruckdeschel (2010).

5. Conclusion and Outlook

In the extremely flexible class of dynamic models consisting in SSMs we were
able to obtain optimality results for filtering. In this generality this is a novelty.
We stress the fact that our filters are non-iterative, recursive, hence fast, and
valid for higher dimensions.

So far, we have not said much about the implementation of these filters.
rLS.AO was originally implemented to XploRe, compare Ruckdeschel (2000).
In an ongoing project with Bernhard Spangl, BOKU, Vienna, and Irina Ur-
sachi (ITWM), we are about to implement the rLS filter to R, (R Development
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Core Team (2010)), more specifically to an R-package robKalman, the develop-
ment of which is done under r-forge project https://r-forge.r-project.

org/projects/robkalman/, (R-Forge Administration and Development Team
(2008)). Under this address you will also find a preliminary version available for
download.

In an extra paper, which for the moment is available as technical report,
Ruckdeschel (2010), we also check the properties of our filters at simulations and
discuss the extension of these optimally-robust filters to a filter that combines
the two types (for system-endogenous and -exogenous outlier situation). This
hybrid filter is capable to treat (wide-sense) IO’s and AO’s simultaneously—
albeit with minor delay.

6. Proofs

Proof to Lemma 3.1 We use the fact that for 0 ≤ a, b, c, d, (a+ b)/(c+d) ≤
max(a/c, b/d). Hence

ρ0(s) ≤ max{As/Arl , Bs/Bru} (6.1)

Equation (3.3) shows that b(r) is (strictly) decreasing in r (for r > 0) from∞ to
0. Hence Ar is increasing in r, and Br decreasing, Br from∞ to 0. By dominated
convergence b(r), and hence Ar and Br are continuous in r. Thus existence of
r̄0 follows. For ru = 1, one argues letting rn ∈ [0, 1) tend to 1. To show equality
in (6.1), we parallel Kohl (2005, Lemma 2.2.3), and first show that for r ≥ s,
s fixed, ρ(r, s) is increasing and correspondingly, for r ≤ s, s fixed, decreasing,
which entails (3.8): Let 0 ≤ s < r1 < r2 ≤ 1. Then by monotony of Ar, Br,
(AsB

−1
s + r1)−1 ≥ (Ar1B

−1
r1 + r1)−1; multiplying this inequality with (r2 − r1),

we get (r2 − r1)Bs(As + r1Bs)
−1 ≥ (r2 − r1)Br1(Ar1 + r1Br1)−1. Now, due to

optimality of Ar + rBr for radius r,

0 ≤ (r2 − r1)Bs
As + r1Bs

− (r2 − r1)Br1 +Ar2 + r2Br2 −Ar1 − r2Br1
Ar1 + r1Br1

=

= (r2 − r1)Bs(As + r1Bs)
−1 −

(
Ar2 + r2Br2

)
(Ar1 + r1Br1)−1 + 1

Multiplying with (As+r1Bs)/(Ar2 +r2Br2), we obtain indeed ρ(r2, s) ≥ ρ(r1, s),
and similarly for 0 ≥ s > r1 > r2 ≥ 1. Next, for r̃0 least favorable, we show
that for r fixed, and s ≥ r, ρ(r, s) is increasing and correspondingly, for s ≤ r,
decreasing: Let 0 ≤ r < r1 < r2 ≤ 1. Then, due to optimality of Ar1 − r1Br1 ,

Ar2 + rBr2 −Ar1 + rBr1 =

= (r1 − r)(Br1 −Br2) +Ar2 + r1Br2 −Ar1 − r1Br1 ≥ 0

and similarly for 0 ≥ r > r1 > r2 ≥ 1. For the last assertion, note that by (3.3),
b(1) = 0, hence B1 = 0. Hence max

{
As/Arl , Bs/B1

}
= ∞ for s < 1, while for

s = 1, we get ρ0(1) = max{A1/Arl , 1} = 1.

https://r-forge.r-project.org/projects/robkalman/
https://r-forge.r-project.org/projects/robkalman/
https://r-forge.r-project.org/projects/robkalman/
https://r-forge.r-project.org/projects/robkalman/
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Proof to Theorem 3.2 (1) Let us solve max∂U minf [. . .] first, which amounts

to min∂U Ere[
∣∣Ere[X|Y re]

∣∣2]. For fixed element PY
di

assume w.l.o.g. that µ �
PY

di

for µ from (3.9)—otherwise we replace µ by µ + PY
di

; this gives us a

µ-density q(y) of PY
di

. Determining the joint (real) law PX,Y
re

(dx, dy) as

P (X∈A, Y re∈B) =

∫
IA(x) IB(y)[(1−r)π(y, x) + rq(y)]PX(dx)µ(dy) (6.2)

we deduce that µ(dy)-a.e.

Ere[X|Y re=y] =
rq(y)EX+(1−r)pY id

(y) Eid[X|Y ]

rq(y) + (1− r)pY id(y)
=:
a1q(y)+a2(y)

a3q(y)+a4(y)
(6.3)

Hence we have to minimize

F (q) :=

∫
|a1q(y) + a2(y)|2

a3q(y) + a4(y)
µ(dy)

in M0 = {q ∈ L1(µ) | q ≥ 0,
∫
q dµ = 1}. To this end, we note that F is convex

on the non-void, convex cone M = {q ∈ L1(µ) | q ≥ 0} so, for some ρ̃ ≥ 0, we
may consider the Lagrangian

Lρ̃(q) := F (q) + ρ̃

∫
q dµ (6.4)

for some positive Lagrange multiplier ρ̃. Pointwise minimization in y of Lρ̃(q)
gives

qs(y) = 1−r
r (
∣∣D(y)

∣∣/s − 1)+ pY (y)

for some constant s = s(ρ̃) = ( |EX|2 + ρ̃/r)1/2, Pointwise in y, q̂s is anti-
tone and continuous in s ≥ 0 and lims→0[∞] qs(y) = ∞[0], hence by monotone
convergence,

H(s) =

∫
q̂s(y)µ(dy)

too, is antitone and continuous and lims→0[∞]H(s) = ∞[0]. So by continuity,
there is some ρ ∈ (0,∞) with H(ρ) = 1. On M0,

∫
q dµ = 1, but q̂ρ = qs=ρ ∈M0

and is optimal on M ⊃M0 hence it also minimizes F on M0. In particular, we
get representation (3.17) and note that, independently from the choice of µ,

the least favorable PY
di

0 is dominated according to PY
di

0 � PY
id

, i.e.; non-

dominated PY
di

are even easier to deal with.
As next step we show that

max∂U minf [. . .] = minf max∂U [. . .] (6.5)

To this end we first verify (3.16) determining f0(y) as f0(y) = Ere;P̂ [X|Y re = y].
Writing a sub/superscript “re;P” for evaluation under the situation generated

by P = PY
di

and P̂ for PY
di

0 , we obtain the the risk for general P as

MSEre;P [f0(Y re, P )] = (1− r) Eid

∣∣X − f0(Y id)
∣∣2 + r tr CovX +

+r EP min(|D(Y di;,q)|2, ρ2) (6.6)
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This is maximal for any P that is concentrated on the set
{
|D(Y di;,q)| > ρ

}
,

which is true for P̂ . Hence (6.5) follows, as for any contaminating P

MSEre;P [f0(Y re;P ] ≤ MSEre; P̂ [f0(Y re; P̂ )]

Finally, we pass over from ∂U to U : Let fr, P̂r denote the components of the
saddle-point for ∂U(r), as well as ρ(r) the corresponding Lagrange multiplier
and wr the corresponding weight, i.e., wr = wr(y) = min(1, ρ(r) / |D(y)|). Let
R(f, P, r) be the MSE of procedure f at the SO model ∂U(r) with contaminating

PY
di

= P . As can be seen from (3.17), ρ(r) is antitone in r; in particular, as P̂r is
concentrated on {|D(Y )| ≥ ρ(r)} which for r ≤ s is a subset of {|D(Y )| ≥ ρ(s)},
we obtain

R(fs, P̂s, s) = R(fs, P̂r, s) for r ≤ s
Note that R(fs, P, 0) = R(fs, Q, 0) for all P,Q—hence passage to R̃(fs, P, r) =
R(fs, P, r)−R(fs, P, 0) is helpful—and that

tr CovX = Eid

[
tr Covid[X|Y id] + |D(Y id)|2

]
(6.7)

Abbreviate w̄s(Y
id) = 1−

(
1− ws(Y id)

)2 ≥ 0 to see that

R̃(fs, P, r) = r
{

Eid

[
|D(Y id)|2w̄s(Y id)

]
+ EP min(|D(Y id)|, ρ(s))2

}
≤

≤ r
{

Eid

[
|D(Y id)|2w̄s(Y id)

]
+ ρ(s)2

}
= R̃(fs, P̂r, r) < R̃(fs, P̂s, s)

Hence the saddle-point extends to U(r); in particular the maximal risk is never
attained in the interior U(r) \ ∂U(r). (3.19) follows by plugging in the results.

(2) Let f̃(Y ) = f(Y )− EX, and X0 = X − EX; then (3.15) becomes

Eid |X0 − f̃(Y )|2 = minf̃ ! s.t. supU
∣∣Ere f̃(Y re)

∣∣ ≤ b (6.8)

The assertion follows upon noting that supU |Ere f̃ | = sup |f̃ | (to be shown just
as in Rieder (1994, chap. 5)) and writing

Eid |X0 − f̃(Y )|2 = Eid

[
E[|X0 − f̃(Y )|2

∣∣∣Y ]
]

—minimize the inner expectation subject to
∣∣f̃(Y re)

∣∣ ≤ b pointwise in Y .
(3) If Eid[X|Y ] is linear in Y , the corresponding optimal matrix M0 is just the

respective Fourier coefficient, i.e.; Cov(X,Y ) VarY −. We have already recalled
that the classical Kalman filter is optimal among all linear filters; hence the
corresponding Kalman gain M0 is then the optimal linear transformation in the
SSM context.

Remark 6.1. (a) Birmiwal and Shen (1993) proceed similarly for their result. How-
ever, they invoke a minimax result by Ferguson (1967) which in our infinite dimensional
setting is not applicable. Also their setting is restricted to one dimension, and they
assume Lebesgue densities right away—also in the contaminated situation. In par-
ticular, they do not realize the connection to the exact conditional mean present in
equation (3.18).



Peter Ruckdeschel/Optimally Robust Kalman Filtering 19

(b) For an alternative proof, see Ruckdeschel (2001, pp.156–163): It uses Rieder (1994,
App. B), showing existence of Lagrange multipliers in (1) by abstract compactness and
continuity arguments.
(c) The fact that the solutions to Problems (3.14) and (3.15) coincide parallels the
situation in the estimation problem for a one-dimensional location parameter.

Proof to Proposition 3.4 Recall that by the Cramér-Lévy Theorem (cf.
Feller (1971, Thm. 1, p. 525)) the sum of two independent random variables
has Gaussian distribution iff each summand is Gaussian. This can easily be
translated into a corresponding asymptotic statement, cf. Ruckdeschel (2001,
Prop. A.2.4), i.e.; the sum of two independent random variables converges
weakly to a Gaussian distribution iff each summand converges weakly to a Gaus-
sian distribution. We first consider (for fixed t, omitted from notation where
clear) the filter error,

∆̃X := Xt −Xt|t = ∆X −Hb(M
0∆Y )

where we assume ∆X, ε, and v normal. Then for the conditional law of ∆̃X given
∆Y is Np(g, (Ip −M0Z)Σ) for Σ = Cov ∆X and g := M0∆Y −Hb(M

0∆Y ) =(∣∣M0∆Y
∣∣− b)

+
. Hence

L(∆̃X) = L(g) ∗ Np(0, (Ip −M0Z)Σ)

which by Cramér-Lévy cannot be normal, as g is obviously not normal. Conse-

quently ∆Xt+1 = Ft+1∆̃Xt+vt+1 cannot be normal either. Hence starting with
normal ∆Xt and εt, ∆Xt+1 cannot be normal. The same assertion clearly holds
if vt is not normal. As by (3.21), gt does neither converge to 0 nor to M0∆Y ,
the asymptotic version of Cramér-Lévy also excludes asymptotic normality.

Remark 6.2. A similar assertion for the case that vt is normal but not both ∆Xt
and εt are, seems plausible and we conjecture that this is true; it may also be proven
in particular cases, but in general, it is hard to obtain due to the lack of independence
of ∆X − g and ∆Y .

Proof to Proposition 3.6 For the second equivalence in Proposition 3.6 we
use the following lemma and a corollary of it:

Lemma 6.3. Let ε ∼ Nq(0, V ), X ∼ PX and for some measurable function
h : range(X) → Rq let Y = h(x) + ε. Let g ∈ Ll1(PX), i.e., g : range(X) → Rl
measurable and EPX |g(X)| <∞. Then

∂

∂y
E[g(X)|Y = y] = Cov[g(x), h(x)|Y = y]V −1 (6.9)

Proof. For simplicity, we only consider rkV = q; otherwise we may pass to
ε = Aε̃ for some ε̃ ∼ Nq̃(0, Ṽ ) with rk Ṽ = q̃ and use the generalized inverse V −

instead of V −1 everywhere in the proof.
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Let pε be the Lebesgue density of ε and denote Λε(ε) := ∂
∂ε log pε(ε). Then,

no matter whether ε is Gaussian, it holds that

E[g(X)|Y = y] =

∫
g(x)pε(y − h(x))PX(dx)∫
pε(y − h(x))PX(dx)

As ε is normal, we may interchange differentiation and integration and obtain
that

∂

∂y
E[g(X)|Y = y] = Cov[g(X),Λε(Y − h(X)) |Y = y]

But as ε ∼ Nq(0, V ), it holds that Λε(ε) = −V −1ε, which entails (6.9) as

Λε(y − h(X))− E[Λε(Y − h(X))|Y = y] = V −1(h(X)− E[h(X)|Y = y])

Corollary 6.4. In our linear time discrete, Euclidean SSM, ommiting indices
t, assume that rkV = q and let

U := V −1Z∆X, U0 := U − E[U |∆Y ], ∆X0 := ∆X − E[∆X|∆Y ] (6.10)

Then

∂

∂y
E[∆X|∆Y = y] = Cov(∆X,U |∆Y = y) (6.11)

∂2

∂yj∂yk
E[∆Xi|∆Y = y] = E(∆X0

i U
0
j U

0
k |∆Y = y) (6.12)

Proof. During the proof we will omit ∆ in notation. Equation (6.11) is just
plugging in Lemma 6.3. We note that equivalently to (6.9) we could have written

∂

∂y
E[X|Y = y] = E[X(U0)τ |Y = y] = E[XUτ |Y = y]−E[X|Y = y] E[U |Y = y]τ

Hence applying Lemma 6.3 for g(X) = XiUj and g(X) = Uj to the last two
terms we obtain

∂2

∂yj∂yk
E[Xi|Y = y] = E[XiUjU

0
k |Y = y]− E[Xi|Y = y] E[UjU

0
k |Y = y] =

= E[X0
i UjU

0
k |Y = y] = E[X0

i U
0
j U

0
k |Y = y]

Proof to Proposition 3.6 Equivalence (3.23):

If L(∆X) is normal, the uncorrelated random variables Π∆X and Π̄∆X are
independent and again normal, while the random variables ∆X,∆Y are jointly
normal, hence linearity of conditional expectation is a well-known fact.
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If Eid[∆X|∆Y ] is linear, after subtracting EMZ∆X from both sides, the
defining equation for the conditional expectation PY (dy)-a.e. reads

M

∫
(y − Zx)pε(y − Zx)PX(dx) = (Ip −MZ)

∫
xpε(y − Zx)PX(dx) (6.13)

Let us introduce qε(y) = ypε(y) and the signed measure QX(dx) = xP (dx); if
we denote the mapping h : Rq → R, y 7→ h(y) =

∫
f(y − Zx)G(dx) by f ∗Z G,

(6.13) becomes
Mqε ∗Z PX = (Ip −MZ)pε ∗Z QX (6.14)

We pass over to the Fourier transforms (denoted with ·̂ ) for s ∈ Rp, t ∈ Rq

q̂X(s) =
∫
eis

τxQX(dx), p̂X(s) =
∫
eis

τx PX(dx),
q̂ε(t) =

∫
eit

τxqε(y) dy, p̂ε(t) =
∫
eit

τxpε(y) dy,

As usual, convolution translates into products in Fourier space, in our case

f̂ ∗Z G(t) = f̂(t)Ĝ(Zτ t), t ∈ Rq

and hence (6.14) in Fourier space is Mq̂εp̂X(Zτ · ) = (Ip −MZ)p̂εq̂X(Zτ · ). For
the derivatives (p̂X)′(s), (p̂ε)′(t) for s ∈ Rp and t ∈ Rq, we obtain

(p̂X)′(s) = i q̂X(s), (p̂ε)′(t) = i q̂ε(t) (6.15)

By assumption, Ip − MZ is invertible and ε ∼ Nq(0, V ), hence p̂ε(t) =
exp(−tτV t/2) > 0 and together with (6.15), this gives the linear differential
equation

(p̂X)′(Zτ t) = −(Ip −MZ)−1MV tp̂X(Zτ t) (6.16)

Fixing any direction t0 such that Zτ t0 6= 0, this becomes an ODE

g′(s) = −tτ0Z(Ip −MZ)−1MV t0sg(s), g(0) = 1

which has a unique solution given by

g(s) = exp(−tτ0Z(Ip −MZ)−1MV t0s
2/2)

This is the characteristic function of a normal distribution, so Z∆X, hence also
Π̄∆X are normal, and together with (3.25) the assertion follows. On the other
hand, CovZ∆X = ZΣZτ , so we have also shown that Z(Ip −MZ)−1MV =
ZΣZτ , which otherwise is tricky unless assuming Σ and ∆ invertible.

Equivalence (3.24):

If Eid[∆X|∆Y ] is linear, by equivalence (3.23) ∆X and ∆Y are jointly normal
with expectation 0, so the conditional law of ∆X given ∆Y is again normal
with expectation 0, hence in particular symmetric so the assertion follows.
Now assume

E
[(
eτ (∆X − E[∆X|∆Y ])

)3 ∣∣∣∆Y ] = 0 ∀ e ∈ Rp (6.17)
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Apparently, Eid[∆X|∆Y ] is linear iff ∂2/∂y∂yτ Eid[∆X|∆Y ] = 0. But Corol-
lary 6.4 gives (in the notation of (6.10))

∂2

∂yj∂yk
E[∆Xi|∆Y = y] = E(∆X0

i U
0
j U

0
k |∆Y = y) (6.18)

By complete polarization (compare Weyl (1997, Chap. I.1)), (6.17) also entails
that the symmetric multilinear form given by E[∆X0

i ∆X0
j∆X0

k |Y = y]i,j,k∈{1,...,p}
is identically 0. So the assertion follows, as with Z̃ = ZV −1, the RHS of (6.18)
is just ∑p

h,l=1
Z̃j,hZ̃k,l E(∆X0

i ∆X0
h∆X0

l |∆Y = y)

Proof to Theorem 3.10 We proceed as in Theorem 3.2, but note that in the
eSO context (6.2) becomes

P (X ∈ A, Y re ∈ B) = (1− r)
∫

IA(x) IB(y)π(y, x)PX
id

(dx)µ(dy)

+r

∫
IA(x) IB(y)q(y)PX

di

(dx)µ(dy)

and hence (6.3) becomes

Ere[X|Y re = y] =
rq(y) Edi[X

di] + (1− r)pY id

(y) Eid[X|Y ]

rq(y) + (1− r)pY id(y)

But by (3.31), the RHS of (6.19) is exactly F (q) from (6.3). Thus, we may jump
to the proof of Theorem 3.2 from this point on, replacing tr CovX by

G̃ := tr Cov
PX

di
0

Xdi = G− |EidX
id|2

in equation (6.6). For passing from ∂U eSO to U eSO, let fr, P̂r ⊗ Q̂r be the com-
ponents of the saddle-point at ∂U eSO(r) and R(f, P ⊗ Q, r) be the MSE of

procedure f at ∂U eSO(r) with contaminating PY
di ⊗ PXdi

= P ⊗Q. Instead of
equation (6.7), we use

∆G := G̃− tr CovidX
id = G− Eid |X id|2 ≥ 0

and abbreviating R(f, P ⊗Q, r)−R(f, P ⊗Q, 0) by R̃(f, P ⊗Q, r) we obtain

R̃(fs, P ⊗Q, r) = r
{

tr CovQX
di − CovidX

id + EP [min(|D(Y di)|, ρ(s))2]
}
≤

≤ r
{

∆G+ Eid

[
|D(Y id)|2w̄s(Y id)

]
+ ρ(s)2

}
=

= R̃(fs, P̂r ⊗ Q̂r, r) < R̃(fs, P̂r ⊗ Q̂r, s) = R̃(fs, P̂s ⊗ Q̂s, s)

Hence the saddle-point extends to U eSO(r). (3.33) follows by plugging in the
results.
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Proof to Proposition 3.8 Under H0, due to Proposition 3.6, ∆X\
i

i.i.d.∼
Np(0,Σ). Hence eτ∆X\

i
i.i.d.∼ N (0, σ2). Thus by the Lindeberg-Lévy CLT,

1√
n

n∑
i=1

(eτ∆X\
i )

3 −→w N (0,E[(eτ∆Xt)
6])

But the sixth moment ofN (0, σ2) is just 15σ6. Hence by the assumed consistency
of ên for e, Slutsky’s Lemma yields (3.26). Asymptotically, the testing problem
is a test for a normal mean µ to be 0 or not, which yields the corresponding
optimality for the Gauss test given in (3.27).

Proof to Proposition 3.11 Let us identify X  ∆XN , Y  ∆Y N :=
Z∆XN + ε, and set P ε = Nq(0, V ), PX = Np(0,Σ), and let pε the correspond-
ing Lebesgue density, then π(y, x) = pε(y − Zx). Assertions (1’) and (3’) of
Theorem 3.10 show that the eSO-optimal f0 in our “Bayesian” model of subsec-
tion 3.2 is just f0(y) = M0(y) min{1, ρ/

∣∣M0y
∣∣} with ρ according to (3.17) such

that
∫
dPY

di

0 = 1 and M0 = ΣZτ (ZΣZτ + V )−1.
By assumption, ∆XrLS lies in the corresponding eSO-neighborhood U(r) about
∆XN so the value of the saddle-point from equation (3.19) is also a bound for
the MSE of XrLS

t|t on U(r).

Remark 6.5. One should mention, however, that due to assumption (2.12) resp.
(3.11), members of an SO-neighborhood U ′(r′) about L(∆XrLS,∆Y rLS) need not lie
in an eSO neighborhood U(r + r′) about L(∆XN ,∆Y N ).
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