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Abstract

In proofs of L, -differentiability, Lebesgue densities of a central distribution are often assumed
right from the beginning. Generalizing [Huber| (1981} Theorem 4.2), we show that in the class
of smooth parametric group models these densities are in fact consequences of a finite Fisher
information of the model, provided a suitable representation of the latter is used. The proof uses
the notions of absolute continuity in £ dimensions and weak differentiability.

As examples to which this theorem applies, we spell out a number of models including a corre-
lation model and the general multivariate location and scale model.

As a consequence of this approach, we show that in the (multivariate) location scale model,
finiteness of Fisher information as defined here is in fact equivalent to L, -differentiability and to
a log-likelihood expansion giving local asymptotic normality of the model.

Paralleling Huber’s proofs for existence and uniqueness of a minimizer of Fisher information to
our situation, we get existence of a minimizer in any weakly closed set .# of central distributions
F . If, additionally to analogue assumptions to those of[Huber| (1981)), a certain identifiability con-
dition for the transformation holds, we obtain uniqueness of the minimizer. This identifiability
condition is satisfied in the multivariate location scale model.

Keywords: Fisher information, group models, multivariate location and scale model,
correlation estimation, minimum Fisher information, absolute continuity, weak differentiability,
LAN, L2 differentiability, smoothness;
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1. Introduction

1.1. Motivation

L, -differentiability as introduced by LeCam and Héjek appears to be the most suitable setup
in which to derive such key properties as local asymptotic normality (LAN) in local asymptotic
parametric statistics. In order to show this L, -differentiability however, Lebesgue densities of a
central distribution are frequently assumed right from the beginning. In this paper, we generalize
Huber| (1981] Theorem 4.2) from one-dimensional location to a large class of parametric models,
where these Lebesgue densities are in fact a consequence of a finite Fisher information of the
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model, provided a suitable definition of the latter is used. This definition may then serve—
again as in [Huber| (1981)—as starting point for minimizing Fisher information along suitable
neighborhoods of the model.

The framework in which this generalization holds covers smooth parametric group models as to
be found in Bickel et al.|(1998)), but is valid even in a somewhat more general setting: The idea
is to link transformations in the parameter space to transformations in the observation space.
The new definition of Fisher information then simply amounts to transferring differentiation
in the parameter space to differentiation—in a weak sense—in the observation space. This is
actually done much in a Sobolev spirit, working with generalized derivatives.

1.2. Organization of the Paper

After an introduction to the setup of smooth parametric group models, in section [2} we list
the smoothness requirements for the transformations and some notation needed for our theorem.
Before stating this theorem, in section[3|we first give a number of examples to which this theorem
applies, the most general of which is the multivariate location and scale model from Example[3.7]
Section ] provides the main result, Theorem 4.4} In section [5] we spell out the resulting Fisher
information in the examples of section[3] As announced in the motivation, in section [6] culmi-
nating in Proposition we show that in the (multivariate) location-scale model finiteness of
Fisher information is equivalent to L, -differentiability as well as to a LAN property. Finally, in
section [/| we generalize Huber’s proofs for existence and uniqueness of a minimizer of Fisher
information to our situation. The proofs are gathered in appendix section[Appendix B} The proof
of Theorem makes use of the notions of absolute continuity in & dimensions and of weak
differentiability. Both are provided in an appendix in section

Remark 1.1. The one-dimensional scale model, a particular case of what is covered by this paper, has
been spelt out separately, in a small joint paper with Helmut Rieder, cf. Ruckdeschel and Rieder| (2010).

2. Setup

2.1. Notation

B* denotes the Borel o -algebra on R¥, . (/) [.#,(<7)] the set of all probability [sub-
stochastic] measures on some o -algebra o7, and for pu € .#;(B), for p € [1,o0], L,(ut) is the
set of all (equivalence classes of) ./ |B measurable functions with E |X|? < e, resp. supp |X| <
oo. Iy denotes the indicator function of the set A. I; is the k-dimensional unit matrix, vec(A)
is the operator casting a matrix to a vector, stacking the columns of A over each other, vech
the operator casting the upper half of a quadratic matrix to a vector—including the diagonal—
and A ® B the Kronecker product of matrices, and, for A,B € Rk the symmetrized product
A®B:= (AB+B*AY) /2.

For [ € NgUw let € be the set of all / times continuously differentiable functions, where—
if necessary—we specify domain and range in the notation %”(domain,range). Weak conver-
gence of measures P, € . (B*) to some measure P € .#; (B¥) is denoted by P, —w> P.
Inequalities and intervals in R¥ are denoted by the same symbols as in one dimension, meaning
eg I<riff ;<r,foralli=1,....k,and [I,r] :={x e R¥|l; <x;<r;, Vi=1,....k}.

Let Py € 4 (]Bk). RF being Polish, regular conditional distributions are available, and we
may write Py(dxy,...,dx;) as

k=1
Pg (dx1 geee ,dxk) = Hpe;j‘j_,'_l:k(dxﬂx]ufl geee ,xk) Pg;k(a’xk) (21)

j=1
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with Py, the marginal of X; and Py, ;;;1;x a regular conditional distribution of X;, given
Xjt1 =Xj41,..., Xk = x. In the sequel, we write y;.; for the vector (y;,...,y;)*. For a mea-
sure G on . (BF) and a set of indices J we write G, to denote the joint marginal of G for
coordinates i € J. For y € R¥ define y_; := yi.; 1,114, and for y € R~ and x € R define the
expression (x:y); := (y1.i1,%,Vix—1)* € R¥,

2.2. Model Definition

For a fixed central distribution F on B, we consider a statistical model & C . (B¥)
generated by a family ¢ of diffeomorphisms 7 : R¥ — R¥ defined on the observation space.
Denote the inverse of 7 by 1 = 7~!. This family is parametrized by a p dimensional parameter
0, stemming from an open parameter set @ C R”, and this induces the parametric model

P ={Py|Po=19(F), 6€cO} (2.2)

where Tg(F) denotes the image measure under 7y, Folg.

Remark 2.1. In most examples, ¢ will be a group, which is also the formulation used in/Lehmann| (1983}
section 1.3) and Bickel et al.| (1998 Ch. 4). These authors did not intend to generalize Fisher information,
though, and Example [3.5|shows that for our purposes a group structure of for the set ¢ is not necessary.

2.3. A Smooth Compactification of R¥
For reasons explained in Remark we introduce the following compactification R of R¥:

Definition 2.2. Let €([0,1]5,R), I € NUoo the space of all continuous real-valued functions
on the domain [0,1¥ which are differentiable | times / arbitrarily often in (0,1)*, and with
existing one-sided derivatives on 90, 1]F. We identify this space with functions on R*, using the
isometry{

€ [—ooy0]t = [0, 1), [0((xj)]i = [€%/(e"+1)], (2.3)

ie. let
€' (RN,R) := €' ([0, 1], R)ol = {¢|@ = wol Iy €' ([0,1]",R)} (2.4)

For later purposes we also note the inverse of ¢

K20, 1]F = [—eoseo],  k(yiyeeeoye) = (log(yi/(1=9))) j_y 4 (2.5)

In the same manor, unbounded, continuous functions are defined and denoted by &' (Rk, Rm) .

Remark 2.3. (a)  With this definition, R¥ becomes a compact metric space.

(b) Integrations along R¥ are understood as lifted onto [0,1]% by £, i.. Jge fAP = Jjg e foxd[loP].

(c) The choice of ¢ resp. k is arbitrary to some extent, but satisfactory for our needs; in fact, we
only have to impose £ € € (RF,R), lim,, o (£((x:¥);))i = 0, limy_eo(£((x:y);)); = 1, for each y €
RF=1, ¢ strictly isotone in each coordinate, |¢'(x)D(tg(x))| € Ly(F), or, for uniformity in ., (B¥),
sup, [¢(x)D(tg (x))| < oo.

(d) Forevery ¢ € €°(R,R), the limits limy_, 1. @(x) exist and lim,_+ dd—;(p(x) =0 for 1>0,as
is easily seen using the chain rule and by the fact that each summand arising in a derivative has at least a
factor decaying as exp(—|x|). This also implies that there are functions @ : R — R which do not lie in
€= (R,R) but which are in (R, R), have existing limy_,+. ¢(x), and for which limy ;4 j—;(ﬁ(x) =0
for k> 0: Take 1/(x*>+ 1), which has no exponentially decaying derivatives.
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(e) Consequently, for all @ € (R, R), [|bg’|dA is finite for any bounded, measurable function b
and lim, ., ¢(x)’ lx[¥ =0 for all k€ N, hence in particular is in Le(P) for every probability P on B.

(f)  If we allow for mass of £oP in [0,1]%\ (0, 1)¥—corresponding to measures in . (B*) —the class
€ (R,R) of compactly supported functions in €*(R,R) cannot distinguish any measures P; # P, on B*
coinciding on B¥, whereas ¢ (R¥,R) is measure determining on B .

(g) The measures Py arising in our model from subsectionare understood as members of ./ (]E%k) ,
defining Pg(A) = Po(ANRK) for A € BX.

2.4. Assumptions
Throughout this paper, we make the following set of assumptions concerning the transforma-
tions 7, which are needed to link differentiation w.r.t. 0 to differentiation w.r.t. x:

(I) P61:P92 <~ 0, =06,.
(D) 6+ 14(x) is differentiable with derivative dg1g(x).
(DK) If k> 1, x — 1(x) is twice differentiable with second derivative 921¢(x).
(C1) If k=1, x> D isin €' (R,R”) and x+~ e M Doty (x) is in LY (F) with
D =D (x) = dpto(x)/lo(x) (2.6)
(CK) If k> 1, x+ D isin €' (R, RFP), x s e M Doty(x) isin LP(F) and x — Vortg(x)
isin L5(F) with

J = (Jo())ijer,.k = ((9s16) " )ij(x) 2.7)

p = (DY (x)) 1.4 = 7ot (x) (2.8)
_ _[XF 9, (|detditgl Dy ;) — 9o, |detdiq]

V = (Vox)j1.p= det L) (x) (2.9)

Remark 2.4. Using % detA=(A"1);;detAand %M(A*I),;j —(A71);x(A7"); ; and the chain rule of
ij . ’
differentiation, one can show

Vj = [|det8x19\]_l [fozl{&xi(\det8x19|Di,j)}789i\det8x19|] =
= Zi’il,r,m:l (Jl,i']r,m - Jl,r‘lm,i) axz,-x, lo:m 89/ 1g:1, (210)
which motivates requirement (Dk).
In the sequel we use these abbreviations:

Notation 2.5. The set {D =0} is denoted by K. With e; the i-th canonical unit vector in R¥
and some a € R? and y € R¥"! | define

V, = V%a, D, := Da, Dy :=e! Dy, K;:={e/D =0} (2.11)

Also, for later purposes—c.f. (4.4)—we introduce the functions
D = (DY @) ers =[0otoowlij(x). V=Tl p=Voots (212)
7, == Vi, Dei=Da, Duii—eDa, Kii={eD=0} 2.13)

Finally, if F < AK, we write fg for fotg, with f a A density of F.
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We also introduce the following decomposition of Py :

+BY . BY() = Pe(-NK). (2.14)

3. Examples

For the following seven popular examples we spell out the transformations 7y (x) and the
respective parameter space and verify the assumptions from the preceding section.

Example 3.1 (one-dim. location). 7g(x):=x+6, 0€®, =R, p=k=1.
For each 6 € ®;, Tg(-) is a diffeomorphism; assumptions (1), (D) and (C1) are satisfied—
dotg =—1, dilg =1, D(x) =—1, K =0—any observation x is informative for this problem.

Example 3.2 (k-dim. location, k > 1). Tg(x):=x+6, 0 €0 =Rl p=rk.

For each 6 € ®;, 7y(-) is a diffeomorphism; assumptions (I), (D), (Dk), and (Ck) are
satisfied— 02,19 =0, dglg = —dilg =D = —I;, V=0, K = 0—any observation x carries
information for this problem.

Example 3.3 (one-dim. scale). 7y9(x):=0x, 6 €@3=R.g, p=k=1.

For each 6 € ®3, Tg(-) is a diffeomorphism; assumptions (1), (D) and (C1) are satisfied—
doteg = —x/6%, d19g =1/6, D(x) = —x/0. Thus K = {0}, hence the point x =0 is not
informative for this problem, and any x # 0 is.

Example 3.4 (one-dim. loc. and scale). Tg(x) :=6x+0;, 0 €Os=0;x03, k=1, p=2.
For each 8 € @4, 7y() is a diffeomorphism; assumptions (1), (D) and (C1) are satisfied—

consider dglg = —(é;xgzzel )¥, Oilg = 9%' D(x) = —(l;x;fl ), K =0—any observation x

carries information for this problem.

Example 3.5 (correlation, k =2; p=1). To 01,02 >0 known let 6 € ©5 = (—1;1)

2\ L
7o : R> > R?, x> Tg(x) := Jox, Jg< 61(169 )2 9661 )x; (3.1
2

In contrast to all other examples considered here, this family does not form a group; this
may easily be seen, as ng does not admit a representation according to (3.I). For each
0 €05, 19(+) is a diffeomorphism; assumptions (1), (D), (Dk), and (Ck) are clearly satisfied—
ax2xl9 =0, V=0, dotg = (1— 62)7%()6190'1_1 —X2C72_1,0)T,

gt o7t =60y
axle_(l 9) 2( 0 (1_92)/0_2 )

D = ([6x; — %xz]/(l —02),0)". As K={xcR?*IpeR : x=p(0;00,)°}, PK) <1
holds, as long as supp(Py) is not contained in the line {p(1;00,/061)%, p € R} or equivalently,
as long as supp(F) ¢ {p((1— 92)%;6)1, p €R}.

Example 3.6 (k-dim. scale, k > 1). Tg(x) := 0x, defined for @ = {S € R**|§ =57 = 0},
p=(*{"). The symmetry restriction is imposed on R¥*¥ allowing only for symmetric

variations in the parameter.
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Again, for each 0 € Og, Tg(-) is a diffeomorphism; assumptions (1), (D), (Dk), and (Ck) are
satisfied—axlee =0, 8x,.19;1 = (6_1)11,',

1 B ~ B
9o, ,t00 = —51(07)1s (67 x)5 + (6711 (67 0)s ),
1 B B
D = Dijj =518 Wiji +I®07'%)i 5], V=0

For each symmetric matrix a € GL(k), we have D(x)a = 0"'a67'x; K = {0} —any obser-
vation x # 0 carries information for this problem.

Example 3.7 (k-dim. location and scale, k > 1). 7g(x) := 6,x+ 0y, for 6 € @; = RF x @,
p=k+(3") =k(k+3)/2.

For each 6 € ®7, 7y(-) is a diffeomorphism; assumptions (1), (D) (Dk), and (Ck) are
satisfied—d219 =0, V=0, dy1g = 9{1 ; splitting off the indices for the parametric di-
mensions into the location part [a single index] and the scale part [a double index], we get

dotes = —(6; ),
| _ _ _
oy, ;00 = —51(6; Dii (651 (x—61)),, + (65 iy (6, (x—61)), ]:
Dy = Iy,
1 _ _
Diy iy i _5[(}1@ 0, ' (x— 91))1.’,'1;2 +(I®6, - 91)>1.’,-2j1]~

Just as in Example [3.2] any observation x carries information for this problem.

4. Main Theorem

In[Huber (1981} Definition 4.1 and Theorem 4.2), we find a result on the Fisher information
in the one dimensional location case which is central for the famous minimax M estimator result
of [Huber| (1964)). The idea is to express Fisher information as a supremum, i.e.

" (f ¢'dF)* 7]
With this definition, Huber| (1981, Thm 4.2) achieves a representation of Fisher information

without assuming densities of the central distribution: .#(F) is finite iff F is a.c. with a.c.
Lebesgue density f such that [(f'/f)?fdx < oo, which in this case is just .#(F).

Remark 4.1. (a) The proof in [Huber (1981) is credited to T. Liggett and is based on Sobolev-type
ideas; we take these up to generalize the result to more general models and higher dimensions.

(b)  The set Z; in @) plays the role of a set of test functions as in the theory generalized functions,
compare Rudin| (1991, Ch. 6). In the cited reference, Huber uses 2 = €. (R, R), the subset of compactly
supported functions in %! (R,R) . In the proof later, we will need that the sets

Diij = {Da;j 9|9 € Di, a € R}

are dense in L, (Péj )) . Contrary to the one-dimensional location case, for Z; = %} (R¥,R) and general
Dy, we did not succeed to prove this; nor can we work with 7 = 6, (Rk,R) , the set of continuously
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differentiable functions with compactly supported derivatives, as used for the one dimensional scale model
in |Ruckdeschel and Rieder| (2010, Lem. A.1): The crucial approximation of the constant function 1 by
functions ¢ € %, (R¥,R), with |¢| < 1, [Dy;0x,¢| < 1, and |D,;jdy,¢| — O pointwise, fails for func-
tions Dy, growing faster than |x| for large |x|. Hence, instead we use the larger set € (R¥,R) from
Definition 2.2

Definition 4.2. In model & from @2.2)), assume assume (I) and (D). Let a € R?,

al=1.
k=1: Assume (Cl). Let 2\ =€ (R!,R), D from 2.6). Then for 6 € ® we define

(Jlo'Daaps)’ | oY geam)

Fo(F;a) = sup{ To%dP, 0+# e 4.2)

k> 1: Assume (Dk) and (Ck). Let D = € (RFR), D and V from @.8) and @9). Then for
0 € © we define

(/1voD,+ gV dP9>2 ‘ [Pg]

Fo(F;a):= sup{ T o2 dP, 0#¢gc€ @k}. (4.3)

Remark 4.3. (a) As 7, resp. 19 map Z; onto itself, we may use the identification ¥ = @ o1y to
see that by the transformation formula

(JIvvDat yoreValar)’ )
Ty ‘ 0 # we@k}. (4.4)

(b) In particular, the transformation formula [ p(x)Py(dx) = [poTgdF, entails that except for the
correlation model of Example@ finiteness of the Fisher information for one 6 € ® implies finiteness for
every 0 € ©: Indeed, considering Dg@ore in all these models, we see that in every case, D<9k)OT9 = Di(g) ,
where we write id referring to the parameter-value 6 yielding 19 = id, while at the same time V =0.
So in fact we could define the Fisher information of F for one reference parameter, and its finiteness then
entails finiteness in the whole parametric model.

(c) In general, finiteness will however depend on the actual parameter value, which is why we define

Fisher information at F with reference to 6, notationally transparent as %y (F;a).

Iy(F;a) = sup{

With Definition 4.2] we generalize [Huber| (I981] Thm. 4.2) to

Theorem 4.4. In model & from 2.2) assume that for some fixed 0 € O, (I), and, if k=1,
(D), and (C1), resp., if k > 1, (Dk) and (Ck) hold. Then (the sets of) statements (i) and (ii) are
equivalent:

(i) supy|g=1 Fo(F;a) <o

(i) (a) F admits a A* density f on 19(K°).
(b) Forevery ac RP,and i=1,...,k

Jim [fp ldet 2t D] (x:)) =0

(c) For every a € RP, and i=1,...,k fg|detdilg| Dy is a.c. in k dimensions in the

sense of Definition[A.3]
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(d) Forevery ac R? and 1<i<k, [axi“rl;;agxlfelfa;i) + Dn:}iﬁf@] € Ly (Py).

If (i) resp. (ii) holds, .Z9(F;a) = a®Fg(F)a with

Jg|det oyt
o= [ MoN§dPy,  Ag=(/[f)to dutg + L] (45)
detd. 1]
respectively
Ag = dope/po with pg = fo |detdi1g|. (4.6)

Remark 4.5. (a) Theorem also covers model however, it uses 2 = €*(R,R) instead of
%} (R,R), hence, as € (R,R) C € (R,R), finiteness of Fisher information in Huber’s definition formally
is weaker than ours, so formally our implication (i) = (i) is harder, (i) = (ii) easier than his.

(b)  As a consequence of using Z; = €7 (R,R), we need (ii)(b), which does not show up in the corre-
sponding Theorems |Huber| (1981)(one-dim. location).

(¢ In Theorem F may have AX singular parts on 19K . But if so, then by Corollarynecessarily,
Ag = 0 there. This means that these parts do not contribute any information.

(d)  Closedness of a.c. functions under products (Dudley, R.M., 2002, 7.2 Prob.4) entails that under the
assumptions of Theorem4.4] whenever the map x — [Dy:;pg]((x:y);) is a.c. on some interval [c,d] where
D, #0,s0is pg.

5. Fisher information in Examples

In this section we specify the terms Ag and Fy(F;a), as well as the quadratic form in a,
F9(F) = Fp , for Examples[3.1|to[3.7} In the sequel, Ay (x) := =0, f/f
Example 5.1 (one-dim. location). Ag(x) :=As(x—0), Sy == fA]% dF . The supremal
definition of .7 (F) is {@I)), but with 2, = ¢~(R,R).
Example 5.2 (k-dim. location, k > 1). Ag(x):=As(x—0), Jp=Iy=[AfA}dF., J4(F;a)=
a* #ya. The supremal definition of 7 (F) is

([V@®adF)*

7]
T dF ‘ 07&(,06%} (5.1)

So(F;a) = sup{

Example 5.3 (one-dim. scale). Ag(x) := %[(x/e)Af(x/O) +1], Sy =147 = #f(fo —

' ]
1)2dF = é(fsz;-dF— 1). The supremal definition of .#(F) is
o f U39 () F(d)® 7

Example 5.4 (one-dim. location and scale).

1 x—0; x—0; x—6; K
A =— 1A A 1
o) = 5 (MG g2 +1)

1 1 [ [A%dF [xA2dF
— - S f
j@(x).— Gzzj();l(-x) 922 < ijj%dF f(XAf—l)zdF ;
and Sy (F;a) =a* Ha/0,. With a = (a;,a;)", the supremal definition of 7 (F) is

a;+agx) Q' (x ¥))? [F]
Fe, (F;a) :=sup{(f( Lt f(i)(fd(F)F(d ) 0;(/)691}

8
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Example 5.5 (correlation, k =23 p=1).

xl/Gl 79)(2/62 X2

0,01V 1—92P9(dx1,dx2):f( N

W(dxl,dxz) (5.4)
or with f'= fipfa

x1/01—0xy /0 Y
o1V 1 =62 pg.ijp(x1,x2) =fu2(u), O2pe2(X1,%2) = fz(é) (5.5)

V1—-02
and
f]l‘z xl/Glfexz/Gz 9&/61*)62/62
1—6%)Ag(x1, +0, J:/AZdP 5.6
( VAg(x1,x2) = f1\2< e ) i 0 gdPy  (5.6)

The supremal definition of #(F) is

— V1= 02x)) (3, (p)(xl,xz)F(dxl,dxz))z
(1- 622 [@2dF ’

Sy(F):= sup{ (I[GXI 0 [Q Q< .@2} (5.7)

Example 5.6 (k-dim. scale, kK > 1). We give both vech expressions and matrix expressions,
using symmetrized Kronecker products. We start with unsymmetrized versions.

Aglx) = 07 'AL(67x), AL (x) = A"~ L,

Aol) = SIADCO+ABGT,  Abo) = vech[Ao ()],

This can also be written as A} (x) = vech[6~! ® Aq, (x)]. In matrix notation this yields
Fo=((07 0 ) @[ [ (AXT-1)72aF),
in vector notation . = [ A} (A})"dF. Working with a = a® € R¥* | we get
vech(a)"Ah(x) = Ap(07'%)"0 7 1a0 'x — (671 a),

Fo(F.a) = [(As(3)°0  ay~ (67 @) Fldy)

For symmetric a, the supremal definition of .Z(F) is

(fV(p(x)re_laxF(dx))2 ‘

7]
rodF 0£qec %} (5.8)

S9(F,a) = { sup

Example 5.7 (k-dim. location and scale, k > 1). Partitioning A into a location block (1)
and a scale block (s), we get
Ar 61,6, (x = 6271/\170,]1]((9271@— 0,

) )s Ao, (x) = As(x)
A, ;01,02 (X) = GEIAS,O,Hk (951 (X — 6
)

) f
), Ag,o,nk (x) = Ap(x)x" — I

(A(S),O,]Ik (x) + A(s),O,]Ik (x)%)/2, A:,o,ﬂk (x) = vech(As o1, (%))
9
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150 aﬂs,;‘e
with
e = 92—1[/AfA;.dF}92—1,
Ase = 9;‘[/Afvech[9;‘@(Afxf—ﬂk)]de]
Fivo = / vech[6; ' & (A X™ —I,)] vech[6; ' & (Ay X —1,)|*dF

Working with a = (af;vech(a,)?)?, a; € RE a; =al € R&K, we get

vech(a) Ay (x) = af 0, 'Ap(0y  (x—01)) + A (6, (x—61))70; 'a,0, ! (x— 6)) —tr(6; '),

Fo(Fa) = [(@F6 As(3) + Ar()*6; apy— (65 ) F (dy)

The supremal definition of #(F) is

(fV(p(x)Tegl[asx—i—az]F(d)C))2 ‘ o } (5.9

Fo(F,a) ::sup{ To2dF 0# Qe

To keep the order of the examples as in section@ we place a remark here, concerning Example@

Remark 5.8. The fact that we are dealing with a one dimensional parameter seems to indicate that it
should be possible to treat the problem using only one dimensional densities. Factorizations (3.3)) and (3.6)
seem to point into the same direction, as they seem to suggest that working with

o1 —6xy/0
01V 1— 62 Pg(dxy,dx2) :f1|2(%7%)del)Fz(G{ldxz) (5.10)

instead of (5.4), we could allow for any second marginal F, —possibly even F, L A —and just focus on
the conditional densities for each fixed x, section.

Theorem@ however, excludes that possibility for finite Fisher information. To be fair, one has to admit
that anyway, not every F with Py = TgF could be allowed for (5.10), but only exactly those achieving this
representation. But even then it is of rather marginal interest, as may be seen in the following example:
Consider Y| ~ .#(0,1), Yo ~ £1 with P(Y, =1)=P(Y, =—1)=1/2, Y, ¥, independent and F :=
Z((Y1,Y2). Thenforany 0 € @5, X =19(Y) = ((1 — 62)%Y1 + 6Y,,Y,), and recovering 6 from observa-
tions of X amounts to estimating E[X;|X, = xp] for x, = +1—a task falling into the usual Op(nfli) -type

of statistical decision problems; if on the other hand, we take F = .Z (Y, (1 — az)%Yl + aYs,), for any
0 <|al <1, then, for 6 # —(2— az)’% , Z(X) is concentrated on two lines X, = a; + BX;, i=1,2
with B =(1— Ozz)%/[(l - 92)% +0(1— az)%] . But as we assume F to be known, knowledge of f3 is just
as good as knowledge of 0. Having fixed an observation X ©, B may be recovered exactly, as soon as we
have found two further observations X(!) and X both lying on the same line as X ©) | which will happen
in finite time almost surely. Thus here a single observation must have infinite information on 6 —which is
just according to our theorem.
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6. Consequences for the LAN Approach

In general finiteness of Fisher information does not imply L, -differentiability without addi-

tional assumptions like, e.g. that for A* almost all x and for all p € R? the map s — pg5p ()
is a.c. and the Fisher information .y is continuous in 6 —c.f.|Le Cam|(1986| 17.3 Prop.4).
All examples from section [B}—except for the correlation example, Example [3.5}—provide more
structure, though. They may all be summarized in the (multivariate) location scale model of Ex-
ample First of all, due to the invariance/dilation relations of Lebesgue measure w.r.t. affine
transformations, we may limit attention to the reference parameter (0,I; ). Even more though,
we have the following generalization of Lemmas by Hajek| (1972) (one-dimensional location)
and [Swensen| (1980, Ch.2, Sec.3) to the multivariate location case

Proposition 6.1. Assume that in the multivariate location and scale model[3.7] Fisher informa-
tion as defined in (3.8)) is finite for some parameter value. Then the model is L, -differentiable
for any parameter value.

Hence Theorem |4.4| gives a sufficient condition for these models to be L, -differentiable and
as a consequence to be LAN.

On the other hand, L, -differentiability requires finiteness of %y, so that in the multivariate
location and scale case, for all central distributions F', the model with central distribution F' is
L, differentiable iff sup, .7y (F;a) < .

In the i.i.d. setup |Le Cam| (1986, 17.3 Prop.2) even show that L, -differentiability is both neces-
sary and sufficient to get an LAN expansion of the likelihoods in form

! I 1
logdPy, . /dPg = NG ;hTAg (x;) — Ehfﬂgh +opn (n°) (6.1)

with some Ag € Ly(Py) and 0 < %y = E[AgAj] < 0, so again in the setup of the (multivari-
ate) location scale model of Example finiteness of Fisher information is both necessary and
sufficient to such an LAN expansion.Altogether we have

Proposition 6.2. In models[3.1} 3.2 3.3] [3.6| B-7] the following statements are equivalent
(i) The respective Fisher information from (&.3)) is finite for any parameter value.
(ii) Conditions (ii) of Theorem hold for any parameter value.
(iii) The model is L, -differentiable for any parameter value.
(iv) The model admits the LAN property for any parameter value.

Remark 6.3. The proof uses the translation invariance and the transformation property under dilations of

k -dimensional Lebesgue measure, so there is not much room for extensions beyond group models induced
by subgroups of the general affine group.

7. Minimization of the Fisher information

Representations (4.2) resp. (4.3)) for Fisher information allow for minimization, resp. to max-
imization of the trace or maxev of %y w.r.t. the central distribution Py or F . In this paper, we
settle the questions of (strict) convexity and lower continuity just as in Huber| (1981)), but replace
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vague topology used in Huber| (1981) by weak topology. This is done in order to establish exis-
tence and uniqueness of a minimizing F(¥) in some suitable neighborhood of the (ideal) model.
To this end define for a € R”, ¢ € Z, [[@oTg||1,r) # 0

([ VQ™Dy + oV, d[1oF))’
J@?d[tgF]

Io(Fa;0) := (7.1)

and _
Io(F) :=supFy(F;a), acRP la|=1 (7.2)

7.1. Weak Lower Semicontinuity and Convexity

To show weak lower semicontinuity and convexity, we use that for fixed ¢ € ., ¢ #0 [Py],
F +— J(F;a; ) is weak continuous (by definition) and convex (by Huber (1981, Lemma 4.4)).
Essentially we may then use that the supremum of continuous functions is lower semicontinous
and the supremum of convex functions remains convex; but some subtle additional arguments
are needed as the set of ¢’s over which we are maximizing may vary from F to F; these can
be found in|Ruckdeschel and Rieder| (2010, Proof to Prop. 2.1). Altogether we have shown

Proposition 7.1. For each a € R?, the mapping F — ﬂ_g (F;a) is weakly lower-semicontinuous
and convex in F € .#1(BX). The same goes for F — F4(F).

Remark 7.2. Using R from Deﬁnition we work with a compact definition space right away, which
moreover is endowed with a separable metric, so any subset of probability measures on B* is tight, hence
by Prokhorov’s theorem weakly relatively sequentially compact.

Corollary 7.3. In any weakly closed set F C .#1(B¥), both .7y and So.q—for fixed a—attain
their minimum in some Fy € % .

7.2. Strict Convexity—Uniqueness of a Minimizer

We essentially take over the assumptions of Huber (1981); we fix 6 € © and consider varia-
tions in F of the following form: For F; € .# (B¥) i=0,1 consider

F := (1 —1t)Fyotg +1tF oty (7.3)

We distinguish cases (a) and ( ), ie., of a given one-dimensional projection a # 0, and the
corresponding maximal eigenvalue, respectively.

Proposition 7.4. Under assumptions
(a) The set F of admitted central distributions F is convex.
(b) Thereis a Fy € & minimizing
(a) F9(F;a) along F and Fy(Fy;a) < oo.
(F) I9(F) along F and y(Fy) < .
(c) The set where the ~Lebesgue—density fo of Fy is strictly positive is convex and contains the
support of every F; derived from some F| € F .
(d) (a) A*({x|a*dp1e(x) =0}) =0
(F) AM({x|3a: |a| =1 s.t. a*dgig(x) =0}) =0
12



the map F + F9(F;a) (case (a)) resp. F — F9(F) (case (.¥ )) is strictly convex, hence there
is a unique minimizer of Fy.

Remark 7.5. Assumption (d) holds for the k dimensional location scale model of Example For
symmetric a, and the scale part 6; it holds that afdg 19 = a0, 'x. But for any a; with |ag| =1,
dimkera;8;' <k—1,hence Af(keras6; ') =0.

7.3. Existence of a Maximizer of tr f(;l (F)

Proposition 7.6. Let .7 be a weakly closed subset of ./, (B"). Assume that for all 0 # a € R?,
minge 7 S (F;a) > 0. Then the function F +— tr fe_l (F) is weakly upper-semicontinuous on
F , and consequentially, attains its maximum along ¥ in some Fy € % .

Appendix A. Functional Analysis and Generalized Differentiability

Appendix A.1. Dense Functions

Proposition A.1. Let [ be a o -finite measure on B*. Then the set €°(RF,R) is dense in any L,(1),
p € [1,00). In particular; there is a cy € (0,2) s.t. forany a<b€R andany 8 >0 thereisa ¢ =@, 5 €
€ (R,[0,1]), with =0 on [a—8;0+38]°, 9 =1 on [a+6;b— 8] and |@| < co/6.

Proof : Denseness is a consequence of Lusin’s Theorem, compare |[Rudin| (1974, Thm. 3.14). To achieve
the universal bound ¢y, we may use functions f(r) = (& 7(s)ds) /(fy F(u)du),for f(r)=e"V", f(r) =
fO)f(1—1). O

Appendix A.2. Absolute Continuity

We recall the following characterization of absolute continuity [notation a.c.] of functions F : R — R
that can be found in|Rudin| (1974} Ch. 8).

Theorem A.2. For F: [a,b] = R, a<b €R the following statements 1. to 3. are equivalent

1. F isa.c. on [a,b]
2. (a) F'(x) exists A(dx) a.e. on [a,b] and F' € L, Ay
(b) F(x)—F(a)= [ F'(s)A(ds) forall x € [a,b].
3. There is some u € Ly ()L\(a.m) s.t. for x € [a,b], F(x) has the representation

F(x)=F(a) + / " u(s) A(ds)

We also recall that a.c. functions, are closed under products (Dudley, R.M.| 2002} 7.2 Prob.4). In particular,
integration by parts is available. In this paper, we call a function ' : R — R a.c. if the equivalent statements
1. to 3. from Theoremare valid for each compact interval [a,b] C R.

Appendix A.3. Absolute Continuity in Higher Dimensions

A little care has to be taken about null sets when transferring absolute continuity to higher dimensions.
The next definition is drawn from |Simader{ (2001).

Definition A.3. A function f: (R¥,BX) — (R,B) is called absolutely continuous (in k dimensions), if for
every i=1,....k, there is a set N; € B¥"1 with AX=1(N;) =0 s.t. for y € N¢, the function f;y: (R,B) —
(R,B), x> fiy(x) = f((x:y);) is a.c. in the usual sense.

In the proof of (ii)) = (i) in Theorem@ we need the following lemma:
13



Lemma Ad4. Let f:RF - R a.c. in k dimensions. Then for each i=1... k
A({f =04 {0uf #0}) =0 (A1)

Proof :  Let g(z) = Iyy—g}n{o, s0}(z). Then g >0 and Tonelli applies, so the section-wise defined

function Ay (x) := g((x:y);) is measurable for each y € B~ and defining the possibly infinite integrals
H(y) := [hy(x)A(dx) we get AX({f =0},{dyf #0}) = [gdA* = [H(y)Ak~!(dy). But for each y the
instances x where /y(x) =0, Ky (x) # 0 are separated by open one-dim. sets where h, # 0, as hy(x) =0,
hy(x) # 0 implies that for some 0 < [x' —x[ <&, [f(x')] > | —x]|[hy(x)|/2 > 0. Hence at most there can
be a countable number of such x, and thus H(y) =0 for each y. g

Appendix A.4. Weak Differentiability

For proving absolute continuity in Theorem f.4] we have worked with the notion of weak differentia-
bility; to this end we compile the following definitions and propositions again drawn from |Simader{(2001),
which we have specialized to differentiation of order one.

Definition A.5. Let u € le(lk), 1 <i<k. Then v; € LL,OC(?L]‘) is called weak derivative of u (with
respect to x; ), denoted by gxl.u, if

/Rkuax[q)dxk =— /Rk vipdA* Vo e 67 (RF R) (A2)

Remark A.6. (a) The weak derivative is unique, as for the difference d = v; — vf of two potential
candidates, we have [« dpdA* =0 forall ¢ € €°(RK,R), so by Proposition@ d mustbe 0 [A4].
(b)  Weak derivatives belonging to Lz(}Lk) give rise to the space #5.1 = #5.1 (Ak) of all functions f :
RF — R with weak derivatives in L,(AX) of order one endowed with the norm || f H%,z] =Yk, [0 f ||i2 (a5
which is called Sobolev space of order 2 and 1 for which there is a rich theory. Y
(¢)  The following two propositions—under the additional requirement that V# resp. Vf be in L’i (/lk) ,
however—may also be found in Maz’ya| (1985, Thm.’s 1 and 2).

Proposition A.7. Let f € Ly ,,.(A%) with a weak gradient V f . Then there is some f, a.c.in k dimensions
with usual gradient V§, such that—up to a A* -null set— f = f and Vf =VJ].

Proof : Let again Q,, = [-m,m| and consider ¥, € %) with 0 <y, <1, ¢, =0 on Q. 1> Xm=1o0n
Q. and let f,, = fxm. Then f,, € Li(A¥) and we have for any ¢ € Z

— [ 1o ah == [ 2 dfant = [ 0, Gtn0)d2* = [ 192y 10+ 200 0) dA*

so that f;, is weakly differentiable and éx,. fm = Xméx, f+ f&x,. XAm € L1 (lk). By Fubini we obtain some
Npi € B! with lk—l(le’i) =0 such that vy, : R¥"1 — R defined as

V() = /R 1 fn((£:3)0)| A(dr) fory € NS, and 0 else
is finite for y € R*"! liesin L; (A*~!) and Jrk-1Vm dAk—1 = ||9x,.fm||1‘1 (ak)- Thus we may define to x € R
Fn((x:y)i) = /_Xméx,.ﬁn((t:y)i)l(dt) fory € N,; and Oelse (A3)
Apparently, F, € Ly ,,.(A*) and for y € N¢

m,i’

Jng, [ 3bnl(€:300) [ Ty 6((x:)0) Aax) M) 24 (@)
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So far we do not know if the inner integral on the RHS is in L{(A¥), so another localization argument is
needed. To this enfl let y € ?k, y=1onQu, y=0on Q) ,;thenas Sms O fm =0 on Qp |, we
have f, = fmW, O fin = WOk, fm, and f,dy, y = 0. For with u = (¢:y); define the function

0(u):=y(w) [T 0((x:3)) 2(d)

which clearly lies in & . Fubini and the definition of weak differentiability entail
poe [ LA e a@) 2 ) = [ odumart == [ gangart
But, dy, ¢ (u) = 0, (1) i Lpsry (009 ((x:3)1) A(dx) — w(u)9(u), as fndx W =0, fn = fnW e get
IZV/H.{‘((PEnd/'Lk:/kamw(i)dlk:‘/ﬂ.{kfm(l)dlk’ a)

Because ¢ was arbitrary in ., Fyy = fin [lk] , and by letting m — oo we may extend this to R¥. Fubini
then provides a A*~!-null set S; s.t. for y € S¢ the projection set Sgy) ={xeR: (x:y); €S;} has A-
measure 0. Let Nj :=J,, Ny ; then 2K~ 1(N;) =0, and for y € N¢ the functions x > F,((x:y);) are a.c.,

hence continuous in particular. For y € (N;US;)¢, x € (Slw)" and k € N, even Fy,((x:y)i) = Fpr((x:3)i),
and hence by continuity, for all y € (N;US;)¢, Fn((x:y)i) = Fut1((x:y);) for all x. Hence, writing again
u= (t:y);, this gives a unique function f; € Llﬁloc(lk) defined as

filu) = 0 else (A-5)

. { lim, Fp(u) foru e RE, ye (N;US;)¢
s.t.that f; is a.c. w.r.t. x; in the sense that there is A~ ! -null set N; s.t. for y € N¢ the function x +— f((x:
y)i) is a.c. By construction, AK({f; # f}U{df # df;}) =0. Applying this argument for each i =1,...,k,

we see that there is a function f which is a.c. in k dimensions, s.t. AX({f # fYU{Vf#Vf})=0. O

Proposition A.8. Let f € Ly ,,.(AX) be a.c. in k dimensions. If its classical partial derivatives 0y, f, are
extended by 0 on those lines where absolute continuity fails, and the so extended gradient belongs to
L’f_mc(lk), then there is a weak gradient of f and the extended gradient can be taken as a version of the
weak gradient.

Proof: As f isa.c.in k dimensions there exist N; € B¥~! such that for y € N¢ the functions x+— f((x:y);)
are a.c. Let ¢ € Z; and y € Nf . Then x+— ¢((x:y);) € Z; and thus by integration by parts, for y € Nf,
we have

LI (G)0 206 2dx) = = [ 9((x:3)0) (2300 2(d) (A6

Obviously, extending fdy.¢, ¢ dx.f by 0 on y € N, these two functions belong to L;(A*). Fubini thus
yields a set N; € BE=1, AK-1(N;) =0, s.t. for y € NE, x = [£ 9y 9]((x:3)i) s x> [¢ 9y, f]((x:);) belong to
Li(A). Hence by Fubini [pi f0x,¢ dAK = — [k ¢ Oy, fdA¥ . As Oy f € Ly 1, (AX) by definition of absolute

continuity in k dimensions, this possibly extended dy, f is a weak derivative of f. g

Remark A.9. Having this “almost” coinciding of weak differentiability and absolute continuity in k di-
mensions in mind, we drop the notational difference of weak and classical derivatives.
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Appendix B. Proofs

Appendix B.1. Preparations

Before proving Theorem 4] some preparations are needed.

We want to parallel the proof given in |[Huber| (1981) credited to T. Liggett: The idea is to define for
given a € R? linear functionals T,;; on the dense subset € (R¥,R) of Ly(Pg) as

T (R R) SR, Tuale) = [ DuidypdPy. (B.1)

Remark B.1. As also true for the one-dimensional location model treated in|[Huber| (1981) and in the one-
dimensional scale model in Ruckdeschel and Rieder| (2010), it is not clear a priori whether this is a sound
definition, i.e., whether T,; respect equivalence classes of functions in Ly(Py):

As by (DK) resp. (D1), Dy is continuously differentiable, it is bounded on compacts, hence D,.; oy, @ €
Li(Pg) forany @ € €= (R, R); but even then, it is still not clear whether (B.T) makes a definition: Take
x(0) € R¥ 50 that xl(»O)Da;,-(x(O)) #0 and Py Dirac measure for {x(?)}.

Then obviously, ¢y (x) = (x(0)7(x—x(0)) =0 Pp(dx) -a.c., butitalso holds, dy, ¢0(x)Dyi (x) = 1" Dys(x(0)
Py (dx) -a.e., with the consequence that, although @y =0 [Py], Tu:i(90) # T1:i(0) = 0. Of course, @y must
be modified away from x© to some @ s.t. @ belongs to € (R¥,R). Luckily enough, this case cannot
occur under condition (i) of Theorem 4] as then

(P:O[PG] == 7~1{1;1‘(90): /ax,-(PDa;idPG =0 (B.2)

which may be proved just along the lines of the first paragraph of Ruckdeschel and Rieder| (2010, Proof
to Thm. 2.2). Due to linearity of differentiation, evaluated member-wise in an Py -equivalence class, this
shows that T respects Py -equivalence classes.

Next we need a lemma showing denseness of certain sets in suitable L,’s. To do so we define for
i,j=1,....k
Dpij = {Dy;j Ox, 9 |9 € Dy, a € RP} (B.3)

and recalling that K; := {e}D =0} we introduce the decompositions corresponding to
o=y +Fg", o (1) :=Po(-NKj). (B.4)

Lemma B.2. Zp,; ; is dense in L,(Q) for any o -finite measure on BN K;. In particular it is measure-
determining for B* N K]C. .

Proof : Approximating f € Ly(Q) in Ly(Q) by fu:= flg, with Q, = [—n,n]¥, we may restrict ourselves
to Qy for N sufficiently large. Thus we have to show that for each interval J C KJC- and each € > 0, there
isa @ in -@D;i‘j with Hllf(@”Lz(Pg) <eE.

To this end fix a € R”; as Dy, j is continuous, the set K¢ is open, hence is the countable union of k
dimensional intervals J;, := (I); /") 'm e N, with 1(") < r(") and |Dg.j| >0 on Jp,.

So it suffices to show that any indicator to an interval I = [[;7], I C J,, with endpoints s.t. Q(dI) =0
may be approximated in L,(Q) by functions in Zp; ;. But, for given £ > 0, Propositionprovides
an element ¢y € ;°(RX,R) such that ||@y —1; || < €. By construction its anti-derivative yo((x:y);) :=
j‘I(ﬂ,,,)g 2<x)90((2:3)1))/Da:j((z:¥):)) A(dz) lies in €= (R*,R) hence @ in Zp,;,;. In particular we
may‘ approximate the Q measure for k-dimensional intervals disjoint to K;, which determines Q. g
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Appendix B.2. Proof of the Main Theorem

(ii) = (i) of Theorem[d.4]
In order to avoid specializing the case k =1, define V := 0 there.
Fix a € R?, |a| = 1. f being a density, A({f = 0,0y, f # 0}) =0 for each i and we may write

J @ouiary= [ @uo)Desapo= [ | (Go)Deilowar ™ [ | [(2g)Duilotosar =
K¢ 1(K¢ 1(K¢

)

/KC (ax[(p)Da;ifH |detaxle‘ da«k - /KL_(Pfg ax/- (Da;i |det 3X19|) + (PDa;i |det8x19\ axifg dﬁ,k =

Bx.(\det8x19|Da.,») D0k fo K (k%) Bx.(|det8x19|Da',’) D0k fo
_ i » + > i d}{; — 7/ i » + > i
/f [ |det kg fo } opol |det kg fo

JdAk

In equation (%) we use that by (ii)(c), on K¢, f is a.c. A¥ a.e. so that integration by parts integration by
parts is available without having to care about border values due to (ii)(b). By (ii)(d) the resulting integrand
on the RHS of (x) is in Lp(Py). In equation (xx), we used the fact that in each expression considered
above, there appears at least one D,.; or a derivative dy,Dg;; ; Lemmaapplies and hence

)vk({Da;i = O}a {ax,'Da;i 7é 0}) =0

Representations (.3) and {6):
Writing out dyfg = (dilg)(dxf)olg , We see that

D;. 0. fg = a"(dg1e)J (dxlg) (i f)otg = a®(dgle)(drf)ole = a"dg fo (B.5)
Thus we get

£19[Daldetdutol] | DEAufo |, o ¥y ldetdrtal | DE,dufo g a*dy ldetdrtal | a*dpfy _
|detaxlg| fo “ \det3x19| fo |detaxle| fo

arl\e7

s0 Ag € L5(Pg) by (ii)(d) and hence

2 T 2
( / WDa+<pVadPe> - ( / <pc“2—96”9d139) < [@agPary [ g2ars.

which shows that % (F;a) < [(a*Ag)?>dPs. The upper bound may be approximated by a sequence
@y € I tending to a®Ag in Ly(Py) entailing (@.3) and [6).

(i) = (ii) in Theorem[4.4]

We will give a proof largely paralleling |Huber|(1981), although we may skip some of his arguments.

Well defined operators and Riesz-Fréchet: We consider the linear functionals T,,;; from (B.I), defined on
the dense subset (R, R) of L,(Py), which are well defined due to (B-2). In particular 7, are bounded
linear operators with squared operator norms bounded by % (F;a), hence can be extended by continuity
to continuous linear operators T : L, (Pg) — R with the same operator norms. Thus Riesz Fréchet applies,
yielding generating elements g,.; € Ly(Py) s.t.

T..i(@) = */ga;i(PdPG Vo € Ly(Py) and ||ga;i|‘%2(139) = HTa;iH (B.6)
We conclude inductively for i =1,... k.
Using Fubini: We have for ¢ € 7
Ta;l ((P) = / Da;l &xl (deg (B.7)
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On the other hand by the fundamental theorem of calculus,
Tu1 (@) = — / 0ga;1dPy = /R" /Rl{xl >y} O @(x1,y2) A (dx1) 8a:1 () Po ().

Now for each compact A, the integrand 7 (x1,y;A) = I4 (1) I >y} 8a:1 (v) s in Ly (A(dxy) ® Pg(dy)).
Fubini for Markov kernels thus yields a A ® Py, -null set Ny such that for (xy,y2.x) € Nf, x; €A, the
function A1 (y1) := hy(x1,y;A) belongs to L (Pg;m:k(dyl [y2:)) - We now define for D,.j # 0 the function

(a:1:4)

Py @8

(a:1:4) | JhiO1) Perjo(@yilyax)  for  (x1,y:x) € Nf, x1 €A
[Da;lpl‘zzk J(x1,y2u) = { 0 ! else (B.8)

where obviously the dependence in A is such that for another compact A’ D A, p(l“‘;;cA) = pg‘l‘;]j“/) T4(xq).

Hence for arbitrary x; take A such that x; € A and eliminate the index A in the superscript where it is
clear from the context. We also note that by Cauchy-Schwarz, for Pg..x(dy:x) -a.e. Yok,

|[Da;1PET;Z](X1,Y2:k)\2 < /ga;l(Y)ZPQ;l\Z:k(d)’l [y2u) < oo (B.9)

Getting rid of the dependence on a: To understand, how piTzllz is related to p%? for a #d € RP,

we consider again (B.I), (B.8): Both sides of the latter must be of form W7a for some R? valued W
independent of a; in particular

Sal =wia (B.10)
for some wy € L5(Pg) . Hence
;1 ’1 k k
P =Piag  on{D] #0yn{Dy} #0} B.11)

M
|

and, as we only need p orthogonal values of a to specify wy, we arrive at a maximally extended p;,.,

defined on K{ = {D..; # 0} . Also, for Py.p.(dysx) -a.€. y2,
1
Parp{ ) 1,20 < [al? [ w10 Py lyz) (B.12)

p(IB is a density: Plugging in this maximal definition, we get for ¢ € ., using A = supp(@),

Tui(p) = /Da;19x1<PdP9 :/[Da;laxl(PPgl‘z):k](xl7y2:k)l(dxl)PB;Z:k(dYZ:k)~ (B.13)

where integrability of the integrands follows from Remark @e) and (C1)/(Ck), and for the right one
from (B:12), which also entails that Pg.p4(dyy) -a.s., xj — Da;lp(lgzk is the A -density of a o -finite
signed measure. Hence, we have shown that Pg(dx1,dyy.x) and pjp(x1,y24) A (dx1) P, 24 (dy2:x) When
restricted to K{ define the same functional on the set Zp.; |, which is measure-determining for BfN Ky
due to Lemma[B2

Therefore, the restriction to compacts A can be dropped entirely, and we may work with A = R. Using
Fubini once again, we see that on Kf, there is a Py.o (dys.x) -null set Nl , s.t. for fixed yp € Nf, the
function p(ﬁz):k(xl, y2.x) is a Lebesgue density of the regular conditional distribution Pé?l) \z;k(dxl [y2:6)
hence non negative and in Lj(4).

Replacing K; by K : Similarly as for the dependence on a, we may extend the definition of p(ll) (x1,y2:)
to the set K: Any 0y, for @ € 74 may also be interpreted as Jy, @ for some ¢ € Z . More specifically,
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¢ = @om; ; with 7; ; the permutation of coordinates i and j. Thus introducing for 1 <i,I <k operators
Tuij: Pk > R, @ [0y, @D jdPg, we amply see their boundedness in operator norm by ||7,.;|, hence

extending them to L,(Py) as before, giving operators T,;; ; , we also get generating elements g..; j € Lo (Py)
by Riesz-Fréchet and eventually, using denseness of Zp;; ; in Lz(P(j )) we obtain correspondingly defined
ng‘%:k for j=1,...k. Now pg‘% . being Lebesgue densities of P, 9 1‘2 4(dx1[y2:) . there is a Pg.p.x -null

set—for simplicity again Ny —such that for y € N¢, for each pair j; # j5,

P () =Pl () D] onKSNKS, (B.14)

so we may indeed speak of a maximally extended pyjpy defined on K°.
Assume we have already shown that there is a Py -null set N;_; such that for y; € Niﬂl ,

Péo) admits some conditional density,

P 0
Priict)ik (-1, Vi) A (i) :Pé;i;i,l‘i:k(dxlci—l|)’i:k)~ (B.15)

Arguing just as for i =1, we get
Ta;i(q)) = /Da;iax;(PdPG = /I{Da;/-;é()} Da;i ax,-(l)dp(-) = _/(Pga;idP9~

Thus using the induction assumptions we proceed as before, i.e.; define A;(x;,y;A) for some compact A,
(a:izA)
Lili+1:k

and where the dependence on a may be dropped, giving p(ll;)l.‘i ke

a the section-wise defined function h;(y;) := f;(x;,y;A) , the function p which extends to R giving

(a3i)
Pliitike

functional on the set Zp;;; as the Markov kernel Pj;; ;. by Lemma pﬁ'i)i‘. .. 1s a conditional

As this defines the same

i+1:k
density defined on K. Using the coordinate permutation argument to drop the dependence on K;, we

obtain py.j;; 1, defined on K.
(0)

Hence the induction is complete, and we have shown that P,
denote by

admits a AX density pg which we

Po(x) := po(x1:) == Poy1:k(X1:x) 1= Proa(x1:x)-
Showing g,.; =0 [Pé())] : Writing (B-8) and its analogue for general i for any fixed a € R? with Péo) and
}—,‘go) , we see that by Fubini, for y outside a Py._; -null set,

Dasipr:ifis1:) ((e:y)i) = /:;ga;i((ziy)i)Pe((ﬂy)i)/l(dZ) + Yasi ((:)i) (B.16)

with .
Wil (6:9)) = [ g @3)) B (dzy) B.17)

We next show that for fixed a € R” and fixed y outside a Py._; -null set, the value of ¥,; =0:
To this end we show that for any Borel subset B of K or equivalently for any proper or improper interval
I=],r]CK,

[ sl @200 P tazly) = 0

Of course, [; dP, >‘ ;(dzly) =0, [Py,_;]. Consider ¢, € 7 with0<¢, <1, ;=1 on I and ¢, =0 for

{x € R¥|dist(x,]) > 1/n}, and |dy,n| < 6n. The last bound is chosen according to the bound || < 2¢S
from Proposition [A-T] Then ¢, — I; pointwise, hence by dominated convergence and Cauchy-Schwartz

we get
[ o2dry) = o), ] /gmn Py | = o).



On the other hand let C := max{ |0y, Dyl | x € supp(¢;)} . Thenas Dq;; =0 on I, and because supp(dy, @) C
{x € R¥|0 < dist(x,1) < 1/n}, we have for x € supp(¢;) that |D,;(x)| < Clx| < C/n, and hence

|0, 9nDasil < 6CT{gupp(g, )i} -

Thus, due to the shrinking of {supp(¢,) NI}, for x €I, [0x,9nDg:i](x) — 0. Furthermore [0, ¢, Dq.i](x) =
0 on I, as Dgi(x) =0 on I C K by definition, hence also [dy,¢,D,:;] — 0 pointwise and with dominated
convergence

/Da;i ax;q)n dPG;i\fi = O(no)'

So we have
O(no) +/lga;i(z) Pi(‘(i)i(dz) = /Iga;i¢nd}3i(‘(i)i = *‘/Iax,-q)nDa;idPi\fi - /Iga;iq)n dPi(‘(i)i = O(nO)’

which implies },,; =0 and hence, integrating by Pg,)i. overany A € B¥!, 8a:i =0 [Péo)] . Similarly, we
obtain 0
gaij=0 [P, (B.18)

This also entails that

/axi(PDa;deG = /ax,-(PDa;jpedlk = 7/(Pga;i,de9 @*/(Pga;i,jpe dAk. (B.19)

Application of Proposition From (B-19), we get [ 0y¢ Dy:jpg dA* = — [ @gaii jpg dAX forall ¢ €
Py . By Deﬁnition 8a;i,jPo thus is the weak derivative of D,;jpg w.r.t. x;. By Proposition there
is a modification of Dg;jpg on a A¥ _null set such that this modification—for simplicity again denoted by
Dgy,jpg—is a.c. in k dimensions. Hence, for AR ae. x, Dy;jpe is differentiable w.r.t. x; in the classical
sense with a derivative coinciding with g4;; jpg up to a A¥ _null set.

As Dg;j is continuously differentiable, pg is differentiable on K]‘ for AX a.e. x, and using again all the
different Dy.;, j=1,...,k, the same is even true on K°.

Proof of (ii)(a)—(d): Defining for 6 € ®

119 := (pg/|det ds1q])0 7o, (B.20)

and recalling that Py = Foig , we see that by the Lebesgue transformation formula, f’ (6) must be a density
of F', hence the index 6 may be dropped, and (ii)(a) follows. Once again by the transformation formula,

po = |detdyig|(folg) = |detdstg|fo. (B.21)

and thus (ii)(c) holds. For (ii)(b) we consider k defined analogously as for k = 1 as inverse to ¢ from

@3): We lift @3) to [0,1]%, giving

g 2
([, vraedn) <soF) [ vPaiepa) vy w011 R),
[0,1] [0,1]F

where gg = pgok, and we have to show that [kgg](u) = 0 for u € 3([0,1]%). We only show u; = 1, all
other cases follow similarly. Let W, € Z, W — L1yjo 11 in L2(¢(Pp)) and pointwise. Then by Fubini
and by integration by parts

/[0’]]H /01[(%cl(%)K%}((x:y)l)/l(dx)}Lk—l(dy) _

1
= oy [vgolo = [ somua [P (x| 125 s
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But [ 1y w2 d[((Py)] — O entails by Fubini, [, Wr%d[f(Pe)]l\zzk — 0 [¢(Pg)]o:k(dy) a.e. and by Cauchy-
Schwartz that also jol 8ok, d[((Pg)]ijpx — O and hence

([vnrqe] (1:3)1) +0(n®)* <o(n®)  [[6(P)la(dy)]
and due to continuity of [y,kqg], (ii)(b) follows. For (ii)(d) we proceed as in part (ii) = (i)

(¥ e~ Va)po = (¥ 0 [Dacipo)) — Vapo P20 Y. 0 [Dasldet ol fo] — Vapo =

a789j|det<9xlg\ Y. Dg.i0x fo

Y 9x,[Da;i |[detdy1q)] L YiDaidxfo

= V,) = (B.22)
7o |detdy1g| fo @)= pol |det x| fo )
a789.|detaxlg‘ arag.fg arag.pg
= Do ’ ) =pg——— =pea’Ag. (B.23)
|detdy1g| fo ) Pe
Now (ii)(c) follows from (B:22) and the fact that V, and all g,; are in Ly(Py), and assertions ([#3) and
@.6) from (B.23). O

The next corollary shows that K is uninformative for our problem in the sense that P(g()) -a.e. Ag =0.
Corollary B.3. Under the assumptions of Theorem setting
Ag:=—=V+Y w (B.24)
i

with w; from (B-I0) (for i = 1) and respectively defined otherwise, it holds that
Ap=0 [P (B.25)

Proof : (B.24) is defined according to (B:23) on K¢, and as (B.I8) entails ¥;w; =0 [13(50)] , the assertion is
a direct consequence of x € K <= D(x) =0 <= dy1g(x)=0 @ V(x)=0. a

Appendix B.3. Proofs of Sections 6
For the proof of Proposition[6.1] we need two lemmas:

Lemma B.4. The multivariate location model[3.2)is Ly -differentiable iff it is “partially” in each coordi-
nate separately, i.e.;

2
/ (VFG1 4 h) = @ = 3 A7 () ) 24 (dx) = o(h) (B.26)
Proof to Lemma[B.4} [Garel and Hallin| (1995 Lemma 2.1) O

Lemma B.5. The multivariate location model @ is Ly -differentiable iff it is “partially” in each coordi-
nate separately, i.e.; for each i,j=1,...,k and each A = A" € RF**

/(\/ﬁ(ﬂk +h8; jA)f (I +h&; jA)x) — /F(x)(1+ 1Ay, (x)))27L" (dx)=o0(h?) (B.27)

where &; ; is the matrix in Rk with but O entries except at position i, .

Proof to Lemma [B3} With obvious translation we may parallel [Garel and Hallin| (T993] Lemma 2.1). A
proof is given in Ruckdeschel| (2001, Lemma B.3.3). g

Proof to Proposition [6.1}  Putting together Lemmas [B.4] and we have reduced the problem to the
respective questions in the one dimensional location resp. scale model, which is proven in [Hajek| (1972)
(one-dimensional location) and |[Swensen| (1980, Ch.2, Sec.3) (one-dimensional scale); [Ruckdeschel and
Rieder| (2010, Prop. 3.1) in addition shows that in the pure scale case, we may allow for mass in 0. (]
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Appendix B.4. Proofs of Section 7

Proof to Proposition[7.4} For fixed 0 # a € R?, the proof goes through word by word as in[Huber| (1981)),
simply replacing f/ by a®dgf; and f; by f;: By a monotone convergence argument it is shown that we
may differentiate twice under the integral sign, giving

2 . T, F 9, Fa\ 2 7272
d—zfg(F,;a):/Z(a of1 _a ~efo) fONJ;I dAk
dt h fo Ji

So we conclude that a®dglog fo = a®dglog fi AX(dx) ae.,ie.,

Vi V/

a*dglg T%ze (x) +a%dg log | det ;19 (x)| = a*Ig g f—lole (x) +a%dg log | det A, 19 (x)|,
0 1

where due to (d) up to a A% -null set %019 = %Olg , and hence up to a A -null set Vlog fy = Vlog f; .

1
Integrating this out w.r.t x;, we get by (c) that fy(x) = ¢;(x_;)fi (x) for A*~1 almost all x_;. Varying i,

we see that for some ¢ >0, ¢j(x_;) =c forall i=1,...,k and for AK almost all x, and hence
“pf a*dgfon »
FolFiia) = [(CLRRfark = [(“02ef ant = c.vy (Fyva)
Jo o h 7 fo
and ¢ = 1. As this holds for any 0 # a € RP, the assertion for % (F) follows. O
Proof to Proposition As by Proposition for any a € R? the mapping F — %y(F;a) is weakly
lower-semicontinuous, the same goes for the following, recursively defined mappings: Let a; € R?, |a;| =

1 realize
I9.1(F) := I9(F) =max Sy (F;a), acRP |al=1

and for i =2,...,k, assuming a; already defined for j=1,...,i—1,let a; €R?, |a;| =1 realize
Sgi(F) :=max Ig(F;a), acr’ |a|=1,al{a;}j<i
Then each of the #;(F), i =1,...,k is weakly lower-semicontinuous by the same argument as % (F)

and is strictly positive by assumption. Hence for each i =1,...,k, the mapping F — 1/ S.(F) is weakly
upper-semicontinuous, and so is the sum Y; 1/.%.;(F). But this sum is just the trace of [.%(F)]~!. The
corresponding statement as to the attainment of the maximum is shown just as Corollary[7.3] g
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