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Notation

Here we list some conventions used throughout the text.
The symbol N denotes the sets of the natural numbers starting from 1, while

N0 := N ∪ {0}.
In what follows the word combination “Hilbert space” should be understood as

“separable complex Hilbert space”. If the symbol “H” appears without explanations,
it denotes a certain Hilbert space (in the above sense).

If H is a Hilbert space and x, y ∈ H, then by 〈x, y〉 we denote the scalar product
of x and y. If there is more than one Hilbert space in play, we use the more detailed
notation 〈x, y〉H. We always assume that the scalar product is linear with respect
to the second argument and conjugate linear with respect to the first one, i.e. that
for all α ∈ C we have 〈x, αy〉 = 〈αx, y〉 = α〈x, y〉. This means, for example, that
the scalar product in the standard space L2(Ω) is defined by

〈f, g〉 =

∫
Ω

f(x)g(x) dx.

If A is a finite or countable set, we denote by `2(A) the vector space of the
functions ξ : A→ C with ∑

a∈A

∣∣ξ(a)
∣∣2 <∞,

which is a Hilbert space with the scalar product

〈ξ, ξ′〉 =
∑
a∈A

ξ(a)ξ′(a).

We will make an exception for the scalar product notaion in Euclidean spaces.
If z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn we denote

z · w := z1w1 + · · ·+ znwn.

In particular, the standard scalar product of z and w in Cn is then given by z · w.
IfH and G are Hilbert spaces, then by B(H,G) and K(H,G) we denote the spaces

of the continuous linear operators and the one of the compact operators from H and
G, respectively. Furtheremore, B(H) := B(H,H) and K(H) := K(H,H).

Recommended books

• The very first version of the lecture notes was based on a preliminary version
of the book

B. Helffer: Spectral theory and its applications. Cambridge University Press,
2012.

• The following recent textbook has rapidly become very popular:

D. Borthwick: Spectral theory. Basic concepts and applications. Springer,
2020.
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Additional references on particular topics will be given during the course.
At many points we will be obliged to use some facts on distributions and Sobolev

spaces. I tried to include some elementary facts in these notes with partial proofs)
and I hope that it will be sufficient. Nevertheless, if one wants to study these
questions in details, I recommend to study the textbook

• G. Grubb: Distributions and operators. Springer, 2011.

and/or to follow a dedicated course on partial differential equations and distribu-
tions.
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1 Unbounded operators

1.1 Closed and closable operators

A linear operator T in H is a linear map from a subspace (the domain of T ) D(T ) ⊂
H to H. The range of T is the set ranT := {Tx : x ∈ D(T )}. We say that a linear
operator T is bounded if the quantity

µ(T ) := sup
x∈D(T )
x 6=0

‖Tx‖
‖x‖

is finite. In what follows, the word combination “an unbounded operator” should
be understood as “an operator which is not assumed to be bounded”. If D(T ) = H
and T is bounded, we arrive at the notion of a continuous linear operator in H; the
space of such operators is denoted by B(H). This is a Banach space equipped with
the norm ‖T‖ := µ(T ).

During the whole course, by considering a linear operator we always assume that
its domain is dense (if the contrary is not stated explicitly).

If T is a bounded operator in H, it can be uniquely extended to a continuous
linear operator. Let us discuss a similar idea for unbounded operators.

The graph of a linear operator T in H is the set

grT :=
{

(x, Tx) : x ∈ D(T )
}
⊂ H×H.

For two linear operators T1 and T2 in H we write T1 ⊂ T2 if grT1 ⊂ grT2. In other
words, T1 ⊂ T2 means that D(T1) ⊂ D(T2) and that T2x = T1x for all x ∈ D(T1);
the operator T2 is then called an extension of T1 and T1 is called a restriction of T2,
and one writes T1 = T2|D(T1).

Definition 1.1 (Closed operator, closable operator).

• A linear operator T in H is called closed if its graph is a closed subspace in
H×H.

• A linear operator T in H is called closable, if the closure grT of the graph of
T in H × H is still the graph of a certain operator linear T . This T is then
called the closure of T .

The following propositions follows directly from the above definition:

Proposition 1.2. A linear operator T in H is closed if and only if the three condi-
tions

• xn ∈ D(T ),

• xn converge to x in H,

• Txn converge to y in H
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imply the inclusion x ∈ D(T ) and the equality y = Tx.

Proposition 1.3. A linear operator T in H is closable if and only if for any two
sequences (xn) ⊂ D(T ) and (x′n) ⊂ D(T ) such that:

• limxn = limx′n =: x,

• there exist the limits y := limTxn and y′ := limTx′n,

there holds y = y′.

Definition 1.4 (Graph norm). Let T be a linear operator in H. Define on D(T )
a new scalar product by

〈x, y〉T = 〈x, y〉+ 〈Tx, Ty〉.

The associated norm ‖x‖T :=
√
〈x, x〉T =

√
‖x‖2 + ‖Tx‖2 is called the graph norm

for T .

The following assertion is also evident.

Proposition 1.5. Let T be a linear operator in H.

• T is closed iff D(T ) is complete in the graph norm (or, equivalently, if D(T )
equipped with the scalar product 〈·, ·〉T is a Hilbert space).

• If T is closable, then D(T ) is exactly the completion of D(T ) with respect to
the graph norm.

Informally, one can say that D(T ) consists of those x for which there is a unique
candidate for Tx if one tries to extend T by density.

Let us consider some simple examples. More sophisticated examples involving
differential operators will be discussed later in Section 1.4.

Example 1.6 (Bounded linear operators are closed). By the closed graph
theorem, a linear operator T in H with D(T ) = H is closed if and only if it is
bounded. In this course we consider mostly unbounded closed operators.

Example 1.7 (Multiplication operator). Let Ω ⊂ Rd be an open set and H :=
L2(Ω) and pick f ∈ C0(Ω). Introduce a linear operator Mf in H as follows:

D(Mf ) = {u ∈ L2(Ω) : fu ∈ L2(Ω)} and Mfu = fu for u ∈ D(Mf ).

It can be easily seen that D(Mf ) equipped with the graph norm coincides with the
weighted space L2

(
Ω, (1 + |f(x)|2)dx

)
, which is complete. This shows that Mf is

closed.
On the other hand, denote by T the restriction of Mf to the functions with

compact supports. The functions vanishing outside compact subsets of Ω are dense
in L2

(
Ω, (1 + |f |2)dx

)
, hence, the closure T of T is exactly Mf . It also follows that

that T is not closed.
It is clear that the example can be generalized by taking f with lower regularity:

the continuity is not really needed, but one needs f to be bounded on each compact
subset if one one wants to be sure that fu ∈ L2(Rd) for any u ∈ L2(Rd) vanishing
outside a compact subset.
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Example 1.8 (Non-closable operator). Take H = L2(R) and pick a g ∈ H with
g 6= 0. Consider the operator L defined on D(L) = C0(R) ∩ L2(R) by Lf = f(0)g.

One can find two sequences (fn), (gn) in D(L) such that both converge in the L2

norm to f but such that fn(0) = 0 and gn(0) = 1 for all n. Then Lfn = 0, Lgn = g
for all n, and both sequences Lfn and Lgn converge, but to different limits. This
implies that L is not closable (Proposition 1.3).

Remark 1.9 (Graph=“no vertical lines”). It is easy to see that a linear sub-
space V ⊂ H×H is the graph of a linear operator if and only if it does not contain
any vector of the form (0, x) with x 6= 0, i.e. if V does not contain any “vertical
line” 0×Cx with x 6= 0. Then the following trivial observation will be useful several
times:

Proposition 1.10. If a linear operator T is closable and S is another linear operator
with S ⊂ T , then S is closable too, with S ⊂ T .

Proof. One has grS ⊂ grT , then grS ⊂ grT . As grT is the graph of a linear
operator, it does not contain “vertical lines” (Remark 1.9), then the same holds for
grS, and then grS is the graph of some linear operator.

In most areas of analysis one only works with closable operators (some reasons
for that will become evident later in this course).

1.2 Adjoint, symmetric, self-adjoint operators

Recall that for T ∈ B(H) its adjoint T ∗ is defined by the relation

〈x, Ty〉 = 〈T ∗x, y〉 for all x, y ∈ H.

The proof of the existence comes from the Riesz representation theorem: for each
x ∈ H the map H 3 y 7→ 〈x, Ty〉 ∈ C is a continuous linear functional. By Riesz
theorem, there exists a unique vector, denoted by T ∗x, with 〈x, Ty〉 = 〈T ∗x, y〉 for
all y ∈ H. One then shows easily that the map x 7→ T ∗x is linear, and by estimating
the scalar product one shows that T ∗ is also continuous. Let us use the same idea
for unbounded operators.

Definition 1.11 (Adjoint operator). If T be a linear operator in H (with dense
domain!), then its adjoint T ∗ is defined as follows. The domain D(T ∗) consists of
the vectors u ∈ H for which the map D(T ) 3 v 7→ 〈u, Tv〉 ∈ C is bounded with
respect to the H-norm. For such u there exists, by the Riesz theorem, a unique
vector denoted by T ∗u such that 〈u, Tv〉 = 〈T ∗u, v〉 for all v ∈ D(T ).

We note that the implicit assumption D(T ) = H is important here: if it is not
satisfied, then the value T ∗u is not uniquely determined, one can add to T ∗u an
arbitrary vector from D(T )⊥. As an easy exercise one shows that T ∗ : D(T ∗)→ H
is a linear map.

5



Let us give a geometric interpretation of the adjoint operator. Recall first that
H×H can be viewed as a Hilbert space with the scalar product〈

(x, y), (x′, y′)
〉
H×H := 〈x, x′〉H + 〈y, y′〉H.

Consider a unitary linear operator

J : H×H → H×H, J(x, y) = (y,−x).

It is easy to check that J commutes with the operation of orthogonal complement
in H ×H, i.e. J(V )⊥ = J(V ⊥) for any V ⊂ H × H. Then Definition 1.11 can be
reformulated as follows:

Proposition 1.12 (Geometric interpretation of the adjoint). Let T be a linear
operator in H. The following two assertions are equivalent:

• u ∈ D(T ∗) and f = T ∗u,

•
〈
(u, T ∗u), J(v, Tv)

〉
H×H = 0 for all v ∈ D(T ).

In other words,
grT ∗ = J(grT )⊥. (1.1)

As a simple application we obtain

Proposition 1.13. One has (T )∗ = T ∗, and T ∗ is a closed operator.

Proof. Follows from (1.1): the orthogonal complement is always closed, and
J(grT )⊥ = J(grT )⊥.

Up to now we do not know if the domain of the adjoint contains non-zero vectors.
This is discussed in the following proposition.

Proposition 1.14 (Domain of the adjoint). Let T be a closable operator H,
then:

(i) D(T ∗) is a dense subspace of H,

(ii) T ∗∗ := (T ∗)∗ = T .

Proof. The item (ii) easily follows from (i) and (1.1): one applies the same op-
erations again and remark that J2 = −1 and that taking twice the orthogonal
complement results in taking the closure.

Now let us prove the item (i). Let a vector w ∈ H be orthogonal to D(T ∗):
〈u,w〉 = 0 for all u ∈ D(T ∗). Then one has 〈J(u, T ∗u), (0, w)〉H×H ≡ 〈u,w〉 +
〈T ∗u, 0〉 = 0 for all u ∈ D(T ∗), which means that (0, w) ∈ J(grT ∗)⊥ = grT . As the
operator T is closable, its closure T is defined and grT = grT . Then (0, w) ∈ grT ,
i.e. w = T0 = 0.

Let us look at some examples.
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Example 1.15 (Adjoint for bounded operators). The general definition of the
adjoint operator is compatible with the one for continuous linear operators.

Example 1.16. As an exercise, one can show that for the multiplication operator
Mf from example 1.7 one has (Mf )

∗ = Mf .

The following definition introduces further classes of linear operator that will be
studied throughout the course.

Definition 1.17 (Symmetric, self-adjoint, essentially self-adjoint opera-
tors). We say that a linear operator T in H is symmetric (or Hermitian) if

〈u, Tv〉 = 〈Tu, v〉 for all u, v ∈ D(T ),

or, equivalently, if T ⊂ T ∗. Furthermore:

• T is called self-adjoint if T = T ∗,

• T is called essentially self-adjoint if T is self-adjoint (i.e. if T = T ∗).

Proposition 1.18. Symmetric operators are closable.

Proof. If T is symmetric, then T ⊂ T ∗. As T ∗ is closed (in particular,, closable),
one can uses Proposition 1.10.

Example 1.19 (Bounded symmetric operators are self-adjoint). If T ∈
B(H), then T is symmetric if and only if T is self-adjoint. But the equivalence
does not hold for unbounded operators: we will see it soon!

Example 1.20 (Self-adjoint multiplication operators). As follows from Exam-
ple 1.16, the multiplication operator Mf in Example 1.7 is self-adjoint iff f(x) ∈ R
for all x ∈ Rd.

A large class of self-adjoint operators comes from the following proposition.

Proposition 1.21. Let T be an injective self-adjoint operator, then its inverse is
also self-adjoint.

Proof. We show first that D(T−1) := ranT is dense in H. Let u ⊥ ranT , then
〈u, Tv〉 = 0 for all v ∈ D(T ). This can be rewritten as 〈u, Tv〉 = 〈0, v〉 for all
v ∈ D(T ), which shows that u ∈ D(T ∗) and T ∗u = 0. As T ∗ = T , we have
u ∈ D(T ) and Tu = 0. As T in injective, one has u = 0

Now consider the operator S : H×H → H×H given by S(x, y) = (y, x). One
has then grT−1 = S(grT ). We note that S commutes with J and with the operation
of the orthogonal complement in H×H:

gr(T−1)∗ = J(grT−1)⊥ = J
(
S(grT )

)⊥
= S

(
J(grT )⊥

)
= S(grT ∗) = S(grT ) = grT−1,

so (T−1)∗ = T−1.
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1.3 Some function spaces

Let Ω ⊂ Rd be a non-empty open set.
If f : Ω→ C is a continuous function, we denote

supp f := the closure of the set {x ∈ Ω : f(x) 6= 0}.

We further denote

C∞c (Ω) := {f ∈ C∞(Ω) : supp f is a compact subset of Ω}.

The functions C∞c (Ω) are “very good” in all aspects considered in the mathematical
analysis: locally (i.e. infinitely differentiable at any point) and globally (identically
zero outside a compact subset: no troubles at the boundary/at infinity). The ele-
ments of C∞c (Ω) are often called test functions on Ω. We are going to show that
C∞c (Ω) are dense in other functional spaces. We remark first that if Ω ⊂ Ω′, then
any function ϕ ∈ C∞c (Ω) can be viewed as a function in C∞c (Ω′) by taking the ex-
tension by zero. If particular, any test function on Ω is viewed as a test function on
Rd.

Let d ∈ N, α ∈ Nd
0 be a multi-index, α = (α1, . . . , αd) with αi ∈ N, x ∈ Rd. We

will use the writing

∂α := ∂α1
1 . . . ∂αdd , |α| := α1 + · · ·+ αd, xα := xα1

1 · . . . · x
αd
d ,

where ∂αii means the partial derivative with respect to the ith variable applied αi
times (in particular, the operation does nothing if is αi = 0). Remark that if one
applies ∂α to a C∞ function, then the result is independent of the order in which
the partial derivatives are taken.

First remark that there exist non-trivial test functions (=test functions which
are not identically zero). Namely, one checks routinely that

ρ : x 7→ c

exp
(
− 1

1− |x|2
)
, |x| < 1,

0, |x| ≥ 1.

belongs to C∞c (Rd), non-negative, with supp ρ ⊂ B1(0), and we choose c > 0 in such
a way that ‖ρ‖L1(Rd) = 1. For δ > 0 define

ρδ : x 7→ 1

δd
ρ
(x
δ

)
,

then

ρδ ≥ 0, supp ρδ ⊂ Bδ(0),

∫
Rd
ρ(x) dx = 1.

We now briefly review some properties of the convolution. The convolution f ∗ g
of two measurable functions f, g : Rd → C is defined by

(f ∗ g)(x) =

∫
Rd
f(y)g(x− y) dy,
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if the integral on the right-hand side exists for a.e. x ∈ Rd. This notion and some
of its properties were introduced in Analysis III.1 In particular, it was shown that

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1 for any f, g ∈ L1(Rd),

‖f ∗ ρδ − f‖L1
δ→0+

−−−→ 0 for any f ∈ L1(Rd).

In fact, the same proofs can be easily adapted (by using the Hölder inequality at
some points) to show that for any p ∈ [1,∞) one has

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1(Rd) for any f ∈ Lp(Rd), g ∈ L1(Rd) (1.2)

‖f ∗ ρδ − f‖Lp
δ→0+

−−−→ 0 for any f ∈ Lp(Rd). (1.3)

These properties allow us to show the following important assertion:

Theorem 1.22. For any p ∈ [1,∞) the set C∞c (Ω) is dense in Lp(Ω).

Proof. One may approximate Ω by compact subsets, i.e. there exists a sequence
(Kj)j∈N of compact Kj ⊂ Ω, with Kj ⊂ Kj+1 for all j, such that Ω =

⋃
j∈NKj. For

example, one can take

Kj := Bj(0) ∩
{
x ∈ Ω : dΩ(x) ≤ 1

j

}
, dΩ(x) := inf

y∈ΩC
|x− y|

(remark that dΩ is a continuous function). Denote fj := 1Kjf , then fj → f in Lp(Ω)
by the dominated convergence:

lim
j
‖fj − f‖pLp = lim

j

∫
Ω

1Ω\Kj(x)|f(x)|p dx = lim
j

∫
Ω

1Ω\∪i≤jKi(x)|f(x)|p dx

=

∫
Ω

lim
j

1Ω\∪i≤jKi(x)|f(x)|p dx =

∫
Ω

0 dx = 0.

Let ε > 0, then one can choose some j ∈ N with ‖fj − f‖Lp < ε. As Kj is compact,
one has

δj := inf
x∈Kj

dΩ(x) > 0.

We extend fj by zero to the whole of Rd and consider it as a function in Lp(Rd).
Consider gδ := fj ∗ ρδ with δ > 0. From the definition of ∗ it is clear that gδ is
C∞ with ∂α = fj ∗ ∂αρδ for any α ∈ Nd

0. In addition, by (1.3) one can choose δ
sufficiently small to have ‖gδ − fj‖Lp(Rd) < ε. Without loss of generality we may
assume that δ < δj. As fj is zero outside Kj and supp ρδ ⊂ Bδ(0) it follows from
the definition of the convolution that gδ(x) = 0 for all x ∈ Rd such that |x− y| > δ
for all y ∈ Kj, i.e.

supp gδ ⊂ {y + z : y ∈ Kj, z ∈ Bδ(0)},
1My lecture notes “Analysis III” can be downloaded from https://uol.de/pankrashkin/

lehre-teaching, the convolution is discussed in the last chapter.
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and the set on the right-hand is a compact subset of Ω (as δ is strictly small than
the distance between Kj and ΩC). Therefore, gδ ∈ C∞c (Ω), and by construction we
have

‖f − gδ‖Lp(Ω) ≤ ‖f − fj‖Lp(Ω) + ‖fj − gδ‖Lp(Ω)

= ‖f − fj‖Lp(Ω) + ‖fj − gδ‖Lp(Ω) < ε+ ε = 2ε.

As ε > 0 can be arbitrary, the result follows.

Remark 1.23 (Local versions of function spaces). The test functions are also
used to construct “local” version of various functional spaces. If with every open
Ω ⊂ Rd one associates in some canonical sense a space F(Ω) consisting of the
functions f : Ω → C a family of properties (for example, F = Lp, further example
will be introduced soon), then one defines

Floc(Ω) := {f : Ω→ C : ϕf ∈ F(Rd) for any ϕ ∈ C∞c (Ω)}.

For example, according to this definition,

Lploc(Ω) := {f : Ω→ C : ϕf ∈ Lp(Rd) for any ϕ ∈ C∞c (Ω)}.

But for this specific case we are going to prove another characterization.

Lemma 1.24. Let Ω ⊂ Rd be open and K ⊂ Ω compact, then there exists ϕ ∈
C∞c (Ω) with ϕ = 1 on K.

Proof. Consider again the continuous function dΩ : x 7→ infy∈ΩC |x− y|, then δK :=
infx∈K dΩ(x) > 0. Choose δ ∈

(
0, δ0

2

)
and set

ϕ : x 7→
∫

dist(y,K)<δ

ρδ(x− y) dy,

then ϕ ∈ C∞(Rd) with suppϕ ∈ {x : dist(x,K) ≤ 2δ} =compact subset of Ω. If
x ∈ K, then all y with ρδ(x− y) 6= 0 are contained in Bδ(x) ⊂

{
y : dist(y,K) ≤ δ},

so

ϕ(x) =

∫
dist(y,K)<δ

ρδ(x− y) dy =

∫
Rd
ρδ(x− y) dy = (y = t) =

∫
Rd
ρδ(t) dt = 1.

Proposition 1.25. For any p ∈ [1,∞] there holds

Lploc(Ω) =
{
f : Ω→ C measurable :

∫
K

|f |p dx <∞ for any compact K ⊂ Ω
}
.

(1.4)

Proof. We consider p < ∞ only (p = ∞ is an easy exercise). Let L be the set on
the right-hand side of (1.4).

Assume that f ∈ L and ϕ ∈ C∞c (Ω). Let K := suppϕ, then |ϕ| ≤ ‖ϕ‖∞1K and∫
Rd
|ϕf |p dx ≤ ‖ϕ‖2

∞

∫
Rd
|1Kf |p dx = ‖ϕ‖2

∞

∫
K

|f |p dx <∞,
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which shows ϕf ∈ Lp(Rd). Hence, L ⊂ Lploc(Ω).
Let f ∈ Lploc(Ω) and K ⊂ Ω compact. Be Lemma 1.24 there exists ϕ ∈ C∞c (Ω)

with ϕ = 1 on K. As ϕf ∈ Lp(Rd), the function ϕf is measurable on any subset of
Rd, in particular, on K. On K one has ϕf = f , hence, f is measurable on K. In
particular, f is measurable on any ball in Ω and then on the whole of Ω. Further
we have ∫

K

|f |p dx =

∫
K

|ϕf |p dx ≤
∫
Rd
|ϕf |p dx <∞.

As K is arbitrary, it shows the inclusion Lploc(Ω) ⊂ L.

Remark 1.26. It is clear that

Lp(Ω) ⊂ Lploc(Ω) for any p ≥ 1.

Furthermore, due to the Hölder inequality, for any compact K we have∫
K

|f | dx =

∫
K

|1Kf | dx ≤
(∫

K

|1K |q
)1/q(∫

K

|f |p
)1/p

≡ |K|1/q
(∫

K

|f |p
)1/p

.

According to (1.4) it shows the inclusions

Lploc(Ω) ⊂ L1
loc(Ω) for any p ≥ 1.

Further remark that
C0(Ω) ⊂ Lploc(Ω) for any p ≥ 1.

We conclude this section by showing the following important result:

Proposition 1.27. If f ∈ L1
loc(Ω) such that∫

Ω

f(x)ϕ(x) dx = 0 for all ϕ ∈ C∞c (Ω),

then f = 0 a.e. in Ω.

Proof. Let B be a ball with B ⊂ Ω. By Lemma 1.24 there exists ψ ∈ C∞c (Ω) with
ψ = 1 on B. Due to f ∈ L1

loc(Ω) we have ψf ∈ L1(Rd), and then ‖(ψf) ∗ ρδ −
ψf‖L1(Rd) → 0 as δ → 0+. On other hand,

(ψf)∗ρδ(x) =

∫
Rd
ψ(y)f(y)ρδ(x−y) dy =

∫
Ω

f(y)ϕx(y) dy for ϕx(y) := ψ(y)ρδ(x−y).

As ϕx ∈ C∞c (Ω), the term on the right-hand side is zero by assumption, hence,
(ψf) ∗ ρδ ≡ 0, and then ψf = 0 a.e. As ψ = 1 in B, one has f = 0 a.e. in B.
Therefore, f = 0 a.e. in any ball in Ω and then in the whole of Ω.
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1.4 Weak derivatives

Let Ω ⊂ Rd be a non-empty open set andH := L2(Ω). Let m ∈ N and cα : Ω→ C be
measurable functions, α ∈ Nd

0 with |α| ≤ m. In the theory of differential operators
one deals with realizations of differential expressions

P :=
∑
|α|≤m

cα∂
α (1.5)

as linear operators with “good” properties in the Hilbert space H, i.e. one looks for
suitable D(T ) ⊂ L2(Ω) such that the linear operator

T : u 7→ Pu with domain D(T )

becomes closed/symmetric/self-adjoint etc. One should immediately say that the
problem is very difficult and no general solutions exists so far. In this course, we
mostly deal some particular P with smooth or even constant coefficients cα (anyway,
we remark that some non-constant and non-smooth coefficients will appear when
we will deal with Schrödinger operators).

Definition 1.28 (Weak derivative). Let f ∈ L1
loc(Ω) and α ∈ Nd

0. One says that
a function g ∈ L1

loc(Ω) is the weak ∂α-derivative of f in Ω, if for all ϕ ∈ C∞c (Ω) one
has the equality ∫

Ω

f∂αϕ = (−1)|α|
∫

Ω

gϕ. (1.6)

If such g exists, then it is unique by Proposition 1.27. One says that f admit a weak
∂α-derivative, and for the moment we use the writing

g = ∂̃αf

in order to distinguish from the usual derivatives. If f admits weak ∂α-derivatives
for all |α| ≤ m, then one says that f is m times weakly differentiable.

Proposition 1.29. If f ∈ Cm(Ω) with some m ∈ N, then weak derivatives up to
order m exist and coincide with the usual derivatives.

Proof. Let ϕ ∈ C∞c (Ω), then ϕf ∈ Cm(Rd) and for sufficiently large R > 0 there
holds supp(ϕf) ⊂ (−R,R)d. Furthermore,∫

[−R,R]d
∂1(ϕf) dx =

∫ R

−R
· · ·
∫ R

−R

∫ R

−R
∂1

(
ϕf
)
(x1, . . . , xd) dx1 dx2 . . . dxd∫ R

−R
· · ·
∫ R

−R

[
(ϕf)(R, x2, . . . , xd)︸ ︷︷ ︸

=0

− (ϕf)(−R, x2, . . . , xd)︸ ︷︷ ︸
=0

]
dx2 . . . dxd = 0.

On the other hand, using the Leibniz rule one obtains∫
[−R,R]d

∂1(ϕf) dx =

∫
Ω

∂1(ϕf) dx =

∫
Ω

(f ∂1ϕ+ ϕ∂1f) dx,
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which gives ∫
Ω

f∂1ϕ dx = −
∫

Ω

ϕ∂1f dx for all ϕ ∈ C∞c (Ω),

hence ∂1f = ∂̃1f , and one extends this argument to general α by re-enumeration
and iteration.

Example 1.30. There exist weakly differentiable functions that are not classically
differentiable. For example, consider Ω := R and f(x) = |x|, which is not differen-
tiable at 0. For any ϕ ∈ C∞c (Ω) one has∫

R
f(x)ϕ′(x) dx = −

∫ 0

−∞
xϕ′(x) dx+

∫ ∞
0

xϕ′(x) dx

= −xϕ(x)
∣∣∣0
−∞

+

∫ 0

−∞
ϕ(x) dx+ xϕ(x)

∣∣∣∞
0
−
∫ ∞

0

ϕ(x) dx

=

∫ 0

−∞
ϕ(x) dx−

∫ ∞
0

ϕ(x) dx

= −
∫
R

sgn(x)ϕ(x), sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0,

(the precise value of sgn in 0 has no importance here), which shows that sgn is the
weak derivative of f .

On the other hand, not every function is weakly differentiable. For example,
the function sgn is not weakly differentiable. To see this, remark first that for any
ϕ ∈ C∞c (Ω) one has∫

R
sgn(x)ϕ′(x) dx = −

∫ 0

−∞
ϕ′(x) dx+

∫ ∞
0

ϕ′(x) dx

= −ϕ(x)
∣∣∣0
−∞

+ ϕ(x)
∣∣∣∞
0

= −2ϕ(0).

A weak derivative g of sgn would satisfy then∫
R
g(x)ϕ(x) dx = 2ϕ(0) for all ϕ ∈ C∞c (R). (1.7)

In particular, one would get∫ ∞
0

g(x)ϕ(x) dx = 0 for all ϕ ∈ C∞c (0,∞),

and then g = 0 a.e. in (0,∞) by Proposition 1.27. Analogolously g = 0 a.e. in
(−∞, 0), so finally g = 0 a.e. in R. If one now takes ϕ ∈ C∞c (R) with ϕ(0) = 1, one
obtains a contradiction with (1.7).
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Example 1.31. The operation ∂̃α is also called distributional derivative. Distri-
butions represent useful generalizations of functions (every function f ∈ L1

loc is
a distribution), and any distribution is infinitely differentiable. In particular, all
derivatives of any function f ∈ L1

loc exist, but the price to pay is that they are not
functions anymore: for example, (sgn)′ = 2δ, where δ is the so-called Dirac distribu-
tion. Nevertheless, if some derivatives happen to be functions, then they are exactly
the weak derivatives defined above.

Remark 1.32. The construction can be generalized to more general differential
expressions. Let P be as in (1.5) with smooth coefficients cα ∈ C∞(Ω) and f, g ∈
L1

loc(Ω), then one says that g = Pf weakly (or writes g = P̃ u) if∫
Ω

gϕ =
∑
|α|≤m

(−1)|α|
∫

Ω

f∂α(cαϕ) for any ϕ ∈ C∞c (Ω).

Important: this does not imply the existence all weak derivatives appearing in the
expression of Pf , as one can have a kind of “compensation” of various “bad” terms.
If f ∈ Cm(Ω), then one shows as in Remark 1.29 that that the usual and weak
version Pf coincide.

We emphasize some important properties of weak derivatives:

Proposition 1.33 (Leibniz rule). The weak derivatives satisfy the Leibniz rule:

if f ∈ L1
loc(Ω) has the weak derivative ∂̃jf ∈ L1

loc(Ω) and χ ∈ C∞(Ω), then also χf

admits the weak ∂j derivative, and ∂̃j(χf) = f ∂jχ+ χ∂̃jf .

Proof. For any ϕ ∈ C∞c (Ω) one has χϕ ∈ C∞c (Rd), hence,∫
Ω

∂̃jf · χϕ = −
∫

Ω

f∂1(χϕ) = −
∫

Ω

f∂1χ · ϕ−
∫

Ω

fχ · ∂1ϕ.

This can be rewritten as∫
Ω

(χ ∂̃1f + f ∂1χ)ϕ = −
∫

Ω

χf · ∂1ϕ, ϕ ∈ C∞c (Ω),

and ∂̃1(χf) = f∂1χ + χ∂̃1f by Proposition 1.27, as the function on the right-hand
side is in L1

loc(Ω).

Proposition 1.34 (Weak derivatives and convolutions). If f ∈ L1
loc(Rd) has

the weak derivative ∂̃jf ∈ L1
loc(Rd), then

∂j(f ∗ ϕ) = (∂̃jf) ∗ ϕ for any ϕ ∈ C∞c (Rd).

Remark that f ∗ ϕ ∈ C∞, therefore, one takes the usual derivative on the left-hand
side.
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Proof. One easily checks that one is allowed to interchange the derivative with the
integral, so for any x ∈ Rd there holds

∂j(f ∗ ϕ)(x) = ∂j

∫
Rd
f(y)ϕ(x− y) dx =

∫
Rd
f(y)(∂jϕ)(x− y) dx

= −
∫
Rd
f(y)∂jϕx(y) dx for ϕx(y) = ϕ(x− y).

As ϕx ∈ C∞c (Rd), one continues as

=

∫
Rd
∂̃jf(y) · ϕx(y) dx =

∫
Rd
∂̃jf(y) · ϕ(x− y) dx

=
(
(∂̃jf) ∗ ϕ

)
(x).

From now on we denote ∂̃α and ∂α by the same symbol ∂α. (If it will
be important, we will say explicitly which derivative type is used.)

Now let us return back to the differential expression P with smooth coefficients
cα as in (1.5) and the following densely defined linear operator in H:

Tu = Pu, D(T ) = C∞c (Ω).

Using the definition of the adjoint operator one sees that

T ∗u = P ′u (weakly), D(T ∗) =
{
u ∈ L2(Ω) : P ′u ∈ L2(Ω)

}
,

where P ′ is the so-called formal adjoint of P , i.e.

P ′ : u 7→
∑
|α|≤m

(−1)|α|∂α(cαu).

The formal adjoint has the property that 〈ϕ, Pψ〉 = 〈P ′ϕ, ψ〉 for any ϕ, ψ ∈ C∞c (Ω),
and the differential expression P will be called formally self-adjoint if P = P ′, i.e.
cα = (−1)|α|cα for all α. For the rest of the section we assume that P is
formally self-adjoint and that all coefficients cα are constant. Important
examples are

P = −i∂j, P = −∆ ≡ −
d∑
j=1

∂2
j (Laplacian) .

Then one easily sees that T ⊂ T ∗, i.e. that T is symmetric and, hence, closable.
The closure of T is usually called the minimal operator generated by the differential
expression P and is denoted Pmin. The operator T ∗ is called the maximal operator
generated by the differential expression P and is denoted by Pmax.

It is natural to ask if one has Pmin = Pmax: if the equality holds, then T = T ∗,
hence, T is essentially self-adjoint, while T ∗ = Pmax is self-adjoint. If the equality
fails, then T is just symmetric, but is not self-adjoint. Checking Pmin = Pmax is a
difficult question as, in general, it depends on the geometry of Ω or, more precisely
of the regularity properties of its boundary. It is not our objective to study the most
general case (in fact, this is one of the hardest parts of analysis), but we are going
to look at some important examples.
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1.5 Sobolev spaces

We continue to work with a non-empty open set Ω ⊂ Rd.

Definition 1.35 (Sobolev space). For k ∈ N the kth Sobolev space Hk(Ω) on Ω
is defined as

Hk(Ω) =

{
f ∈ L2(Ω) : f is k times weakly differentiable,

with ∂αf ∈ L2(Ω) for all α ∈ Nd
0 with |α| ≤ k

}
.

We introduce a scalar product in Hk(Ω) by

〈f, g〉Hk(Ω) =
∑
|α|≤k

〈∂αf, ∂αg〉L2(Ω),

and in order to have a uniform notation we set H0(Ω) := L2(Ω).

Theorem 1.36. The Sobolev space Hk(Ω) with the above scalar product is a Hilbert
space.

Proof. Let (vj) ∈ Hk(Ω) be a Cauchy sequence with respect to ‖ · ‖Hk . For each
α with |α| ≤ k one has ‖∂αu‖L2 ≤ ‖u‖Hk , and it follows that (∂αvj) is a Cauchy
sequence in L2(Ω). As L2(Ω) is complete, there exist vα := L2 − lim ∂αvj. Denote
v := v0, then for any ϕ ∈ C∞c (Ω) one has

〈vα, ϕ〉L2 = lim〈∂αvj, ϕ〉L2 = lim

∫
Ω

∂αvj · ϕ dx

= lim(−1)|α|
∫

Ω

vj∂
αϕ dx = (−1)|α| lim〈vj, ∂αϕ〉L2 = (−1)|α|〈v, ∂αϕ〉,

which means that vα is the weak ∂α-derivative of v. This shows that v ∈ Hk(Ω).

It is a remarkable fact that in the absence of boundaries (i.e. for Ω = Rd) there is
an alternative description of the Sobolev spaces. Namely, the Sobolev spaces Hk(Rd)
can be characterized using the Fourier transform, which we will briefly address now.

Recall2 that the Fourier transform f̂ of a function f ∈ L1(Rd) is given by

f̂(ξ) =
1

(2π)d/2

∫
Rd
f(x)e−iξ·x dx, x ∈ Rd, (1.8)

and it is a continuous function satisfying

‖f̂‖∞ ≤
1

(2π)d/2
‖f‖L1 . (1.9)

If f ∈ L1(Rd) ∩ L∞(Rd) ∩ C0(Rd) such that f̂ ∈ L1, then the Fourier inversion
formula holds

f(x) =
1

(2π)d/2

∫
Rd
f̂(ξ)eiξ·x dξ, x ∈ Rd. (1.10)

2The Fourier transform was defined in Analysis III without the coefficient in front of the integral,
but for our purposes is will be useful.

16



Remark that for any ϕ ∈ C∞c (Ω) and any α ∈ Nd
0 obtains (with the help of the

partial integration)

∂̂αϕ(ξ) =
1

(2π)d/2

∫
Rd
∂αϕ(x) · e−iξ·x dx =

1

(2π)d/2

∫
Rd
ϕ(x)(−∂x)αe−iξ·x dx

=
1

(2π)d/2

∫
Rd
ϕ(x)(iξ)αe−iξ·x dx = (iξ)αϕ̂(ξ).

and by (1.9) all ξαϕ are bounded. It follows that ϕ̂ decays rapidly at infinity (and
converges to zero faster that any rational function), in particular, ϕ̂ ∈ L1 ∩ L∞.
This means that the above inversion formula holds for all test functions. We further
remark that for any test function ϕ one has ϕ̂ ∈ L1 ∩ L∞ ⊂ L2.

Theorem 1.37 (Fourier transform as a unitary map). The linear map

C∞c (Rd) 3 f 7→ f̂ ∈ L2(Rd) extends uniquely to a unitary operator

F : L2(Rd)→ L2(Rd), which satisfies FFf = f(−·). (1.11)

Proof. For ϕ, ψ ∈ C∞c (Rd) one has, using the inversion formula,

〈ϕ, ψ〉L2 =

∫
Rd
ϕ(x)

1

(2π)d/2

∫
Rd
eiξ·xψ̂(ξ) dξ dx

one can interchange the integrals, as (x, ξ) 7→ ϕ(x)ψ̂(ξ) in in L1(Rd × Rd)

=

∫
Rd

1

(2π)d/2

∫
Rd
e−iξ·xϕ(x) dx ψ̂(ξ) dξ

=

∫
Rd
ϕ̂(ξ)ψ̂(ξ) dξ = 〈ϕ̂, ψ̂〉L2 .

For ϕ = ψ one obtains ‖ϕ‖L2 = ‖ϕ̂‖L2 . As C∞c (Rd) is dense in L2(Rd), the map
ϕ 7→ ϕ̂ uniquely extends to a linear operator F in L2(Rd) with ‖Ff‖L2 = ‖f‖L2 for
all f ∈ L2(Rd), and then ranF is automatically closed. It remains to check that
ranF = L2(Rd). Assume that f ∈ L2(Rd) with f ⊥ ranF . Let fj ∈ C∞c (Rd) with

lim ‖fj − f‖L2 = 0, then Ff = L2 − lim f̂j. For any ϕ ∈ C∞c (Rd) we have

0 = 〈f, ϕ̂〉L2 = lim〈fj, ϕ̂〉L2

= lim
j

∫
Rd
fj(ξ)

1

(2π)d/2

∫
Rd
e−iξ·x ϕ(x) dx dξ

= lim
j

∫
Rd

1

(2π)d/2

∫
Rd
fj(ξ)eiξ·x dξϕ(x) dx

= lim
j

∫
Rd
f̂j(−x)ϕ(x) dx = lim

j
〈f̂j(−·), ϕ〉L2 = 〈Ff(−·), ϕ〉L2 ,

which shows that Ff(−·) = 0, then Ff = 0 and f = 0.
For the identity in (1.11) one simply extends the inversion formula (1.8) be

density.
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Remark 1.38. It is common to keep the notation f̂ instead of Ff for all f ∈ L2(Rd).

Recall that we deal with the differential expression

P :=
∑
|α|≤m

cα∂
α, cα ∈ C,

which is assumed formally self-adjoint.

Proposition 1.39 (Weak derivatives and the Fourier transform). For any
f ∈ L2(Rd), one can the equivalence

Pf ∈ L2(Rd) (weakly) ⇔ pf̂ ∈ L2(Rd),

where
p(ξ) =

∑
|α|≤m

cα(iξ)α.

Moreover, in this case one has Pf = g, where g is the unique L2-function with
ĝ = p(ξ)f̂ .

Proof. We remark that p(ξ) is real-valued (as P is assumed formally self-adjoint).
The proof becomes quite technical at some points. Consider the space3

S(Rd) :=
{
f ∈ C∞(Rd) : xα∂βf ∈ L∞(Rd) for all α, β ∈ Nd

0

}
.

Clearly, C∞c (Rd) ⊂ S(Rd) ⊂ L2(Rd), and using the inversion formula and Theo-
rem 1.37 one checks that F : S(Rd)→ S(Rd) is bijective.
⇒: Let f ∈ L2(Rd) with g := Pu ∈ L2(Rd), then for any ϕ ∈ C∞c (Rd) one has∫

Rd
Pϕf dx =

∫
Rd
ϕg dx. (1.12)

We claim that the identity also holds for all ϕ ∈ S(Rd). Namely, let ϕ ∈ S(Rd).
Take χ ∈ Rd such that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2 and denote

χN : x 7→ χ
( x
N

)
, ϕN := χNϕ.

One has clearly ϕN ∈ C∞c (Rd), hence,∫
Rd
PϕNf dx =

∫
Rd
ϕNg dx, (1.13)

and ϕN → ϕ in L2(Rd) as N →∞. On the other hand,

∂jϕ(x) =
1

N
(∂jχ)

( x
N

)
ϕ(x) + χN(x)∂jϕ(x),

3In the theory of distributions it is called Schwartz space.
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and one easily shows that the first and the second summand converge respectively

to 0 and χ∂jϕ in L2(Rd). Therefore, ∂jϕN
L2

−→ ∂jϕ. Similarly, ∂αϕN
L2

−→ ∂αϕ for

every α, and then by linearity one has PϕN
L2

−→ Pϕ. Hence, one passes to the limit
N →∞ in (1.13) and obtains (1.12) for any ϕ ∈ S(Rd).

Then (1.12) can be rewritten as 〈Pϕ, f〉L2 = 〈ϕ, g〉L2 for any ϕ ∈ S(Rd), and by

Theorem 1.37 one has 〈P̂ϕ, f̂〉 = 〈ϕ̂, ĝ〉 and then∫
Rd
p(ξ)ϕ̂(ξ)f̂(ξ)dξ =

∫
Rd
ϕ̂(ξ)ĝ(ξ)dξ.

As F : S(Rd)→ S(Rd) is bijective, this can be rewritten as∫
Rd
p(ξ)f̂(ξ)ψ(ξ)dξ =

∫
Rd
ĝ(ξ)ψ(ξ)dξ

for all ψ ∈ S(Rd), in particular, for all ψ ∈ C∞c (Rd). Due to f̂ , ĝ ∈ L2 and p ∈ C0

one has pf, g ∈ L1
loc(Rd), and by Proposition 1.27 one has pf = g a.e. and then

pf ∈ L2(Rd).

⇐: Now assume that f ∈ L2(Rd) with pf̂ ∈ L2(Rd), then there exists a unique

g ∈ L2(Rd) with ĝ = pf̂ . Then for any ϕ ∈ C∞c (Rd) one has∫
Rd
ϕ̂(ξ)p(ξ)f̂(ξ)dξ =

∫
Rd
ϕ̂(ξ)ĝ(ξ)dξ,

which can be regrouped into 〈P̂ϕ, f̂〉 = 〈ϕ̂, ĝ〉 and then 〈Pϕ, f〉 = 〈ϕ, g〉, which is
exactly ∫

Rd
Pϕf dx =

∫
Rd
ϕg for any ϕ ∈ C∞c (Rd)

and means that g = Pf .

Corollary 1.40. If P is formally self-adjoint, then the maximal operator Pmax is
self-adjoint.

Proof. By Proposition 1.39 the operator Pmax is unitarily equivalent to the self-
adjoint multiplication operator Mp with a continuous real-valued p. (The unitary
equivalence was defined in the exercises.)

Corollary 1.41 (Characterizing Sobolev spaces using the Fourier trans-
form). For any k ∈ N one has

Hk(Rd) =
{
f ∈ L2(Rd) : 〈ξ〉kf̂ ∈ L2(Rd)

}
, 〈ξ〉 :=

√
1 + |ξ|2. (1.14)

Proof. Let L be the set on the right-hand side of (1.14). Let f ∈ Hk(Rd), then by

Proposition 1.39 one has ξαf̂ ∈ L2(Rd) for |α| ≤ k. Using 〈ξ〉 ≤ 1 + |ξ1|+ · · ·+ |ξd|
we estimate ∣∣ 〈ξ〉kf̂ ∣∣ ≤ (1 + |ξ1|+ · · ·+ |ξd|

)k|f̂ | ≤ ∑
|α|≤k

bα|ξαf̂ |,
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where bα are suitable constants. By Proposition 1.39 each summand on the right-
hand side is an L2-function, which shows that 〈ξ〉kf̂ ∈ L2(Rd). This gives the
inclusion Hk(Rd) ⊂ L.

On the other hand, let f ∈ L. For |α| ≤ k one has |ξα| ≤ 〈ξ〉|α| ≤ 〈ξ〉k, therefore,

|ξαf̂ | ≤ 〈ξ〉k|f̂ | ∈ L2(Rd), implying ξαf̂ ∈ L2(Rd). By Proposition 1.39 this means
that ∂αf ∈ L2(Rd). As this holds for arbitrary α with |α| ≤ k, one arrives at the
inclusion L ⊂ Hk(Rd).

Corollary 1.42 (Global elliptic regularity for the Laplacian). Let u ∈ L2(Rd)
with ∆u ∈ Hk(Rd), then u ∈ Hk+2(Rd).

Proof. By assumption û ∈ L2 and 〈ξ〉k|ξ2|û ∈ L2. For |ξ| ≤ 1 one has |〈ξ〉k+1û| ≤
|û|. For |ξ| ≥ 1 we have 〈ξ〉2 = 1 + |ξ2| ≤ 2|ξ|2, therefore, |〈ξ〉k+2û| = 2|ξ|2|〈ξ〉kû|.
The above estimates can be summarized as |〈ξ〉k+2û| ≤ 1|ξ|≤1|û|+ 2 1|ξ|≥1|ξ|2|〈ξ〉kû|,
and the two functions on the right-hand side are in L2(Rd) due to the initial as-
sumptions. This implies 〈ξ〉k+2û ∈ L2(Rd).

While the spaces Hk may look unusual at the beginning, they can be compared
with the classical spaces Cm (as they represent an alternative way to measure the
smoothness). He we will only provide the final results, and the proofs will be dis-
cussed in the exercises:

Proposition 1.43 (Density of test functions). The set C∞c (Rd) is dense in
Hk(Rd) for any k ∈ N.

Theorem 1.44 (Sobolev embedding theorem). Let k ∈ N and m ∈ N0 with
k > m+ d

2
. Equip the vector space

Cm
L∞(Rd) :=

{
u ∈ C∞(Rd) : ∂αu ∈ L∞(Rd) for all α ∈ Nd

0 with |α| ≤ m}

with the norm ‖u‖m,∞ :=
∑
|α|≤m ‖∂αu‖∞, then it becomes a Banach space, one has

Hk(Rd) ⊂ Cm
L∞(Rd),

and the embedding is continuous.

With the preceding notions and constructions, let us now discuss a very impor-
tant example of Laplacians.

Example 1.45 (Laplacians in Rd). Take H = L2(Rd) and consider several oper-
ators in H associated with the differential expression

P = −∆ = −
d∑
j=1

∂2
j

called the d-dimensional Laplacian. Namely, define

T0 = −∆u, D(T0) = C∞c (Rd),

T1 = Pmin, T2 = Pmax.
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Recall that by the preceding definitions and constructions the following holds: T1 =
T0 and T2 = T ∗0 , both T1 and T2 act as u 7→ −∆u (in the weak sense).

By Corollary 1.42 we have D(T2) = H2(Rd), and T2 is self-adjoint by Corollary
1.40. For u ∈ D(T2) its graph norm is given by

‖u‖2
T2

= ‖u‖2
L2(Rd) +‖∆u‖2

L2(Rd) ≡ ‖û‖
2
L2(Rd) +‖|ξ|2û‖2

L2(Rd) =

∫
Rd

(
1+ |ξ|4

)∣∣û(ξ)
∣∣2 dξ,

while its H2-norm is given by

‖u‖2
H2 =

∑
|α|≤2

‖∂αu‖2
L2(Rd) ≡

∑
|α|≤2

‖ξαû‖2
L2(Rd) =

∫
Rd

( ∑
|α|≤2

|ξα|2
)∣∣û(ξ)

∣∣2 dξ.

For any ξ ∈ Rd we clearly have

1 + |ξ|4 ≤
∑
|α|≤2

|ξα|2,

which shows ‖u‖T2 ≤ ‖u‖H2 . At the same time, denoting c := #{α ∈ Nd
0 : |α| ≤ 2},

we obtain ∑
|α|≤2

|ξα|2 ≤
∑
|α|≤2

〈ξ〉2|α| ≤
∑
|α|≤2

〈ξ〉4

= c〈ξ〉4 = c(1 + |ξ|2)2 ≤ 2c(1 + |ξ|4),

which gives ‖u‖2
H2 ≤ 2c‖u‖2

T2
. Therefore, the both norms are equivalent. It follows

by Proposition 1.43 then that C∞c (Rd) is dense in D(T2) in the graph norm, i.e. that
T0 = T2 (i.e. T0 is essentially self-adjoint).

Remark 1.46. One observes that most of the above constructions are based on the
fact that for P = −∆ one has p(ξ) = |ξ|2 > 0 for ξ 6= 0. Most assertions can be
extended to other differential expressions P with constant coefficients such that p(ξ)
do not vanish at least for sufficiently large |ξ|: such P are usually called elliptic.

Definition 1.47 (Free Laplacian in Rd). The operator T in L2(Rd) defined by

D(T ) = H2(Rd), Tu = −∆u,

is called the free Laplacian in Rd. As discussed in Example 1.45, it is a self-adjoint
operator, and it is essentially self-adjoint on C∞c (Rd) (i.e. its restriction on the test
functions is an essentially self-adjoint operator).

The free Laplacian T will be of importance for the rest of the course. In fact,
many operators we are going to study will be of the form T + V with some pertur-
bation V .

Therefore, for Ω = Rd and P = −∆ we have shown that Pmin = Pmax and
D(Pmax) = H2(Ω). Nevertheless, it should be noted that these equalities do not hold
for general open sets Ω (even if P remains the same). The theory of Sobolev spaces
on general open sets is much more involved, as no direct equivalent of the Fourier
transform is available. We discuss now some key points that will be important later.
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Definition 1.48. By C∞(Ω) we will denote the set of functions defined on Ω that
can be extended to a function in C∞c (Rd).

Definition 1.49 (Open sets with “good” boundaries). One says that an open
set Ω ⊂ Rd has Cm (respectively, Lipschitz ) boundary, if for any p ∈ ∂Ω there
exist ε > 0, a Cartesian coordinate system (y1, . . . , yd) centered at p and a Cm

(respectively, Lipschitz) function h defined on a neighborhood of zero in Rd−1, with
h(0) = 0, such that

Ω ∩Bε(p) =
{
y ∈ Bε(0) : yd < h(y1, . . . , yd−1)

}
.

Note that open sets with C1 boundaries are usually considered in Analysis III when
one discusses Gauss integral formulas and partial integration in higher dimensions.

Remark 1.50. In the above definition, it is important that Ω lies “on one side” of
its boundary. A simple example of an open set Ω which is not covered by the above
definition is Ω := R2 \ I, where I is any closed interval (“plane with a cut”).

The following important (but very technical) result can be viewed as a kind of
replacement for the above Proposition 1.43 (we give it without proof):

Theorem 1.51 (Density of smooth functions). Let Ω ⊂ Rd be an open set with
C0 boundary, then C∞(Ω) is dense in Hk(Ω) for any k ∈ N.

Therefore, if the open set Ω has a “good” boundary, then Hk(Ω) can be alter-
natively defined as the completion of C∞(Ω) in the Hk-norm.

Remark 1.52 (Example of Pmin 6= Pmax). Let P = −∆ and Ω ⊂ Rd be a
bounded open set with smooth boundary (so that one can apply the Gauss integral
formula). It is clear that C∞(Ω) ⊂ D(Pmax). On the other hand, for u, v ∈ C∞(Ω)
one has (Green formula!)

〈u, Pmaxv〉 − 〈Pmaxu, v〉 =

∫
Ω

∆u v dx−
∫

Ω

u∆v dx =

∫
∂Ω

(
∂nu v − u ∂nv

)
ds,

where ∂nu := n · ∇u is the outer normal derivative (n is the smooth unit normal
vector field on ∂Ω pointing to the exterior of Ω) and ds means the integration with
respect to the hypersurface measure. It is clear that u and v can be chosen in
such a way that the result is non-zero, and it follows that Pmax is not symmetric
(so it cannot be self-adjoint). On the other hand, Pmin is always symmetric, so
Pmin 6= Pmax. In fact, one needs to take a restriction of Pmax in order to obtain
a self-adjoint operator, and usually such a restriction is formulated in terms of
a boundary condition that guarantees that the integral over the boundary in the
above identity becomes identically zero.

According to the general rule (Remark 1.23), define

Hk
loc(Ω) := {f : Ω→ C : ϕf ∈ Hk(Rd) for any ϕ ∈ C∞c (Ω)}.
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If one proceeds as in Proposition 1.25, one shows the equality

Hk
loc(Ω) = {f : Ω→ C : f ∈ H1(B) for any ball B with B ⊂ Ω},

but both characterizations are important. By applying Theorem 1.44 (Sobolev em-
bedding) to the products ϕf one arrives at

Corollary 1.53 (Local Sobolev embedding). For any k ∈ N and m ∈ N0 with
k > m+ d

2
one has Hk

loc(Ω) ⊂ Cm(Ω).

Finally let us mention the following important result, which is a local version of
Corollary 1.42:

Theorem 1.54 (Interior elliptic regularity). Let u ∈ L2
loc(Ω) with ∆u ∈

Hk
loc(Ω), then u ∈ Hk+2

loc (Ω).

Proof idea. Let ϕ ∈ C∞c (Ω), then ϕu ∈ L2(Rd) and

∆(ϕu) = u∆ϕ+ 2∇ϕ · ∇u+ ϕ∆u.

One can give a complete proof for k = 0 and under the additional assumption
u ∈ H1

loc(Ω): in that case all components of ∇u are in L2
loc, and the function

on the right-hand side is in L2(Rd). Now one applies Corollary 1.42 and obtains
ϕu ∈ H2(Rd).

In the general case, the argument is in the same spirit, but the components of
∇u should be considered as functions in Hs(Rd) with some s < 0. (Related results
are discussed in dedicated PDE courses.)

If one iteratively applies Theorem 1.54 and uses Corollary 1.53, one obtains:

Proposition 1.55. Let u ∈ L2(Ω) with ∆u = V u+ f in Ω for some V, f ∈ C∞(Ω),
then u ∈ C∞(Ω).

Proof. It is clear that the product of a C∞ function with a Hk
loc function belongs

to Hk
loc. If u ∈ L2, then V u+f ∈ L2

loc = H0
loc, then u ∈ H2

loc by Theorem 1.54. Then
V u + f ∈ H2

loc, and by Theorem 1.54 one obtains u ∈ H4
loc and so on. Therefore,

u ∈ Hk
loc for any k ∈ N, and by Corollary 1.53 one obtains u ∈ Cm with any

m ∈ N.

1.6 Operators defined by forms

Definition 1.56. Let H be a Hilbert space and D(t) ⊂ H a dense subspace. A
sesquilinear form t in a Hilbert space H with domain D(t) is a map

t : H×H ⊃ D(t)×D(t)→ C

which is linear with respect to the second argument and conjugate linear with respect
to the first one.4 It is called:

4In the literature, one uses sometimes the terms bilinear form and quadratic form for the same
objects.
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• symmetric (or Hermitian) if t(u, v) = t(v, u) for all u, v ∈ D(t),

• semibounded from below if t is symmetric and for some c ∈ R one has

t(u, u) ≥ −c‖u‖2 for all u ∈ D(t);

in this case we write t ≥ −c,

• closed if t ≥ −c and the domain D(t) with the scalar product

〈u, v〉t := t(u, v) + (c+ 1)〈u, v〉H

is a Hilbert space. It is an easy exercise to show that this property does not
depend on the particular choice of c.

For a symmetric form t we often use the shorthand notation:

t(u) := t(u, u).

Remark 1.57. (a) Any scalar product is a symmetric sesquilinear non-negative
form.

(b) From the linear algebra and the functional analysis is it known that a sym-
metric sesqulinear form t is uniquely determined by its “diagonal values” t(u) with
u ∈ D(t): for any u, v ∈ D(t) one has the polarization identity

t(u, v) =
4∑

k=1

ikt(u− ikv).

Remark 1.58. It is known from the functional analysis that if t is a symmetric
sesquilinear form with D(t) = H such that for some c > 0 there holds

|t(u, v)| ≤ c‖u‖H ‖v‖H for all u, v ∈ H,

then there exists a uniquely defined operator T = T ∗ ∈ L(H) such that

t(u, v) = 〈u, Tv〉H for all u, v ∈ H.

We are going to find an analogous result for more general sesqulinear forms.

Definition 1.59 (Operator generated by a closed form). Let t be a closed
sesquilinear form in H. The linear operator T in H generated by (or associated
with) the form t is defined by(

v ∈ D(T ) and f = Tv
)

iff v ∈ D(t) with t(u, v) = 〈u, f〉H for all u ∈ D(t).

The following proposition can be considered is an easy exercise (it shows that
Definition 1.59 is compatible with the respective construction involving bounded
operators as in Remark 1.58).
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Proposition 1.60. Let t be a closed sesquilinear form in H and T be the operator
generated by t. Furthermore, let B = B∗ ∈ L(H). Then

tB : (u, v) 7→ t(u, v) + 〈u,Bv〉H, D(tB) = D(t),

is a closed sesqulinear form, and the operator TB generated by tB is TB : u 7→ Tu+Bu
with D(TB) = D(T ).

The following result is of crucial importance for many subsequent examples and
computations. In fact, many operators we are going to study will be defined through
their sesquilinear forms.

Theorem 1.61. The operator T in Definition 1.59 is self-adjoint in H, and D(T )
is dense in D(t) with respect to 〈·, ·〉t.

Proof. We consider the case t ≥ 1, then 〈u, v〉t = t(u, v) and t(u, u) = ‖u‖2
t ≥

‖u‖2
H. (The general case easily follows by Proposition 1.60: exercise). Remark first

that for v ∈ D(T ) we have ‖v‖2
H ≤ t(v, v) = 〈v, Tv〉H ≤ ‖v‖H ‖Tv‖H and then

‖Tv‖H ≥ ‖v‖H, which shows that T is injective.
Now let us show that T : D(T )→ H is surjective. Let f ∈ H. For any u ∈ D(t)

one has ∣∣〈u, f〉H∣∣ ≤ ‖u‖H · ‖f‖H ≤ ‖f‖H‖u‖t.
Hence, D(t) 3 u 7→ 〈u, f〉H ∈ C is a continuous antilinear map, and by the Riesz
theorem there is v ∈ D(t) with 〈u, f〉H = 〈u, v〉t ≡ t(u, v) for all u ∈ D(t). By
definition this means that v ∈ D(T ) with f = Tv. This shows the surjectivity.

We further remark that for any u, v ∈ D(T ) we have, using the symmetry of t,

〈u, Tv〉H = t(u, v) = t(v, u) = 〈v, Tu〉H = 〈Tu, v〉H.

Therefore, T is symmetric, and then T−1 is symmetric as well (using the same ar-
gument as in Proposition 1.21). Hence, the operator T−1 is symmetric and defined
everywhere, hence, it is self-adjoint. Then T = (T−1)−1 is self-adjoint by Proposi-
tion 1.21.

To prove the remaining statement (density) let h ∈ D(t) with 〈v, h〉t = 0 for all
v ∈ D(T ), then we need to show that h = 0. Remark that by assumption we have

0 = 〈v, h〉t = t(v, h) = t(h, v) = 〈h, Tv〉H = 〈Tv, h〉H.

As the vectors Tv cover the whole of H as v runs through D(T ), one has h = 0.

Now let us give some “canonical” examples of operators defined by forms. We
will see them very often.

Example 1.62 (Free Laplacian revisited). Consider H = L2(Rd) and the form

t(u, v) =

∫
Rd
∇u · ∇v dx, D(t) = H1(Rd),
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which is clearly closed: in fact, t ≥ 0 and 〈·, ·〉t is exactly the H1-scalar product, and
H1(Rd) is complete. Let us find the associated operator T , which is already known
to be self-adjoint due to Theorem 1.61.

Let v ∈ D(T ) and f := Tv, then for any u ∈ H1(Rd) we have∫
Rd
∇u · ∇v dx =

∫
Rd
uf dx.

In particular, this equality holds for u ∈ C∞c (Rd) ⊂ H1(Rd), which gives∫
Rd
uf dx =

∫
Rd
∇u · ∇v dx for all u ∈ C∞c (Rd).

We now use the definition of weak derivatives:∫
Rd
∇u · ∇v dx =

d∑
j=1

∫
Rd
∂ju ∂j∇v dx = −

d∑
j=1

∫
Rd
∂2
ju v dx

=

∫
Rd

(
−

d∑
j=1

∂2
ju
)
v dx =

∫
Rd
−∆u v dx,

which means that f = −∆v ∈ L2(Rd) (weakly). Due to the global elliptic regularity
(Corollary 1.42) one obtains v ∈ H2(Rd), which means that T is a restriction of the
free Laplacian in Rd (see Definition 1.47). The maximality property of self-adjoint
operators implies that T is exactly the free Laplacian in Rd.

Example 1.63 (Neumann Laplacian). Let Ω ⊂ Rd and H = L2(Ω). Consider
the sesquilinear form

tN(u, v) =

∫
Ω

∇u · ∇v dx, D(t) = H1(Ω).

The form is closed due to the completeness of H1(Ω), and the associated self-adjoint
operator TN is called the Neumann Laplacian on Ω.

In order to understand TN in a better way, remark first that C∞c (Ω) ⊂ D(tN).
Therefore, if v ∈ D(TN) and f = TNv, then∫

Ω

∇u · ∇v dx =

∫
Ω

uf dx for all u ∈ C∞c (Ω),

and similarly to the preceding example one obtains f = −∆v, i.e. T acts as the
weak Laplacian.

Now assume that Ω has a “good” boundary such that the Gauss integral formula
is valid (for example, bounded, with C1 boundary). Let v ∈ C∞(Ω). As C∞(Ω) is
dense in H1(Ω), the inclusion v ∈ D(TN) is equivalent to the∫

Ω

∇u · ∇v dx =

∫
Ω

u(−∆v) dx for all u ∈ C∞(Ω). (1.15)
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The Gauss integral formula gives∫
Ω

u(−∆v) dx = −
∫
∂Ω

u ∂nv ds+

∫
Ω

∇u · ∇v dx,

and (1.15) is satisfied if and only if∫
∂Ω

u ∂nv ds = 0 for all u ∈ C∞c (Ω).

As this point we admit that the restrictions of functions from C∞c (Ω) form a dense
subset of L2(∂Ω) (which is an easy consequence of the Stone-Weierstrass theorem),
which then shows that for a function v ∈ C∞(Ω) one has the equivalence

v ∈ D(TN) ⇔ ∂nv = 0 on ∂Ω.

The condition ∂nv = 0 on ∂Ω is called the Neumann boundary condition.

For the next example we will introduce an additional class of Sobolev spaces:

Definition 1.64 (Spaces Hk
0 ). For a non-empty open set Ω ⊂ Rd and k ∈ N

define
Hk

0 (Ω) := the closure of C∞c (Ω) in Hk(Ω).

Example 1.65 (Dirichlet Laplacian: first attempt). Let Ω ⊂ Rd and H =
L2(Ω). Consider the sesquilinear form

tD(u, v) =

∫
Ω

∇u · ∇v dx, D(t) = H1
0 (Ω).

The form is closed due to the preceding definition of H1
0 (Ω), and the associated

self-adjoint operator TD is called the Dirichlet Laplacian on Ω. One shows again
that TD acts as v 7→ −∆v.

As C∞c (Ω) is dense in H1
0 (Ω), a function v ∈ H1

0 (Ω) belongs to D(TD) if and only
if one has ∫

Ω

∇u · ∇v dx =

∫
Ω

u(−∆v) dx = 0 for all u ∈ C∞c (Ω).

On the other hand, this condition is always satisfied due to the definition of the
weak derivatives. Therefore,

D(TD) = {v ∈ H1
0 (Ω) : ∆v ∈ L2(Ω)}, TDv = −∆v.

The problem with this equality is that it is not very informative: the structure
of the set on the right-hand side remains unclear. For example: which functions
v ∈ C∞(Ω) belong to H1

0 (Ω)? This will be answered below.

Remark 1.66. For some Ω one has H1
0 (Ω) = H1(Ω), for example for Ω = Rd

(Proposition 1.43), in that case the Dirichlet and Neumann Laplacians coincide.
Now we are going to discuss cases with H1

0 (Ω) 6= H1(Ω).
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Proposition 1.67. Let Ω ⊂ Rd be an open set. For a function u : Ω→ C we denote
by ũ its extension by zero to the whole of Rd. Then

Hk
0 (Ω) ⊂

{
u ∈ Hk(Ω) : ũ ∈ Hk(Rd)}. (1.16)

Proof. Let L be the set on the right-hand side of (1.16). Remark that if u ∈ L,
then ‖u‖Hk(Ω) = ‖ũ‖Hk(Rd) as ũ and all its derivatives are zero outside Ω. One has
the obvious inclusion C∞c (Ω) ⊂ L. Let u ∈ Hk

0 (Ω), then there exist (ϕn) ⊂ C∞c (Ω)
with ‖u− ϕn‖Hk(Ω)

n→∞→ 0. In particular, ϕn converge to u in L2(Ω). On the other
hand, for any ϕ ∈ C∞c (Ω) one has ϕ̃ ∈ C∞c (Rd) with ‖ϕ̃‖Hk(Rd) = ‖ϕ‖Hk(Ω). It
follows that (ϕ̃n) is a Cauchy sequence in Hk(Rd) and ϕ̃n converges in Hk(Rd) to
some g ∈ Hk(Rd). One has∫

Ω

|ϕn − g|2 dx =

∫
Ω

|ϕ̃n − g|2 dx ≤
∫
Rd
|ϕ̃n − g|2 dx ≤ ‖ϕ̃n − g‖2

Hk(Rd) → 0,

and due to the uniqueness of the limit one has g = f a.e. in Ω. Similarly,∫
ΩC

|g|2 dx =

∫
ΩC

|ϕ̃n − g|2 dx ≤
∫ d

R
|ϕ̃n − g|2 dx ≤ ‖ϕ̃n − g‖2

Hk(Rd) → 0,

which shows that g = 0 a.e. in ΩC. Therefore, g = ũ. As g ∈ Hk(Rd), one has the
inclusion Hk

0 (Ω) ⊂ L.

Remark that the above proof holds for any open Ω. Unter additional assumption
one can prove the reverse inclusion, which leads to the following assertion:

Proposition 1.68. If Ω ⊂ Rd is a bounded open set with Lipschitz boundary, then
the inclusion (1.16) becomes an equality.

Proof idea. Let L be the set on the right-hand side of (1.16). In view of Proposition
1.67 one needs to show L ⊂ Hk

0 (Ω).
Assume first that Ω has a special shape: if (r, θ) are the standard polar coordi-

nates in Rd, then

Ω = {(r, θ) : r < h(θ)}, h : Sd−1 → (0,∞) continuous. (1.17)

Let t > 0, then one easily shows that the linear map Φt : Hk(Rd) → Hk(Rd) given
by Φtu(x) = u

(
(1 + t)x

)
satisfies Φtu → u as t → 0+ for any u ∈ Hk(Rd). Now

let u ∈ L. Pick ε > 0 and find first some t > 0 such that ‖Φtũ − ũ‖Hk(Rd) < ε.
Remark that ũ = 0 outside Ω, hence, Φtũ = 0 outside (1 + t)−1Ω. In particular,
there is a compact subset K ⊂ Ω such that Φtũ = 0 outside K. Then we consider
vδ := ρδ ?(Φtũ): for sufficiently small δ one has v ∈ C∞c (Ω) and ‖vδ−Φtũ‖Hk(Rd) < ε.
Then ‖u− vδ‖Hk(Ω) = ‖ũ− vδ‖Hk(Rd) ≤ ‖Φtũ− ũ‖Hk(Rd) + ‖vδ−Φtũ‖Hk(Rd) < 2ε. As
ε > 0 is arbitrary, we obtain u ∈ H1

0 (Ω), which shows the inclusion L ⊂ Hk
0 (Ω) for

Ω as in (1.17).
General Ω are handled using partitions of unity. One covers ∂Ω by balls Bj,

j ∈ {1, . . . , n}, such that Ω ∩ Bj as in (1.17) (the Lipschitz conidition is important
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for this part of construction). Then there exists a subordinated partition of unity,
i.e. functions χj ∈ C∞c (Rd), j ∈ {0, . . . , n}, such that suppχ0 ⊂ Ω and suppχj ⊂ Bj

for j ≥ 1, and
∑

j χj = 1 in Ω. If u ∈ L, then using the first part of the argument

one shows that χju ∈ Hk
0 (Ω) for each j. Taking the sum over j one shows that

u ∈ H1
0 (Ω). This shows the inclusion L ⊂ Hk

0 (Ω) for Ω with bounded Lipschitz
boundaries.

Remark 1.69 (Dirichlet Laplacian: second attempt). Let Ω ⊂ Rd be a
bounded open set with a C1 boundary (so that the Gauss integral formula is valid).
Let u ∈ C∞(Ω), then u ∈ H1

0 (Ω) if and only if ∂jũ ∈ L2(Ω) for any j ∈ {1, . . . , d}
(Proposition 1.67). Due to the definition of weak derivatives this is equivalent to
the existence of gj ∈ L2(Rd) such that∫

Ω

u ∂jϕ dx ≡
∫
Rd
ũ ∂jϕ dx = −

∫
Rd
gjϕ dx.

Using the integration by parts on the left-hand side one obtains, with n being the
outer unit normal on ∂Ω,

−
∫

Ω

∂juϕ dx+

∫
∂Ω

njuϕ ds = −
∫

Ω

gjϕj dx−
∫

ΩC

gjϕj dx

for all ϕ ∈ C∞c (Rd) and all j ∈ N. Taking ϕ supported in the interior of the exterior
of Ω one sees that gj = ∂ju in Ω and gj = 0 in ΩC, and the above conditions holds
if and only if ∫

∂Ω

njuϕ ds = 0

for all ϕ ∈ C∞c (Rd) and all j ∈ N, i.e. if u = 0 on ∂Ω.
Therefore, for Ω as above and u ∈ C∞(Ω) one has the equivalence

u ∈ H1
0 (Ω) ⇔ u = 0 on ∂Ω.

In particular, for the Dirichlet Laplacian TD in Ω one has

C∞(Ω) ∩D(TD) = {u ∈ C∞(Ω) : u = 0 on ∂Ω}.

From the proof it is seen that the same conclusion holds for a larger class of domains,
for example, for polyhedra (as the Gauss integral formula still holds).

Remark 1.70. In the two above examples (Dirichlet and Neumann Laplacians) we
see several important features of forms and associated operators:

• Closed sesquilinear forms do not have the maximality property, i.e. a closed
sesquilinear form have can a closed extension with a strictly larger domain,

• The fact that one closed form extends another closed form does not imply the
same relation for the associated operators.
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Remark 1.71. If Ω ⊂ Rd is bounded with C∞ boundary, then with the help of
advanced methods (elliptic regularity at the boundary, which is almost never cov-
ered during the university studies) one can show that the domains of the Neumann
Laplacian TN and the Dirichlet Laplacian TD on Ω are

D(TN) = {u ∈ H2(Ω) : ∂nu|∂Ω = 0},
D(TD) = H2(Ω) ∩H1

0 (Ω) = {u ∈ H2(Ω) : u|∂Ω = 0},

while u|∂Ω and ∂nu|∂Ω are the so-called traces defined in a special way (pointwise
definition for functions smooth up to boundary, then extension by density) as func-
tions in L2(∂Ω). This description is important in some cases, but it will not be used
in this course. Remark that the description fails for non-smooth boundaries (there
are simple examples in which the domains are not contained in H2).

1.7 Semibounded operators

For what follows we will need an additional notion:

Definition 1.72 (Closable form). A symmetric sesquilinear form t is called clos-
able, if there exists a closed sesquilinear form extending t. The closed sesquilinear
form extending t and having the smallest domain is called the closure of t and
denoted t.

Proposition 1.73 (Criterion of closability). A lower semibounded sesquilinear
form t in H is closable if and only if

for any sequence (wn) ⊂ D(t) with wn
n→∞−→ 0 in H and

t(wm − wn)
m,n→∞−→ 0 there holds limn→∞ t(wn) = 0.

(1.18)

If this condition is satisfied, then D(t) is the completion of D(t) with respect to
‖ · ‖t and t is the extension of t by continuity.

Proof. It follows from the definitions that:

• a lower semibounded sequilinear form t is closed if and only if the conditions

un ∈ D(t), un
n→∞−→ u in H, t(um − un)

m,n→∞−→ 0,

imply u ∈ D(t) with t(u) = limn t(un),

• a symmetric lower semibounded sesquilinear form t is closable if and only if
for any two sequences (un), (vn) ⊂ D(t) such that

un − vn
n→∞−→ 0 in H, t(um − un)

m,n→∞−→ 0, t(vm − vn)
m,n→∞−→ 0 (1.19)

there holds limn→∞ t(un) = limn→∞ t(vn).
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Assume that t is closable. Let (wn) ⊂ D(t) such that wn
n→∞−→ 0 in H and

t(wm − wn)
m,n→∞−→ 0. The sequences un := wn and vn := 0 satify (1.19), therefore,

lim
n→∞

t(wn) = lim
n→∞

t(un) = lim
n→∞

t(vn) = lim
n→∞

t(0) = lim
n→∞

0 = 0.

This shows that (1.18) is satisfied.
Now let t satisfy (1.18). Let (un), (vn) ⊂ D(t) be two sequences obey-

ing (1.19). We need to show that limn→∞ t(un) = limn→∞ t(vn), which is equivalent
to limn→∞ ‖un‖t = limn→∞ ‖vn‖t. For wn := un − vn one has wn → 0 in H and

‖wm − wn‖t = ‖um − vm − un + vn‖t ≤ ‖um − un‖t + ‖vm − vn‖t
m,n→∞−→ 0.

Therefore, the sequence (wn) satisfies (1.18), and one obtains with the help of the
triangle inequality

∣∣‖un‖t − ‖vn‖t∣∣ ≤ ‖un − vn‖t = ‖wn‖t → 0. Hence, t is closable.
The last assertion is an easy exercise.

Example 1.74 (Non-closable form). Take H = L2(R) and consider the form
t(u, v) = u(0)v(0) defined on D(t) = L2(R) ∩ C0(R). This form is densely defined,
symmetric, with t ≥ 0.

Take any u ∈ D(t) such that u(0) = 1 and consider un : x 7→ u(nx) for n ∈ N,
then (un) ⊂ D(t) with un(0) = 1 and we have

‖un‖L2(R) → 0, t(un − um) ≡ 0,

but t(un) ≡ 1. Proposition 1.73 shows that t is not closable.

We now arrive at a canonical construction of self-adjoint operators, which will
allow us to associate self-adjoint operators with some differential expressions having
non-smooth coefficients.

Definition 1.75 (Semibounded operator). A symmetric operator T in H is
called semibounded from below if there exists a constant c ∈ R such that

〈u, Tu〉 ≥ −c〈u, u〉H for all u ∈ D(T ),

and in this will be written as T ≥ −c.

Proposition 1.76. Let T be a symmetric, densely defined, semibounded from below
linear operator in H, then the induced sesquilinear form t in H given by

t(u, v) := 〈u, Tv〉, D(t) := D(T ), (1.20)

is semibounded from below and closable.

Proof. The semiboundedness of t is clear. To show the closability we remark that
without loss of generality one can assume T ≥ 1 (the general case is reduced to this
one: easy exercise), then ‖u‖2

t = t(u, u) ≥ ‖u‖2
H.

Let (un) ⊂ D(t) be ‖·‖t-Cauchy un → 0 inH. By Proposition 1.3 we need to show
that lim ‖un‖t = 0. Due to

∣∣‖un‖t − ‖um‖t∣∣ ≤ ‖un − um‖t the real-valued sequence
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‖un‖t is Cauchy in [0,∞), hence, there exists the limit lim ‖un‖t = α ∈ [0,∞). We
suppose that α > 0 and try to arrive at a contradiction.

We have t(un, um) = t(un, un)+t(un, um−un). By the Cauchy-Schwarz inequality
for 〈·, ·〉t we also have

∣∣t(un, um − un)
∣∣ ≤ ‖un‖t‖um − un‖t. Recall that ‖um − un‖t

goes to zero for large m,n and that ‖un‖t converges to α, in particular, is bounded.
We conclude that for any ε > 0 there exists N > 0 such that

∣∣t(un, um) − α2
∣∣ ≤ ε

for all n,m > N . Take ε = 1
2
α2 and the associated N , then for n,m > N we have∣∣〈un, Tum〉∣∣ ≡ ∣∣t(un, um)

∣∣ ≥ 1
2
α2. On the other hand, the term on the left-hand side

goes to 0 as n → ∞ (as un converges to 0 in H by assumption). So we obtain a
contradiction, and the assertion is proved.

Definition 1.77 (Friedrichs extension). Let T be a densely defined lower semi-
bounded linear operator inH. Define a sesquilinear form t by (1.20). The self-adjoint
operator TF generated by its closure t is called the Friedrichs extension of T .

Corollary 1.78. Any densely defined lower semibounded linear operator has a self-
adjoint extension.

Remark 1.79 (Form domain). If T is a self-adjoint operator semibounded from
below, then it is the Friedrichs extension of itself. The domain of the associated form
t is usually called the form domain of T and is denoted Q(T ). The form domain
plays an important role in the analysis of self-adjoint operators, in particular, in the
variational characterization of eigenvalues using the min-max principle, which will
be a central point later.

Example 1.80 (Schrödinger operators). A basic example for the Friedrichs
extension is delivered by Schrödinger operators with lower semibounded potentials.

Let H := L2(Rd) and let V ∈ L2
loc(Rd) and V ≥ −C for some C ∈ R (i.e. V is

real-valued and semibounded from below). In H = L2(Rd) consider the operator T
acting as

T : u 7→ −∆u+ V u, D(T ) = C∞c (Rd).

For any u, v ∈ D(T ) there holds

t(u, v) := 〈u, Tv〉 =

∫
Rd
u(−∆v) dx+

∫
Rd
V uv dx =

∫
Rd
∇u · ∇v dx+

∫
Rd
V uv dx,

〈u, Tu〉 =

∫
Rd
|∇u|2 dx+

∫
Rd
V |u|2 dx ≥ −C

∫
Rd
|u|2 dx = −C‖u‖2

H.

The Friedrichs extension TF of T will be called the Schrödinger operator with po-
tential V . One can show (using standard truncations and convolutions with ∗ρδ)
that

D(t) = H1
V (Rd) :=

{
u ∈ H1(Rd) :

√
|V |u ∈ L2(Rd)

}
and that t is given by the same expression as t.

Let us extend the above example by including a class of potentials V which
are not semibounded from below. This will be done using the following classical
inequality.
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Proposition 1.81 (Hardy inequality). Let d ≥ 3 and u ∈ C∞c (Rd), then∫
Rd

∣∣∇u(x)
∣∣2 dx ≥ (d− 2)2

4

∫
Rd

∣∣u(x)
∣∣2

|x|2
dx.

Proof. For any γ ∈ R one has∫
Rd

∣∣∣∇u(x) + γ
xu(x)

|x|2
∣∣∣2 dx ≥ 0,

which may be rewritten in the form∫
Rd

∣∣∇u(x)
∣∣2 dx+ γ2

∫
Rd

∣∣u(x)
∣∣2

|x|2
dx

≥ −γ
∫
Rd

[
x · ∇u(x)

u(x)

|x|2
+ x · ∇u(x)

u(x)

|x|2

]
dx. (1.21)

Using the identities

∇|u|2 ≡ ∇(uu) = u∇u+ u∇u, div
x

|x|2
=
d− 2

|x|2
,

and the integration by parts we obtain∫
Rd

[
x · ∇u(x)

u(x)

|x|2
+ x · ∇u(x)

u(x)

|x|2

]
dx =

∫
Rd
∇
∣∣u(x)

∣∣2 · x

|x|2
dx

= −
∫
Rd

∣∣u(x)
∣∣2 div

x

|x|2
dx = −(d− 2)

∫
Rd

∣∣u(x)
∣∣2

|x|2
dx.

Inserting this equality into (1.21) gives∫
Rd

∣∣∇u(x)
∣∣2 dx ≥ γ

(
(d− 2)− γ

) ∫
Rd

∣∣u(x)
∣∣2

|x|2
dx.

We optimize the coefficient on the right-hand side by taking γ = (d − 2)/2, which
gives the claim.

Note that the integral on the right-hand side of the Hardy inequality is not
defined for d ≤ 2, because the function x 7→ |x|−2 is not integrable anymore.

By combining the Hardy inequality with the constructions of Example 1.80 one
easily shows the following result:

Corollary 1.82. Let d ≥ 3 and V ∈ L2
loc(Rd) be real-valued such that for some

C ∈ R and a.e. x ∈ Rd one has

V (x) ≥ −C − (d− 2)2

4|x|2
,

then the operator T = −∆ + V defined on C∞c (Rd) is semibounded from below and,
hence, has a self-adjoint extension (Friedrichs extension).
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Example 1.83 (Coulomb potential). We would like to show that the operator

T = −∆ +
q

|x|

in L2(R3) is semibounded from below for any real q. The operator is of importance
in quantum physics, the potential x 7→ q/|x| is referred to as the Coulomb potential
of charge q placed at the origin. For q ≥ 0 we are in the situation of Example 1.80
(the potential is ≥ 0).

If q < 0, we estimate with any p > 0

|q|
|x|

= |q|
(
p · 1

p|x|

)
≤ |q| 1

2

(
p2 +

1

p2|x|2
)

=
|q|p2

2
+

|q|
2p2|x|2

,

and for for p =
√
|q|/8 one obtains one obtains

q

|x|
= −|q|
|x|
≥ −|q|

2

16
− 1

4|x|2
,

which is covered by Corollary 1.82.
Therefore, for any q ∈ R the above operator T has a self-adjoint extension

(Friedrichs extension). We will see later that this self-adjoint extension is unique.

Remark 1.84. The questions addressed in this chapter are non-trivial in the sense
that there exist symmetric operators having no self-adjoint extensions. For example,
the operator

T : u 7→ iu′, D(T ) = H1
0 (0,∞),

is symmetric in H = L2(0,∞), while its adjoint

T ∗ : u 7→ iu′, D(T ∗) = H1(0,∞),

is not symmetric. Any self-adjoint extensions S of T must obey T ⊂ S ⊂ T ∗, but
one easily checks that T ∗ is the unique closed extension of T .
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2 Spectrum and resolvent

In this section we collect first definitions concerning the spectrum. Some of them
are supposed to be known the functional analysis course when applied to bounded
operators. Nevertheless, we reinterpret these notions from the point of view of
unbounded operators and see some new aspects.

2.1 Definitions and examples

Definition 2.1 (Resolvent set, spectrum, point spectrum). Let T be a linear
operator in a Hilbert space H.

• The resolvent set resT consists of the complex numbers z for which the oper-
ator T − z : D(T ) 3 u 7→ Tu− zu ∈ H is bijective and the inverse (T − z)−1

is bounded.

• The spectrum specT is defined by specT := C \ resT .

• The point spectrum specp T is defined as the set of the eigenvalues of T .

Note that very often the resolvent set and the spectrum of T are denoted by
ρ(T ) and σ(T ), respectively.

Proposition 2.2. If resT 6= ∅, then T is a closed operator.

Proof. Let z ∈ resT , then gr(T − z)−1 is closed by the closed graph theorem, but
then the graph of T − z is also closed, as gr(T − z) and gr(T − z)−1 are isometric in
H×H.

Proposition 2.3. For a closed operator T one has the following equivalence:

z ∈ resT iff

{
ker(T − z) = {0},
ran(T − z) = H.

Proof. The ⇒ direction follows from the definition.
Now let T be closed and z ∈ C with ker(T − z) = {0} and ran(T − z) = H. The

inverse (T − z)−1 is then defined everywhere and has a closed graph (as the graph
of T − z is closed), and is then bounded by the closed graph theorem.

Theorem 2.4 (Properties of the resolvent). The resolvent set resT is always
open (hence, the spectrum specT is always closed). The operator function

resT 3 z 7→ RT (z) := (T − z)−1 ∈ B(H)

is called the resolvent of T . It is holomorphic and satisfies the identities

RT (z1)−RT (z2) = (z1 − z2)RT (z1)RT (z2), (2.1)

RT (z1)RT (z2) = RT (z2)RT (z1), (2.2)

d

dz
RT (z) = RT (z)2 (2.3)

for all z, z1, z2 ∈ resT .

35



Proof. Let z0 ∈ resT . On D(T ) we have the equality

T − z =
(
I − (z − z0)RT (z0)

)
(T − z0). (2.4)

Let |z − z0| < 1/‖RT (z0)‖, then the bounded operator I − (z − z0)RT (z0) : H → H
is bijective and has bounded inverse

(
I − (z − z0)RT (z0)

)−1
=
∞∑
j=0

(z − z0)jRT (z0)j.

Then the operator on the right-hand side of (2.4) is bijective and has a bounded
inverse too, which means that z ∈ resT , and

RT (z) = RT (z0)
(
I − (z − z0)RT (z0)

)−1
=
∞∑
j=0

(z − z0)jRT (z0)j+1, (2.5)

which shows that RT is holomorphic.
If z1, z2 ∈ resT , then for any u ∈ D(T ) one has (T−z2)u = (T−z1)u+(z1−z2)u.

Let v ∈ H and u := RT (z1)v, then (T − z2)RT (z1)v = v + (z1 − z2)RT (z1)v. If one
applies RT (z2) on the both sides, one arrives at

RT (z1)v = RT (z2)v + (z1 − z2)RT (z2)RT (z1)v.

As v ∈ H is arbitrary and the final expression is symmetric with respect to z1 ↔ z2,
this shows (2.1) and (2.2). For z1 6= z2 we rewrite the last identity as

RT (z1)−RT (z2)

z1 − z2

= RT (z2)RT (z1),

and for z1 → z2 one arrives at (2.3).

We first make a general remark concerning the computation of the spectrum.

Proposition 2.5 (Weyl sequences). Let λ ∈ C and (un) ⊂ D(T ) with un 6= 0
such that

εn :=
‖(T − λ)un‖
‖un‖

n→∞−→ 0,

(such a sequence (un) is called a Weyl sequence for λ), then λ ∈ specT .

Proof. If T −λ is not injective, then λ ∈ specT automatically. If T −λ in injective,
then εn > 0 for all, and for vn := (T − λ)−1un one has ‖(T − λ)−1vn‖ = ε−1

n ‖vn‖,
which means that ‖(T − λ)−1‖ ≥ ε−1

n , and (T − λ)−1 cannot be bounded.

Example 2.6. Let (X,µ) be a measure space such that for any A ⊂ X with
0 < µ(A) ≤ ∞ there exists A0 ⊂ A with 0 < µ(A0) < ∞. Let f : X → C be a
measurable function defined almost everywhere, then the operator

Mf : u 7→ fu, D(Mf ) :=
{
u ∈ L2(X,µ) : fu ∈ L2(X,µ)}
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is closed in H := L2(X,µ). The essential range of f is defined by

ess ran f =
{
λ ∈ C : µ

{
x : |f(x)− λ| < ε

}
> 0 for all ε > 0

}
.

Remark that ess ran f = ess ran g if f = g a.e. One can easily check that if X ⊂ Rd

is an open set, µ is the Lebesgue measure and f is a continuous function, then the
essential range of f coincides with the closure of the usual range of f .

Proposition 2.7 (Spectrum of the multiplication operator). There holds

specMf = ess ran f, specpMf =
{
λ : µ{x : f(x) = λ} > 0

}
.

Proof. Let λ /∈ ess ran f , the for some ε > 0 there holds |f(x) − λ| > ε for a.e.
x ∈ X, then 1/(f − λ) is defined almost everywhere and essentially bounded (i.e.
coincides a.e. with a bounded function), and then the operator M1/(f−λ) is bounded,
and one easily checks that this is the inverse for Mf − λ. On the other hand, let

λ ∈ ess ran f . For any m ∈ N denote S̃m :=
{
x : |f(x)−λ| < 2−m

}
, then µ(S̃m) > 0,

and by the assumptions there is a subset Sm ⊂ S̃m with 0 < µ(Sm) < ∞. If φm is
the indicator function of Sm, then one has∥∥(Mf − λ)φm

∥∥2
=

∫
Sm

∣∣f(x)− λ
∣∣2∣∣φm(x)

∣∣2dx ≤ 2−2m
∥∥φm∥∥2

.

Hence, (φm) is a Weyl sequence for λ, and λ ∈ specMf (Prop. 2.5).
To prove the second assertion we remark that the condition λ ∈ specpMf is

equivalent to the existence of φ ∈ L2(X,µ) such that
(
f(x)− λ

)
φ(x) = 0 for a.e. x.

This means that φ(x) = 0 for a.e. x with f(x) 6= λ. If µ{x : f(x) = λ} = 0, then
φ = 0 a.e., and λ /∈ specpMf . On the other hand, if µ{x : f(x) = λ} > 0, one can
choose a subset Σ ⊂ {x : f(x) = λ} of a strictly positive finite measure, then the
indicator function φ of Σ is an eigenfunction of Mf for the eigenvalue λ.

It can be shown that the spectrum is invariant under unitary transformations
(exercise):

Proposition 2.8 (Spectrum and unitary equivalence). Let two operators A
an B be unitarily equivalent, then specA = specB and specp A = specpB. The
resolvents of A and B are also unitarily equivalent.

Example 2.9 (Spectrum of the free Laplacian). Let T be the free Lapla-
cian in Rd (see Definition 1.47). As seen above, T is unitarily equivalent to the
multiplication operator f(p) 7→ |p|2f(p) in L2(Rd), i.e. to the multiplication oper-
ator Mh in L2(Rd) with h : p 7→ |p|2. One has ess ranh = [0,∞), while the set
{p ∈ Rd : h(p) = λ} has zero measure for any λ. By combining Propositions 2.7 and
2.8 we obtain

specT = [0,+∞), specp T = ∅.
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Example 2.10 (Spectrum of discrete multiplication operators). Take H =
`2(Z). Consider an aribtrary function a : Z → C, n 7→ an, and the associated
operator T :

D(T ) =
{

(ξn) ∈ `2(Z) : (anξn) ∈ `2(Z)
}
, (Tξ)n = anξn.

Remark that `2(Z) can be viewed as L2(Z, µ) with the discrete measure µ given by
µ(X) = #X. Then T = Ma (the operator of multiplication by a), and one easily
checks that

specT := {an : n ∈ Z} ≡ ess ran a, specp T := {an : n ∈ Z}.

It is clear that all constructions also hold if one replaces Z by N.

Example 2.11 (Spectrum and orthonormal eigenbases). Let T be a self-
adjoint operator in H such that there exists an orthonormal basis of eigenfunctions
(ϕn)n∈N, with Tϕn = anϕn.

Consider the unitary map U : H → `2(N), (Uf)(n) = 〈ϕn, f〉, then the unitarily
equivalent operator A := UTU−1 is the operator of multiplication by (an) as in
Example 2.10. It follows that the spectrum is given by the same expressions, i.e.

specT := {an : n ∈ N} ≡ ess ran a, specp T := {an : n ∈ N}.

Example 2.12 (Harmonic oscillator). Let H = L2(R). Consider the operator
T = −d2/dx2 +x2 defined on C∞c (R). We have seen (Exercise 4) that T is essentially
self-adjoint and that its closure S := T has an orthonormal basis of eigenfunctions
with simple eigenvalues (2n − 1), n ∈ N. Then the constructions of Example 2.11
show that

specS = specp S = {2n− 1 : n ∈ N}.

Example 2.13 (Empty spectrum). Let T0 be the linear operator inH := L2(0, 1)
given as T0f = f ′ on the domain D(T0) =

{
f ∈ C1

(
[0, 1]

)
: f(0) = 0

}
.

For any z ∈ C and any g ∈ C0([0, 1]) there exists a unique f ∈ D(T0) with
(T0 − z)f = g, i.e. f is the solution of the initial value problem

f ′ − zf = g, f(0) = 0.

In fact, this f is explicitly given by

f(x) =

∫ x

0

ez(x−t)g(t) dt.

Now let z ∈ C and consider the linear operator Az : H → H,

Azg(x) =

∫ x

0

ez(x−t)g(t) dt,

which is clearly continuous. It is also injective, which can be seen as follows. Let
Azg = 0, then the function g̃ : t 7→ e−ztg(t) is orthogonal to the indicator functions
of (0, x) for all x and, as a consequence, to the indicator functions of all subintervals
of (0, 1). Hence g̃ = 0 a.e., and then g̃ = 0 a.e.

The above constructions show that:
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• T0 : D(T0)→ C0([0, 1]) is bijective,

• Az : C0([0, 1])→ D(T0) is bijective,

• (T0 − z)Azg = g for any g ∈ C0([0, 1]),

• Az(T0 − z)f = f for any f ∈ D(T0).

It follows that T0 − z = A−1
z on D(T0), and by taking the closure we see that the

operator T := T 0 is defined on ranAz and satisfies T − z = A−1
z for any z ∈ C, i.e.

(T − z)−1 = Az ∈ B(H). Therefore, resT = C and specT = ∅.

Example 2.14 (Empty resolvent set). Let us modify the previous example.
Take H = L2(0, 1) and consider the operator T acting as Tf = f ′ on the domain
D(T ) = H1(0, 1). Now for any z ∈ C we see that the function φz(x) = ezx belongs
to D(T ) and satisfies (T − z)φz = 0. Therefore, specp T = specT = C.

As we can see in the two last examples, for general operators one cannot say much
on the location of the spectrum. In what follows we will study mostly self-adjoint
operators, whose spectral theory is understood much better.
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2.2 Spectra of self-adjoint operators

The following proposition is certainly already known, but we include the proof for
completeness:

Proposition 2.15 (Spectrum of a continuous operator). Let T ∈ B(H), then
specT is a non-empty subset of

{
z ∈ C : |z| ≤ ‖T‖

}
.

Proof. Let z ∈ C with |z| > ‖T‖. Represent T − z = −z(1− T/z). As ‖T/z‖ < 1,
the inverse to T − z is defined by the series,

(T − z)−1 = −z
∞∑
n=0

(T
z

)n
≡ −

∞∑
n=0

T nz1−n. (2.6)

and z ∈ resT . This implies the sought inclusion.
Let us show that the spectrum is non-empty. Assume that it is not the case.

Then for any f, g ∈ H the function C 3 z 7→ F (z) := 〈f,RT (z)g〉 ∈ C is holomorphic
in C by Theorem 2.4. On the other hand, it follows from the series representation
(2.6) that for large z the norm of RT (z) tends to zero. It follows that F (z) → 0
as |z| → ∞ and that F is bounded. By Liouville’s theorem, F is constant, and,
moreover, F (z) = lim|z|→+∞ F (z) = 0. Therefore, 〈f,RT (z)g〉 = 0 for all z ∈ C
and f, g ∈ H, which means that RT (z) = 0. This contradicts the definition of the
resolvent and shows that the spectrum of T must be non-empty.

We will also need the following relations betwen operators and their adjoints:

Proposition 2.16. Let T be a densely defined linear operator and z ∈ C, then

ker(T ∗ − z) = ran(T − z)⊥, (2.7)

ran(T − z) = ker(T ∗ − z)⊥. (2.8)

Proof. Note that the second equality can be obtained from the first one by taking
the orthogonal complement in the both parts. Let us prove the first equality. As
D(T ) is dense, the condition f ∈ ker(T ∗ − z) is equivalent to 〈(T ∗ − z)f, g〉 = 0 for
all g ∈ D(T ), which can be also rewritten as 〈T ∗f, g〉 = z〈f, g〉 for all g ∈ D(T ). By
the definition of T ∗, one has 〈T ∗f, g〉 = 〈f, Tg〉 and

〈f, Tg〉 − z〈f, g〉 ≡ 〈f, (T − z)g〉 = 0 for all g ∈ D(T ),

which is equivalent to f ⊥ ran(T − z).

Now we pass to the discussion of the spectra of self-adjoint operators, and we
are going to show the following fundamental fact:

Theorem 2.17 (Spectrum of a self-adjoint operator). The spectrum of a self-
adjoint operator in a Hilbert space is a non-empty closed subset of the real line.

Proof. We have already shown that the spectrum is closed (Theorem 2.4). In
Lemma 2.18 below we prove that the spectrum is real, and in Lemma 2.22 we prove
that it is non-empty.
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The proof will be decomposed in several steps:

Lemma 2.18 (Spectrum of a self-adjoint operator is real). Let T be a self-
adjoint operator in a Hilbert space H, then specT ⊂ R, and for any z ∈ C \R there
holds ∥∥(T − z)−1

∥∥ ≤ 1

|=z|
. (2.9)

Proof. Let z ∈ C \ R and u ∈ D(T ), then

〈u, (T − z)u〉 = 〈u, Tu〉 − <z〈u, u〉 − i=z〈u, u〉.

As T is self-adjoint, the number 〈u, Tu〉 is real. Therefore,

|=z| ‖u‖2 = |=〈u, (T − z)u〉| ≤
∣∣〈u, (T − z)u〉

∣∣ ≤ ∥∥(T − z)u
∥∥ · ‖u‖,

which shows that ∥∥(T − z)u
∥∥ ≥ |=z| · ‖u‖. (2.10)

It follows from here that ran(T − z) is closed, that ker(T − z) = {0}. Proposition
2.16 implies ran(T − z) = H. Therefore, (T − z)−1 ∈ B(H), and the estimate (2.9)
follows from (2.10).

Lemma 2.19 (Spectral edges for continuous self-adjoint operators). Let T
be a continuous self-adjoint operator in a Hilbert H. Denote

m = m(T ) = inf
u6=0

〈u, Tu〉
〈u, u〉

, M = M(T ) = sup
u6=0

〈u, Tu〉
〈u, u〉

,

then specT ⊂ [m,M ] and {m,M} ⊂ specT .

Proof. We proved already that specT ⊂ R. For λ ∈ (M,+∞) we have

‖u‖ · ‖(T − λ)u‖ ≥
∣∣〈u, (λ− T )u〉

∣∣ ≥ (λ−M)‖u‖2,

i.e. ‖(T − λ)u‖ ≥ (λ−M)−1‖u‖. It follows that ker(T − λ) = {0}, that ran(T − λ)
is closed, and due to ran(T −λ)⊥ = ker(T −λ), is dense. Hence, (T −λ)−1 ∈ B(H).
In the same way one shows that specT ∩ (−∞,m) = ∅.

Let us show that M ∈ specT (for m the proof is similar). Using the Cauchy-
Schwarz inequality for the semi-scalar product (u, v) 7→ 〈u, (M − T )v〉 we obtain∣∣〈u, (M − T )v〉

∣∣2 ≤ 〈u, (M − T )u〉 · 〈v, (M − T )v〉.

Taking the supremum over all u ∈ H with ‖u‖ ≤ 1 we arrive at∥∥(M − T )v
∥∥2 ≤ ‖M − T‖ ·

〈
v, (M − T )v

〉
.

By assumption, for some (un) with ‖un‖ = 1 one has 〈un, Tun〉 → M = M〈u, u〉 as
n→∞. By the above inequality we have then (M − T )un → 0, i.e. (un) is a Weyl
sequence for M , and M ∈ specT (Prop. 2.5).
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Lemma 2.20. If T is a continuous self-adjoint operator with specT = {0}, then
T = 0.

Proof. By Lemma 2.19 we have m(T ) = M(T ) = 0. This means that 〈x, Tx〉 = 0
for all x ∈ H, and the polar identity shows that 〈x, Ty〉 = 0 for all x, y ∈ H.

Remark 2.21. If T is not self-adjoint, then specT = {0} does not imply that T = 0.
A simple example is given by

H := C2, T =

(
0 1
0 0

)
.

Lemma 2.22. The spectrum of a self-adjoint operator in a Hilbert space is non-
empty.

Proof. Let T be a self-adjoint operator in a Hilbert space H. By contradiction,
assume that specT = ∅. Then T−1 ∈ B(H). Let λ ∈ C \ {0}, then 1/λ ∈ resT , the
operator

Lλ := −T
λ

(
T − 1

λ

)−1

≡ −1

λ
− 1

λ2

(
T − 1

λ

)−1

is continuous. Furthermore,

(T−1 − λ) = −λ
(
T − 1

λ

)
T−1 = −λT−1

(
T − 1

λ

)
,

which shows that (T−1 − λ)Lλ = IdH = Lλ(T
−1 − λ). Therefore, λ ∈ res(T−1).

It follows that all λ 6= 0 belong to res(T−1), hence, spec(T−1) ⊂ {0}. As T−1 is
bounded, its spectrum is non-empty, hence, specT−1 = {0}. On the other hand, T−1

is self-adjoint by Proposition 1.21, and T−1 = 0 by Corollary 2.20, which contradicts
the definition of the inverse operator.

For further references we also mention the following result (the proof is a minor
modification of the proof of Theorem 1.61 and will be discussed as an exercise):

Theorem 2.23 (Spectrum of a semibounded self-adjoint operator). Let T
be self-adjoint lower semibounded linear operator. Denote

m := inf
x∈D(T ), x 6=0

〈x, Tx〉
〈x, x〉

.

Then m = inf specT .

Proof. By construction T −m ≥ 0. Let λ ∈ (−∞,m), then T − λ = (T −m) +
(m−λ) ≥ (m−λ), and for any x ∈ D(T ) one has

〈
x, (T −λ)x

〉
≥ (m−λ)‖v‖2, i.e.

‖(T − λ)x‖ ≥ (m− λ)‖x‖. This shows that T − λ is injective and that ran(T − λ)
is closed, then ran(T − λ) = H by Prop. 2.16, and then λ ∈ resT by Prop. 2.3.

Assume that m /∈ specT , then (T −m)−1 is a well-defined continuous operator.
From the definition of m it follows that there exist (xn) ⊂ D(T ) with ‖xn‖ = 1 and
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〈xn, (T −m)xn〉 → 0. As (u, v) 7→ 〈u, (T −m)v〉 is a semi-scalar product on D(T ),
one has the Cauchy-Schwarz inequality∣∣〈u, (T −m)v〉

∣∣2 ≤ 〈u, (T −m)u
〉〈
v, (T −m)v

〉
.

Now use this inequality for u := xn and v := (T −m)−1xn:

1 = ‖xn‖2 = 〈xn, xn〉 =
〈
xn, (T −m)(T −m)−1xn

〉
≤ 〈xn, (T −m)xn〉〈(Tm)−1xn, (T −m)(T −m)−1xn〉
= 〈xn, (T −m)xn〉〈(T −m)−1xn, xn〉

≤ 〈xn, (T −m)xn〉‖(T −m)−1‖ n→+∞−→ 0,

which is a contradiction.

2.3 Compact operators

The present section contains a lot of repetititons from earlier courses, but they are
important for what follows.

Let H and H′ be Hilbert spaces. A linear operator T : H → H′ is called
compact, if the image of the unit ball in H is relatively compact in H′ (remark
that the relative compactness is equivalent to the existence of a finite ε-net for any
ε > 0, as Hilbert spaces are complete metric spaces). We denote by K(H,H′) the
set of all such operators. The definition can also be reformulated as follows: an
operator T : H → H′ is compact if and only if any bounded sequence (xn) ⊂ H has
a subsequence (xnk) such that Txnk converges in H′. We recall that:

• any compact operator is continuous,

• any continuous operator having a finite-dimensional range is compact,

• the norm limit of a sequence of compact operators is again a compact operator,

• the adjoint of a compact operator is compact,

• the composition of a continuous operator with a compact one (in any order)
is again a compact operator.

Recall the following fundamental result, which is based on Fredholm’s alternative
and is proved in the functional analysis course:

Theorem 2.24 (Spectrum of a compact operator). Let T be a compact linear
operator in an infinite-dimensional Hilbert space, then

(a) 0 ∈ specT ,

(b) specT \ {0} = specp T \ {0},

(c) we are in one and only one of the following situations:
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– specT \ {0} = ∅,
– specT \ {0} is a finite set,

– specT \ {0} is a sequence convergent to 0.

(d) Each λ ∈ specT \ {0} is isolated (i.e. has a neighborhood containing no other
values of the spectrum), and dim ker(T − λ) <∞.

The result has the following important corollary:

Theorem 2.25 (Spectrum of compact self-adjoint operators). Let T be a
compact self-adjoint operator in a Hilbert space H, then there exist an orthonormal
basis consisting of eigenvectors of T , and the respective eigenvalues form a real
sequence convergent to 0.

Proof. Let (λn)n≥1 be the distinct non-zero eigenvalues of T . As T is self-adjoint,
these eigenvalues are real. Set λ0 = 0, and for n ≥ 0 denote En := ker(T − λn). If
n 6= m and u ∈ En, v ∈ Em, then

λn〈u, v〉 = 〈Tu, v〉 = 〈u, Tv〉 = λm〈u, v〉 ⇒ (λn − λm)〈u, v〉 = 0 ⇒ u ⊥ v = 0,

which shows that En⊥Em for n 6= m. Denote by F the linear hull of ∪n≥0En. We
are going to show that F is dense in H.

Clearly, we have T (F ) ⊂ F . Due to the self-adjointness of T we also have

T (F⊥) ⊂ F⊥. Denote by T̃ the restriction of T to F⊥, then T̃ is self-adjoint, and

its spectrum equals {0}, so T̃ = 0. But this means that F⊥ ⊂ kerT = E0 ⊂ F and
shows that F⊥ = {0}. Therefore F is dense in H.

We now choose an orthonormal basis in each subspace En and obtain an or-
thonormal basis in the whole space H.

We now consider an important subclass of compact operators:

Definition 2.26 (Hilbert-Schmidt operator). A continuous linear operator T
in a Hilbert space H is Hilbert-Schmidt if for some orthonormal basis (en) of H the
sum

‖T‖2
2 :=

∑
n

‖Ten‖2 (2.11)

is finite.

Theorem 2.27 (Hilbert-Schmidt norm and compactness). Let T be a Hilbert-
Schmidt operator in a Hilbert space H, then:

(a) the quantity ‖T‖2 (called the Hilbert-Schmidt norm of T ) does not depend on
the choice of the orthonormal basis,

(b) T ∗ is also Hilbert-Schmidt with ‖T ∗‖2 = ‖T‖2,

(c) ‖T‖ ≤ ‖T‖2,
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(d) T and T ∗ are compact operators.

Proof. Let (en) and (fn) be two orthonormal bases. Using the Parseval identity we
have ∑

n

‖Ten‖2 =
∑
n

∑
m

∣∣〈fm, T en〉∣∣2 =
∑
m

∑
n

∣∣〈T ∗fm, en〉∣∣2 =
∑
m

‖T ∗fm‖2.

This shows that the expression (2.11) is independent of the choice of (en) and that
‖T ∗‖2 = ‖T‖2, which proves (a) and (b).

To show (c), let x ∈ H with xn := 〈en, x〉, then using the Cauchy-Schwarz
inequality in `2 we estimate

‖Tx‖2 =
∥∥∥∑

n

xnTen

∥∥∥2

≤
(∑

n

|xn|‖Ten‖
)2

≤
∑
n

|xn|2
∑
n

‖Ten‖2 = ‖T‖2
2‖x‖2.

In order to prove (d) remark first that for any x ∈ H one has

x =
∞∑
n=1

〈en, x〉en, Tx =
∞∑
n=1

〈en, x〉Ten.

For N ∈ N introduce the operators TN by

TN : x 7→
N∑
n=1

〈en, x〉Ten.

One has
‖T − TN‖2 ≤ ‖T − TN‖2

2 =
∑

n≥N+1

‖Ten‖2 N→∞−−−→ 0,

and then T is compact being the norm-limit of the finite-dimensional operators TN .
The compactness of T ∗ follows from (b).

If we use (2.11) for an orthonormal basis consisting of eigenvectors of T , we
obtain:

Corollary 2.28. Let T be a self-adjoint Hilbert-Schmidt operator with eigenvalues
(λn), then

‖T‖2
2 =

∑
n

λ2
n.
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The suprising thing is that a Hilbert-Schmidt operator in an L2-space is always
an integral operator. We only consider L2(Ω) with Ω ⊂ Rd being an open set: the
extension to general measure spaces is straightforward. We will need the following
fact:

Lemma 2.29. If (en) is an orthonormal basis in L2(Ω) and (e′m) is an orthonormal
basis in L2(Ω′), then the functions fn,m : (x, x′) 7→ en(x)e′m(x′) form an orthonormal
basis in L2(Ω× Ω′).

Proof. It follows by Fubini’s theorem that fn,m form an orthonormal family in
L2(Ω × Ω′), and we need to show that they span the whole Hilbert space. Let
g ⊥ fn,m for all (n,m),∫

Ω

en(x)

∫
Ω′
e′m(x′)g(x, x′) dx′ dx = 0 for all (n,m). (2.12)

One easily shows (using the Cauchy-Schwarz inequality) that for any m ∈ N the
function

hm : x 7→
∫

Ω′
e′m(x′)g(x, x′) dx′

belongs to L2(Ω), and (2.12) implies hm = 0 a.e. For a.e. x ∈ Ω the function
Hx : x 7→ g(x, x′) belongs to L2(Ω), and the condition hm = 0 a.e. for all m implies
that Hx(x

′) = 0 for a.e. (x, x′), i.e. g = 0.

Theorem 2.30 (Integral Hilbert-Schmidt operators). Let H = L2(Ω). A
linear operator T in H = L2(Ω) is Hilbert-Schmidt if and only if T is an integral
operator,

Tu(x) =

∫
Ω

K(x, y)u(y) dy, (2.13)

with integral kernel K ∈ L2(Ω× Ω), and in that case ‖TK‖2 = ‖K‖L2(Ω×Ω).

Proof. Let K ∈ L2(Ω × Ω) and T be defined as is (2.13). Remark that T is
continuous: using the Cauchy-Schwarz inequality one obtains

‖Tu‖2 =

∫
Ω

∣∣∣ ∫
Ω

K(x, y)u(y) dy
∣∣∣2 dx

≤
∫

Ω

[∫
Ω

|K(x, y)|2 dy

∫
Ω

∣∣u(y)
∣∣2 dy

]
dx = ‖K‖2

L2(Ω×Ω)‖u‖2.

Let (en) be an orthonormal basis in H, then the functions em,n(x, y) = em(x)en(y)
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form an orthonormal basis in L2(Ω× Ω), see Lemma 2.29. There holds

‖T‖2
2 =

∑
n

‖Ten‖2 =
∑
m,n

∣∣〈em, T en〉∣∣2
=
∑
m,n

∣∣∣ ∫
Ω

em(x)
(∫

Ω

K(x, y)en(y) dy
)

dx
∣∣∣2

=
∑
m,n

∣∣∣ ∫
Ω

∫
Ω

em(x)en(y)K(x, y) dx dy
∣∣∣2 =

=
∑
m,n

∣∣〈em,n, K〉∣∣2 = ‖K‖2
L2(Ω×Ω),

which shows that T is Hilbert-Schmidt.
Now let T be a Hilbert-Schmidt operator in H and u, v ∈ H, then

〈u, Tv〉 =
〈∑

m

〈em, u〉em, T
(∑

n

〈en, v〉en
〉

=
∑
m,n

〈en, v〉〈em, T en〉〈u, em〉

=
∑
m,n

∫
Ω

∫
Ω

en(y)〈em, T en〉em(x)u(x) v(y) dµ(y) dµ(x)

=
∑
m,n

∫
Ω×Ω

〈em, T en〉em,n(x, y)u(x) v(y) dx dy. (2.14)

Take
K(x, y) =

∑
m,n

en(y)〈em, T en〉em(x) =
∑
m,n

〈em, T en〉em,n(x, y).

One has ∑
m,n

|〈em, T en〉|2 =
∑
n

∑
m

|〈em, T en〉|2 =
∑
n

‖Ten‖2 = ‖T‖2
2 <∞,

which shows that K ∈ L2(Ω × Ω). Then one can interchange the sum and the
integral in (2.14) and one arrives at

〈u, Tv〉 =

∫
Ω×Ω

K(x, y)u(x) v(y) dx dy for all u, v ∈ L2(Ω),

which proves the representation (2.13).

Using Corollary 2.28 one immediately shows:

Corollary 2.31 (Trace formula for integral Hilbert-Schmidt operators). Let
K be the integral kernel of a self-adjoint Hilbert-Schmidt operator T with eigenvalues
(λn) in L2(Ω), then ∫

Ω

∫
Ω

|K(x, y)|2 dx dy =
∑
n

λ2
n.
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2.4 Operators with compact resolvents

The above can be used for a discussion of a class of unbounded operators. Namely,
one says that an operator T in H has compact resolvent if resT 6= ∅ and for some
(and then for all) z ∈ resT the resolvent (T − z)−1 is a compact operator.

Theorem 2.32 (Spectra of semibounded operators with compact resol-
vents). Let T be a semibounded from below self-adjoint operator with compact re-
solvent in an infinite-dimensional Hilbert space H, then:

• specT = specp T ,

• for each λ ∈ specT there holds dim ker(T − λ) <∞.

• the eigenvalues of T form a sequence converging to +∞.

Proof. Let T ≥ −c, then −(c + 1) ∈ resT (Theorem 2.23), and (T + c + 1)−1 is
a bounded self-adjoint operator which is compact by assumption. Moreover, this
operator is non-negative: for any u ∈ H denote v := (T + c+ 1)−1 ∈ D(T ), then

〈u, (T + c+ 1)−1u〉 = 〈(T + c+ 1)v, v〉 ≥ ‖v‖2 ≥ 0.

By Theorem 2.25, there exists an orthonormal basis (en)n∈N of H such that each
en is an eigenvector of (T + c + 1)−1: (T + c + 1)−1en = λnen, where λn > 0 form
a sequence converging to 0. We then have (T + c + 1)en = λ−1

n en, i.e. each en is
an eigenvector of T with eigenvalue µn := λ−1

n − c − 1, and the multiplicity of this
eigenvalue is the same as that of λn as an eigenvalue of (T + c+ 1)−1, e.g. is finite.
The operator T is then essentially self-adjoint on finite linear combinations of en
(Exercise 3), and specT = {µn : n ∈ N}. In our case µn → +∞ as n → +∞ (due
to λn → 0), so the closure can be omitted.

Now we would like to obtain a class of operators with compact resolvents.

Theorem 2.33 (Compact embeddings and compact resolvents). Let T be a
self-adjoint operator generated by a closed sesquilinear form t in H. Assume that
the Hilbert space D(t), equiped with 〈·, ·〉t, is compactly embedded in H, then T has
compact resolvent.

Proof. Without logg of generality assume t ≥ 1, then T ≥ 1 as well. Recall that
〈u, v〉 = t(u, v) and ‖u‖2

t = t(u, u) + (c + 1)‖u‖2
H ≥ ‖u‖2

H. For any u ∈ D(T ) we
have |u‖H‖u‖t ≤ ‖u‖2

t = t(u, u) =
〈
u, Tu

〉
H ≤ ‖u‖H‖Tu‖H, i.e. ‖u‖t ≤ ‖Tu‖H. It

follows that ‖T−1v‖t ≤ ‖v‖H for all v ∈ H, which means T−1 ∈ B
(
H, D(t)

)
.

Now let j : D(t) ↪→ H be the embedding, which is compact by assumption, then
T−1 = jL, where L : H 3 v 7→ T−1v ∈ D(t). Hence, T−1 : H → H is compact as
the composition of a bounded operator and a compact one.

In order to look at concrete examples we need the following classical criterion of
compactness in L2(Rd):
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Theorem 2.34 (Riesz-Kolmogorov criterion). A subset F ⊂ L2(Rd) is rela-
tively compact in L2(Rd) if and only if the following conditions are satisfied:

(a) F is bounded,

(b) for any ε > 0 one can find R > 0 such that∫
|x|>R

|u(x)|2 dx < ε2 for all u ∈ F ,

(c) for any ε > 0 one can find r > 0 such that∫
Rd

∣∣u(x+ h)− u(x)
∣∣2 dx < ε2 for all u ∈ F and h ∈ Rd with |h| < r.

Proof. We will only prove the “if” direction (only this part is of interest for the
subsequent applications).

Let F ⊂ L2(Rd) satisfy (a–c). Let ε > 0 and choose R as in (b) and r as in (c).

Consider the open hypercube Q :=
(
− r

2
, r

2

)d
and let Q1, . . . , QN ⊂ Rd be suitably

chosen translations of Q such that:

Qj are mutually disjoint, BR(0) ⊂ S := Q1 ∪ · · · ∪QN ,

then it follows from (b) that∫
SC

|u(x)|2 dx < ε2 for all u ∈ F . (2.15)

Denote by W the subspace spanned by the characteristic functions 1Qj and let
P be the orthogonal projector on W in L2(Rd),

Pu(x) =


1

|Qj|

∫
Qj

u(x) dx, x ∈ Qj,

0, otherwise.

Let u ∈ F , then

‖u− Pu‖2 =

∫
SC

|u− Pu|2 dx+

∫
S

|u− Pu|2 dx

=

∫
SC

|u|2 dx+

∫
S

|u− Pu|2 dx

use (2.15) ≤ ε2 +
N∑
j=1

∫
Qj

∣∣u(x)− Pu(x)
∣∣2 dx

(Definition of P ) = ε2 +
N∑
j=1

∫
Qj

∣∣∣ 1

|Qj|

∫
Qj

(
u(x)− u(z)

)
dz
∣∣∣2 dx.

(2.16)
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Using the Cauchy-Schwarz inequality we obtain∣∣∣ 1

|Qj|

∫
Qj

(
u(x)− u(z)

)
dz
∣∣∣2 ≤ 1

|Qj|2

∫
Qj

12 dz

∫
Qj

∣∣u(x)− u(z)
∣∣2 dz

=
1

|Qj|

∫
Qj

∣∣u(x)− u(z)
∣∣2 dz

(one has z − x ∈ 2Q for x, z ∈ Qj) ≤
1

|Qj|

∫
2Q

∣∣u(x)− u(x+ y)
∣∣2 dy.

The substitution of this inequality into (2.16) gives

‖u− Pu‖2 ≤ ε2 +
N∑
j=1

∫
Qj

1

|Qj|

∫
2Q

∣∣u(x)− u(x+ y)
∣∣2 dy dx

(Fubini, |Qi| = |Q|) = ε2 +
1

|Q|

N∑
j=1

∫
2Q

∫
Qj

∣∣u(x)− u(x+ y)
∣∣2 dx dy

(Qj mutually disjoint) = ε2 +
1

|Q|

∫
2Q

∫
Q1∪···∪QN

∣∣u(x)− u(x+ y)
∣∣2 dx dy

≤ ε2 +
1

|Q|

∫
2Q

∫
Rd

∣∣u(x)− u(x+ y)
∣∣2 dx dy

use (c) ≤ ε2 +
1

|Q|

∫
2Q

ε2 dy = (1 + 2d)ε2.

Therefore, for any u ∈ F one has ‖u−Pu‖ ≤
√

1 + 2dε, and the triangle inequality
gives ‖u‖ ≤

√
1 + 2dε + ‖Pu‖. If u, v ∈ F with ‖Pu − Pv‖ < ε, then using the

linearity of P we obtain ‖u− v‖ ≤ (
√

1 + 2d + 1)ε.
The subspace W is finite-dimensional, F is bounded by (a), and P is a bounded

operator. It follows that P (F) is a bounded subset of a finite-dimensional vector
space, hence it is relatively compact. In particular, one can find a finite ε-net in
P (F), and its preimage is then a finite (

√
1 + 2d + 1)ε-net in F . As ε is arbitrary,

the relative compactness of F follows.

We are going to apply the result to some differential operators, and the following
observation will be useful:

Lemma 2.35. The unit ball F in H1(Rd) satisfies (c) in Theorem 2.34.

Proof. For any u ∈ C∞c (Rd) and h ∈ Rd one has∫
Rd

∣∣u(x+ h)− u(x)
∣∣2 dx =

∫
Rd

∣∣∣ ∫ 1

0

d

dt
u(x+ th) dt

∣∣∣2 dx

=

∫
Rd

∣∣∣ ∫ 1

0

h · ∇u(x+ th) dt
∣∣∣2 dx ≤ h2

∫
Rd

∫ 1

0

∣∣∇u(x+ th)
∣∣2 dt dx

≤ h2

∫ 1

0

∫
Rd

∣∣∇u(x+ th)
∣∣2 dx dt = h2‖∇u‖2

L2 ,
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which then extends by density to the whole of H1(Rd). Hence, for any u ∈ F one
has ∫

Rd

∣∣u(x+ h)− u(x)
∣∣2 dx ≤ h2,

and (c) holds by taking r := ε for any ε > 0.

Let Ω ⊂ Rd be a non-empty open set. Recall that the associated Dirichlet and
Neumann Laplacians TD and TN are defined as the self-adjoint operators in L2(Ω)
generated by the closed sesquilinear forms

tD(u, u) =

∫
Ω

|∇u|2 dx, D(tD) = H1
0 (Ω),

tN(u, u) =

∫
Ω

|∇u|2 dx, D(tN) = H1(Ω).

Recall that the scalar product H1
0 (Ω) is induced by the scalar product of H1(Ω).

Proposition 2.36 (Compact embeddings of H1
0). If Ω is bounded, then the

embedding H1
0 (Ω) ↪→ L2(Ω) is compact.

Proof. We first denote H̃1(Rd) := {u ∈ H1(Rd) : u = 0 a.e. outside Ω} ⊂ H1(Rd).

and let F̃ be the unit ball in H̃1(Rd) (with respect to the induced scalar product).

We would like to show that F̃ is relatively compact in L2(Rd), for which we check

the conditions (a–c) in the Riesz-Kolmogorov theorem (Theorem 2.34). If v ∈ F̃ ,
then ‖v‖L2(Rd) = ‖v‖H1(Ω) ≤ 1, which shows (a). If R > 0 with Ω ⊂ BR(0), then∫

|x|≥R
|v(x)|2 dx = 0 for any v ∈ F̃ ,

which shows (b). Finally, F̃ is contained in the unit ball of H1(Rd), and (c) holds

by Lemma 2.35. It follows that the embedding j : H̃1(Rd) ↪→ L2(Rd) is compact.
For u ∈ L2(Ω) denote by ũ its extension by zero the whole of Rd, then the linear

map k : H1
0 (Ω) 3 u 7→ ũ ∈ H̃1(Rd) is an isometry (Proposition 1.67). Furthermore,

consider the operator of restriction ι : L2(Rd)→ L2(Ω), ιu(x) = u(x) for any x ∈ Ω
and any u ∈ L2(Rd), then ι is clearly bounded.

The operator ιjk : H1
0 (Ω) → L2(Ω) is then compact (a composition of two

continuous operators and a compact operator), and this operator is exactly the
embedding of H1

0 (Ω) into L2(Ω).

Using Theorem 2.33 we arrive at:

Corollary 2.37 (Dirichlet Laplacians with compact resolvents). Let Ω ⊂ Rd

be a bounded open set, then the Dirichlet Laplacian in Ω, viewed as a self-adjoint
operatorin L2(Ω), has compact resolvent.

There is no literal extension of Corollary 2.37 for Neumann Laplacians: there
are bounded domains Ω (with “bad” boundaries) such that the respective Neumann
Laplacians are not with compact resolvents (and the embedding of H1(Ω) in L2(Ω)
is not compact.) Anyway, under some additional assumptions the result still holds
true.
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Definition 2.38. We say that an open set Ω ⊂ Rd has the extension property, if
there exists a bounded linear operator E : H1(Ω)→ H1(Rd) such that Eu(x) = u(x)
for all u ∈ H1(Ω) and all x ∈ Ω. Such an operator E is usually called an extension
operator.

The following result will be used without detailed proof:

Proposition 2.39. Any bounded open set with Lipschitz boundary has the extension
property.

Proof idea. If Ω is a half-space, Ω = (0,∞)×Rd−1, then one explicitly constructs a
bounded extension operator E : H1(Ω)→ H1(Rd) by (Eu)(x1, x

′) = u(|x1|, x′).
If Ω is bounded, with Lipschitz boundary, one covers ∂Ω by finitely many balls

Bj and finds bi-Lipschitz maps Φj : Bj → Brj(0) such that

Φj(Ω ∩Bj) = {(x1, x
′) ∈ Brj(0) : x1 > 0},

and takes a partition of unity χj with suppχj ⊂ Bj. If u ∈ H1(Ω), then the
functions vj := (χju) ◦ Φ−1

j can be viewed as H1-functions on the half-space, and

they can be extended to a H1(Rd)-function as above. One uses Φj in the reverse
direction and takes the sum over j. (One can show that if Φ is bi-Lipschitz, then a
function u is in H1 if and only if u ◦ Φ is in H1.)

Proposition 2.40 (Compact embeddings of H1). If Ω is a bounded open set
with the extension property (for example, with Lipschitz boundary), then the embed-
ding H1(Ω) ↪→ L2(Ω) is compact.

Proof. Let E : H1(Ω) → H1(Rd) be a bounded extension operator. Pick any
χ ∈ C∞c (Rd) with χ = 1 in Ω B ⊃ Ω and let B be an open ball containing suppχ,
then the operator

E0 : H1(Ω) 3 u 7→ χEu ∈ H1
0 (B)

is bounded. The embedding j : H1
0 (B) ↪→ L2(B) is compact by Proposition 2.36, as

B is bounded. Furthermore, let ι : L2(B) → L2(Ω) be the operator of restriction,
ιu(x) = u(x) for all x ∈ Ω, which is bounded. The embedding J : H1(Ω) ↪→ L2(Ω)
can be decomposed as J = ιjE0, and it is compact due to the compactness of j.

By applyng Theorem 2.33 we show:

Corollary 2.41 (Neumann Laplacians with compact resolvents). If Ω is a
bounded open set with the extension property (for example, with Lipschitz boundary),
then the Neumann Laplacian in Ω, viewed as a self-adjoint operator in L2(Ω), has
compact resolvent.

The compactness results can also be applied to the Schrödinger operators as
follows:
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Theorem 2.42 (Schrödinger operators with growing potentials). Let V ∈
L2

loc(Rd) be real-valued, semibounded from below. Denote w(r) := inf |x|≥r V (x). If

lim
r→+∞

w(r) = +∞,

then the Schrödinger operator T = −∆ +V (defined as the Friedrichs extension, see
Example 1.80) has compact resolvent.

Proof. Without loss of generality we assume V ≥ 0 (otherwise consider T + c with
a suitable c ∈ R). Recall (Example 1.80) that the sesquilinear form for T is

t(u, u) =

∫
Rd

(
|∇u|2 + V |u|2) dx,

whose domain D(t) = H1
V (Rd) is equiped with the norm ‖u‖2

H1
V

= ‖u‖2
H1 +‖

√
V u‖L2 .

It is sufficient to show that the unit ball FV in H1
V (Rd) is relatively compact. For

that we show that all assumptions in the Riesz-Kolmogorov criterion (Theorem 2.34)
are satisfied.

• The condition (a) holds due to ‖u‖L2 ≤ ‖u‖H1
V
≤ 1 for any u ∈ FV .

• If u ∈ FV , then∫
|x|≥R

|u(x)|2 dx ≤ 1

w(R)

∫
|x|≥R

V (x)|u(x)|2 dx

≤
‖
√
V u‖2

L2

w(R)
≤
‖u‖2

H1
V

w(R)
≤ 1

w(R)

R→+∞−→ 0,

and (b) follows.

• Due to ‖u‖H1
V
≥ ‖u‖H1 , the set FV is contained in the unit ball of H1(Rd),

and (c) holds by Lemma 2.35.

Remark 2.43. The assumptions in Theorems 2.42 (Schrödinger operators) and
Corollaries 2.37 and 2.41 are only sufficient conditions: it is known that they are
not necessary (this will be discussed in the exercises).
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3 Spectral theorem

To be provided with a certain motivation, let T be either a compact self-adjoint
operator or a semibounded self-adjoint operator with compact resolvent in a Hilbert
space H. As shown in the previous sections, there exists an orthonormal basis
(en)n∈N in H and real numbers λn such that, with

Tx =
∑
n∈N

λn〈en, x〉en for all x ∈ D(T ),

and the domain D(T ) is characterized by

D(T ) =
{
x ∈ H :

∑
n∈N

λ2
n

∣∣〈en, x〉∣∣2 <∞}.
Recall that if we introduce the map U : H → `2(N) defined by Ux =: (xn), xn =
〈en, x〉, then the operator UTU∗ becomes the discrete multiplication operator (xn) 7→
(λnxn).

If f is a bounded function on R, then one can define a linear operator f(T ) ∈
B(H) by

f(T )x =
∑
n∈N

f(λn)〈en, x〉en,

then the map f 7→ f(T ) satisfies a number of properties. For example, (fg)(T ) =
f(T )g(T ), f(T ) = f(T )∗ etc. The existence of such a construction allows one to
show that some complicated equations have solutions (in a suitable class) and even
to write rather explicit expressions for the solutions. For example, one can easily
show that the initial value problem

−ix′(t) = Tx(t), x(0) = y ∈ D(T ), x : R→ D(T ),

has a solution that can be written as x(t) = ft(T )y with ft(x) = eitx. Informally
speaking, for a large class of equations involving the operator T one may first assume
that T is a real constant and obtain a formula for the solution, and then one can
give this formula an operator-valued meaning using the above map f 7→ f(T ).

At this point, the definition of f(T ) only makes sense for a restricted class of self-
adjoint operators T (admitting an orthonormal eigenbasis). The aim of the present
section is to develop a similar theory for the general self-adjoint operators. Namely,
we will show that:

• each self-adjoint operator is unitarily equivalent to a multiplication operator
in some measure space (spectral theorem),

• the operators f(T ) are uniquely defined for any self-adjoint T and a large class
of functions f (functional calculus).

In order to cover both bounded and unbounded self-adjoint operators, it will be
convenient to prove analogous results first for the unitary operators (which are
easier to deal with as they are bounded) and then to pass to self-adjoint operators
using a suitable transform.

54



3.1 Spectral theorem for unitary operators

We will intensively use the unit circle

S := {z ∈ C : |z| = 1}.

One can consider S as a one-dimensional submanifold, and the integration and the
smoothness over S are then well-defined: if one uses θ 7→ eiθ as a local chart, then
for f : S→ C one has:

• f ∈ Ck(S) if and only if θ → f(eiθ) is a 2π-periodic Ck-function on R.

• and ∫
S
f ds :=

∫ 2π

0

f(eiθ) dθ,

which naturally defines the spaces Lp(S).

If f ∈ L1(S), its Fourier coefficients are the numbers

f̂(n) :=
1

2π

∫ 2π

0

f(eiθ)e−inθ dθ, n ∈ Z.

If f ∈ Ck(S) for some k ∈ N, then using the integration by parts we have

ck :=
∥∥∥ dk
dθk

f(eiθ)
∥∥∥
L1(0,2π)

≥
∣∣∣ ∫ 2π

0

( dk
dθk

f(eiθ)
)
e−inθ dθ

∣∣∣
=
∣∣∣(in)k

∫ 2π

0

f(eiθ)e−inθ dθ
∣∣∣ = 2π|n|kf̂(n),

which shows that f̂(n) = O(|n|−k) for large n. In particular, for f ∈ C∞(S) the last
estimate holds with any k ∈ N, and it is known from basic analysis courses that

f(eiθ) =
∑
n∈Z

f̂(n)einθ, θ ∈ R,

while the series on the right-hand side converges uniformly in θ. By denoting z := eiθ

we have then
f(z) =

∑
n∈Z

f̂(n)zn, z ∈ S,

with the uniform convergence on the right-hand side.
Let U : H → H be a unitary operator. Recall that this means that U is bijective

and that ‖Ux‖ = ‖x‖ for all x ∈ H, which is equivalent to U∗ = U−1. It is easy to
check that specU ⊂ S: the inclusion specU ⊂ {z : |z| ≤ 1} follows from Prop. 2.15,
and if |z| < 1, then U − z = U(I − zU∗), and due to ‖zU∗‖ = |z| < 1 the both
operators on the right-hand side are bijective with bounded inverses.

Our idea is to define operators f(U), for a large class of functions f : S→ C, by

f(U) =
∑
n∈Z

f̂(n)Un. (3.1)
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Remark that for f ∈ C∞(S) the series on the right-hand of (3.1) converges with
respect to the operator norm and defines a continuous linear operator. In particular,
for the constant function f ≡ 1 the operator f(U) is the identity map. We would
like to extend the definition to a larger class of functions.

Theorem 3.1 (Continuous functional calculus for unitary operators). The
map C∞(S) 3 f 7→ f(U) ∈ B(H) defined by (3.1) extends uniquely to a linear map
C0(S)→ B(H) such that for any f, g ∈ C0(S) one has

(a) f(U)∗ = f(U),

(b) f(U)g(U) = (fg)(U),

(c) if f ≥ 0, then f(U) ≥ 0,

(d) ‖f(U)‖ ≤ ‖f‖∞.

Proof. We first establish all the properties for functions f, g ∈ C∞(S).
(a) Let f ∈ C∞(S), then f ∈ C∞(S). One has

f̂(n) = f̂(−n) for any n ∈ Z,

f(U)∗ =
(∑
n∈Z

f̂(n)Un
)∗

=
∑
n∈Z

f̂(n)U−n

=
∑
n∈Z

f̂(−n)Un =
∑
n∈Z

f̂(n)Un = f(U).

(b) Let f, g ∈ C∞(S), then

f(U)g(U) =
(∑
m∈Z

f̂(m)Um
)( ∑

m′∈Z

ĝ(m′)Um′
)

=
∑
n∈Z

cnU
n with cn :=

∑
k

f̂(k)ĝ(n− k).

At the same time

(fg)(eiθ) =
(∑
m∈Z

f̂(m)eimθ
)( ∑

m′∈Z

ĝ(m′)eim
′θ
)

=
∑
n∈Z

cne
inθ,

while the series converge uniformly, which shows that cn = f̂ g(n).
(c) Let f ∈ C∞(S) with f ≥ 0. For ε > 0 consider the function hε :=

√
f + ε ∈

C∞(S). Then hε(U) is defined by the above series. As hε is real-valued, the operator
hε(U) is self-adjoint by (a), and f = h2

ε − ε, which implies f(U) = hε(U)2 − εI by
(b). Then for any v ∈ H we have

〈v, f(U)v〉 =
〈
v,
(
hε(U)2 − εI

)
v
〉

= 〈hε(U)v, hε(U)v〉 − ε〈v, v〉 = ‖hε(U)v‖2 − ε‖v‖2 ≥ −ε‖v‖2,

and by sending ε to 0 we obtain 〈v, f(U)v〉 ≥ 0.
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(d) Let f ∈ C∞(S) and M := ‖f‖∞, then M2 − |f |2 ≥ 0, and by (c) this means
that for any v ∈ H we have

〈
v, (M2−|f |2)v

〉
≥ 0. We transform, using (a) and (b),〈

v, (M2 − |f |2)v
〉

= M2‖v‖2 − 〈v, f(U)∗f(U)v〉 = M2‖v‖2 − ‖f(U)v‖2,

and obtain ‖f(U)v‖2 ≤M2‖v‖2.
Hence, (a)–(d) are proved for the C∞-functions. The extension to C0(S) is

done using the density: as C∞(S) is dense in C0(S) with respect to ‖ · ‖∞, for any
f ∈ C0(S) there exists (fn) ⊂ C∞(S) with ‖f − fn‖∞ → 0. Then (fn) is Cauchy in
C0(S) and then

(
fn(U)

)
is Cauchy in B(H). As B(H) is a Banach space, there exists

A := lim fn(U). One then routinely checks that A is independent of the choice of
fn, so one can define f(U) := A, and then one routinely checks (a)–(d) using the
passage to the limit.

For the next step we recall the Riesz representation theorem: if X is a compact
metric space and β : C0(X) → C is a linear functional with β(f) ≥ 0 for f ≥ 0,
then there exists a unique Borel measure µ on X such that

β(f) =

∫
X

f dµ for any f ∈ C0(X).

It follows from the construction of µ that C0(X) is dense in L2(X,µ).

Lemma 3.2. Let v ∈ H and let µv be the unique Borel measure on S defined by

〈v, f(U)v〉 =

∫
S
f dµv.

Remark that the right-hand side is linear in f and non-negative for non-negative
f due to Theorem 3.1. Then the map C0(S) 3 f 7→ f(U)v ∈ H has a unique
continuous extension to an isometry Wv : L2(S, dµv) → H. This isometry satis-
fies UWv = WvMz, where Mz is the multiplication operator (Mzf)(z) = zf(z) in
L2(S, µv).

Proof. Let f, g ∈ C0(S). We have

〈Wvf,Wvg〉 =
〈
f(U)v, g(U)v

〉
=
〈
v, f(U)∗g(U)v

〉
=
〈
v, (fg)(U)v

〉
= (Definition of µv)=

∫
S
fg dµv = 〈f, g〉L2(X,µv)

The subspace C0(S) is dense in L2(S, µv) and Wv preserves the scalar product, so it
extends by density in a unique way to an isometry L2(S, µv)→ H.

By Theorem 3.1(b), for any f ∈ C0(S) we have

(Mzf)(U) =
(
(z 7→ z) · f

)
(U) = Uf(U), Mzf(U)v = Uf(U)v,

which means that MzWv = UWv on C0(S), and this equality extends by density to
the whole L2(S, µv).
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Remark 3.3 (Countable direct sums). If (Hn)n∈N is a finite or countable family
of Hilbert spaces, their direct sum H =

⊕
n∈N Hn is defined by

H =
{
x = (xn)n∈N : xn ∈ Hn, ‖x‖2

H :=
∑
n∈N

‖xn‖2
Hn <∞

}
,

and one can check (Exercise) that it is a Hilbert space. If Un are unitary operators
in Hn, then U : (xn) 7→ (Unxn) is clearly a unitary operator in H. Furthermore, if
Tn are self-adjoint operators in Hn, then one easily checks (Exercise) that the direct
sum T =

⊕
n∈N Tn defined by

T : (xn) 7→ (Tnxn), D(T ) =
{

(xn) ∈ H : xn ∈ D(Tn),
∑
n∈N

‖Txn‖2
Hn <∞

}
,

is a self-adjoint operator in H.

Now we arrive to the main result of the subsection:

Theorem 3.4 (Spectral theorem for unitary operators). Let U be a unitary
operator in a separable Hilbert space H. Then there exist a subset N ⊂ N, finite
Borel measures νn on S, n ∈ N , and a unitary map

W : L2(Y, ν)→ H, Y = S×N, ν(A× {n}) = νn(A) for A ⊂ S,

such that W−1UW = Mρ with the function ρ : Y 3 (y, n) 7→ y ∈ S ⊂ C.

Remark 3.5. In a less formal language, the set Y is consists of |N | disjoint copies
of S, and the restriction of ν to the nth copy coincides with νn.

There are versions of the spectral theorem for non-separable Hilbert spaces, then
one should use the axiom of choice and pay more attention to proper definitions of
direct sums for uncountable measure spaces and Hilbert spaces.

Proof. As H is separable, there exists a dense subset {wj}j∈N. We use Lemma 3.2
for the vector w1 and obtain a measure ν1 on S and an isomorphism W1 : L2(S, ν1)→
H1, where H1 is a closed subspace of H. If H1 = H, the proof is finished. Otherwise
we note that by construction U(H1) = H1, and then the unitarity of U implies
U(H⊥1 ) = H⊥1 , i.e. U can be viewed as a unitary operator in H1. We now find the
first j with wj /∈ H1 and denote v2 := the orthogonal projection of wj on H⊥1 , then
we use Lemma 3.2 for v2, which gives rise to a measure ν2 on S and an isomorphism
W2 : L2(S, ν2) → H2, where H2 is a closed subspace of H⊥1 . If H2 = H⊥1 , the proof
is finished, otherwise we take the first wj which is not in H1⊕H2 and continue with
its orthogonal projection on (H1 ⊕H2)⊥ etc.

If the procedure stops after finitely many steps, the set N is finite, otherwise
N = N. By construction we have

H =
⊕
n∈N

Hn, W−1
n U |HnWn = Mz,n,
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while Mz,n acts as (Mz,nf)(z) = zf(z) in L2(S, νn). One easily sees that

Θ 3 L2(Y, ν) 3 x 7→ (xn) ∈
⊕
n∈N

L2(S, νn), xn(z) = x(z, n),

is an isomorphism, and we arrive at the conclusion by taking

W := Θ−1
(⊕
n∈N

Wn

)
Θ.

3.2 Spectral theorem for self-adjoint operators

In this section we will prove similar results for self-adjoint operators. The passage
between unitary and self-adjoint operators uses the following simple observation.

Lemma 3.6. If T is self-adjoint, then U := I − 2i(T + i)−1 is unitary.

Proof. Remark first that specT ⊂ R, and (T ± i)−1 are well-defined continuous
operators. For arbitrary x ∈ H and y ∈ D(T ) we have

〈x, y〉 =
〈
(T + i)(T + i)−1x, y

〉
=
〈
(T + i)−1x, (T − i)y

〉
=
〈
x,
[
(T + i)−1

]∗
(T − i)y

〉
,

which shows that [(T + i)−1]∗ = (T − i)−1. It follows that U∗ = I + 2i(T − i)−1 and
UU∗ = U∗U as (T − i)−1 and (T + i)−1 commute (Theorem 2.4). Finally,

U∗U = I − 2i(T + i)−1 + 2i(T − i)−1 + 4(T − i)−1(T + i)−1

= I − 2i
[
(T + i)−1 − (T − i)−1 + 2i(T − i)−1(T + i)−1

]
,

and the expression in the square brackets is zero due to the resolvent identitites
(Theorem 2.4).

Remark 3.7. The expression for U can be rewritten as U = (T − i)(T + i)−1, which
is an operator-valued version of the transform

c : R 3 x 7→ x− i
x+ i

∈ S. (3.2)

Remark that R contains the spectra of all self-adjoint operators and the unit circle
contains the spectra of all unitary operators. The above transform is called the
Cayley transform.

We are now going to state the main result. In a short form, it says that any self-
adjoint operator is unitarily equivalent to a multilplication operator on a measure
space. In fact, one can even assume some special structure of the measure space
and other additional properties:
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Theorem 3.8 (Spectral theorem: Self-adjoint operators as multiplication
operators). Let T be a self-adjoint operator in a separable Hilbert space H. Then
there exist a subset N ⊂ N, finite Borel measures µn on R, n ∈ N , and a unitary
map

Θ : L2(X,µ)→ H, X = R×N, µ(A× {n}) = µn(A) for A ⊂ R,

such that Θ−1TΘ = Mh, where the function h is given by h : X 3 (x, n) 7→ x ∈ R.

Proof. Consider the unitary operator U := I − 2i(T + i)−1. Using the spectral
theorem for unitary operators (Theorem 3.4) we construct a subset N ⊂ N, finite
Borel measures νn on S, n ∈ N , and a unitary map

W : L2(Y, ν)→ H, Y = S×N, ν(A× {n}) = νn(A) for A ⊂ S,

such that W−1UW = Mρ with ρ : (y, n) 7→ y.
As I − U = 2i(T + i)−1 is an injective operator, the operator I −Mρ ≡ M1−ρ

is also injective in L2(Y, ν). In other words, 0 /∈ specp M1−z, which is equivalent to

1 /∈ specpMρ, and by Proposition 2.7 one obtains ν
(
ρ−1(1)

)
= 0. We have

ν
(
ρ−1(1)

)
= {1}×N =

⋃
n∈N

{(1, n)}, ν({1}×N) =
∑
n∈N

ν
(
{1}×{n}

)
=
∑
n∈N

νn
(
{1}
)
,

and we conclude that νn
(
{1}
)

= 0 for all n ∈ N .
Denote by η the inverse of the Cayley transform c from (3.2),

η := c−1 : S 3 y 7→ i
1 + y

1− y
∈ R,

which is defined νn-a.e. on S for any n ∈ N. Define µn to be the pushfoward η∗νn,
more precisely,

µn(A) := νn
(
η−1(A)

)
≡ νn

(
c(A)

)
, A ⊂ R,

then µn are finite Borel measures on R. We define X and µ as in the formulation of
the theorem and remark that the pullback operator

Φ : L2(X,µ)→ L2(Y, ν), (Φf)(y, n) = f
(
η(y), n

)
,

is unitary by construction. Now we define Θ := WΦ, which is by construction a
unitary operator L2(X,µ) → H. Let us show that this operator satisfies all the
required conditions.

Proof of ΘD(Mh) ⊂ D(T ). Let f ∈ D(Mh) ⊂ L2(X,µ), then g := (h + i)f ∈
L2(X,µ). By the definition of Φ, for (y, n) ∈ S× N we have

(Φg)(y, n) =
(
h
(
η(y), n

)
+ i
)

(Φf)(y, n) =
(
η(y) + i

)
Φf(y, n).

We have

η(y) + i = i
1 + y

1− y
+ i =

i(1 + y) + i(1− y)

1− y
=

2i

1− y
,

60



which yields (1− y)(Φg)(y, n) = 2i(Φf)(y, n). The last equality can be rewritten as
(I −Mρ)Φg = 2iΦf . Now we apply W on the both parts: using WMρ = UW we
arrive at (I − U)Θg = 2iΘf . Using the definition of U we have

I − U = I −
(
I − 2i(T + i)−1

)
= 2i(T + i)−1,

which results in
Θf = (T + i)−1Θg ∈ D(T ). (3.3)

Proof of Θ−1D(T ) ⊂ D(Mh). Let v ∈ D(T ) and w := (T + i)v. we have then

v = (T + i)−1w =
1

2i
(I − U)w.

We have W−1UW = Mρ, which gives I − U = WM1−ρW
−1 and then

W−1v =
1

2i
M1−ρW

−1w ⇒ Φ−1W−1v =
1

2i
Φ−1M1−ρW

−1w. (3.4)

Remark that for g ∈ L2(Y, ν) and (x, n) ∈ X we have

(Φ−1M1−ρg)(x, n) =
(
M1−ρg

)(
c(x), n

)
=
(
1− c(x)

)
g
(
c(x), n

)
,

and with the help of

1− c(x) = 1− x− i
x+ i

=
x+ i− (x− i)

x+ i
=

2i

x+ i

one rewrites it as

(Φ−1M1−ρg)(x, n) =
2i

x+ i
g
(
c(x), n

)
≡ 2i

h(x, n) + i
(Φ−1g)(x, n).

This computaton shows that Φ−1M1−ρ = 2i(Mh + i)−1Φ−1. Using this identity in
(3.4) we arrive at Θ−1v = (Mh + i)−1Θ−1w ∈ D(Mh).

Proof of Θ−1TΘ = Mh. We have just shown that ΘD(Mh) = D(T ). If f ∈
D(Mh) and g = (Mh + i)f , then in (3.3) we already saw that (T + i)−1Θg = Θf .
Applying (T + i) one the both sides and using the definition of g we arrive at

Θ(Mh + i)f = (T + i)Θf ⇒ ΘMhf = TΘf.

As f ∈ D(Mh) was arbitrary, this shows the sought equality.
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Remark 3.9. It should be clear that the representation obtained in Theorem 3.8 is
not unique. If T is a self-adjoint operator admitting an orthonormal basis (en)n∈N
of eigenvectors with eigenvalues λn, then it fits into the general scheme by setting

N := N, µn := δλn , Θf :=
∑
n∈N

f(λn, n)en,

where δa is the point measure defined by

δa(A) =

{
1, a ∈ A,
0, a /∈ A.

If all λn are distinct, one can “put them on the same copy of R” and consider, for
example,

N := {1}, µ1 :=
∑
n∈N

anδλn ,

where (an) is an arbitrary sequence of positive numbers with∑
n∈N

an <∞,

and in that case the associated unitary transform is given by

Θf :=
∑
n∈N

√
an f(λn, 1)en.

If one does not require the finiteness of µ1 one can even take simply an ≡ 1. Indeed,
there are many other ways to “distribute” λn among several copies of R. By looking
at this example one easily unbderstands that the minimal cardinality of the set N
coincides with maxn∈N dim ker(T − λn).

For general self-adjoint T , the minimal cardinality of N in Theorem 3.8 is usually
referred to as the spectral multiplicity of T .

Remark 3.10 (Norms of multiplication operators). In view of Theorem 3.8,
many questions of the general spectral theory are reduced to the study of multilpli-
cation operators, so let us complement the respective constructions from Example
2.6. If (X,µ) is a measure space and f : X → R is measurable function, then one
denotes

ess sup
x∈X

f(x) := inf
{
M ∈ R : f ≤M µ-a.e.

}
≡ sup(ess ran f).

It is clear that ess supx∈X f(x) ≤ supx∈X f(x), and neglecting the values of f on any
zero measure subset has no effect for ess sup f .

Let Mf be the multiplication operator in L2(X,µ) defined as in Example 2.6
with a bounded measurable function f , then one easily shows that

‖Mf‖ = ess sup
x∈X

∣∣f(x)
∣∣ ≡ sup

λ∈specMf

|λ|. (3.5)
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In fact, if |f | ≤M µ-a.e., then for any φ ∈ L2(X,µ), φ 6= 0, one has

‖Mfφ‖2 =

∫
X

∣∣f(x)φ(x)
∣∣2 dµ(x) ≤M2

∫
X

∣∣φ(x)
∣∣2 dµ(x) = M2‖φ‖2,

‖Mfφ‖
‖φ‖

≤M,

and taking first sup over φ and then inf over all possible M one arrives at the
inequality ‖Mf‖ ≤ ess supx∈X

∣∣f(x)
∣∣. On the other hand, letM := ess supx∈X

∣∣f(x)
∣∣.

If M = 0, then Mf = 0, and (3.5) is true. If M > 0, then for any m ∈ N the subset

S̃m :=
{
x ∈ X : |f(x)| > M − 2−m

}
has non-zero measure. Choose Sm ⊂ S̃m with 0 < µ(Sm) < ∞ and denote by φm
the indicator function of Sm, then one has, for all m with 2−m < M

‖Mfφm‖2 =

∫
X

∣∣f(x)φm(x)
∣∣2 dµ(x) =

∫
Sm

∣∣f(x)
∣∣2 dµ(x)

≥ (M − 2−m)2

∫
Sm

1 dµ(x) = (M − 2−m)2‖φm‖2,

showing ‖Mf‖ ≥ M − 2−m for any sufficiently large m, and sending m to ∞ one
finishes the proof of (3.5).

Due to the spectral theorem we can now define the operators f(T ) for a large
class of functions f . The main idea is very simple: if T is unitarily equivalent to
Mh, then f(T ) must be unitarily equivalent to Mf◦h.

Recall that the elements of the σ-algebra generated by open subsets are called
Borel subsets. A function f : R → C is called Borel, if the preimage of any Borel
subset is Borel. We denote

B∞(R) :=
{
f : R→ C : f is a bounded Borel function

}
.

Theorem 3.11 (Functional calculus for self-adjoint operators). Let T be a
self-adjoint operator in a separable Hilbert space H and let µ, Θ and h be as in
Theorem 3.8. Then the linear map B∞(R) 3 f 7→ f(T ) ∈ B(H) given by

f(T ) := ΘMf◦hΘ
−1 (3.6)

has the following properties:

(a) it is a ∗-homomorphism, i.e.

(fg)(T ) = f(T )g(T ), f(T )∗ = f(T ), f, g ∈ B∞(R),

(b) for any f ∈ B∞(R) one has

‖f(T )‖ ≤ sup
λ∈specT

∣∣f(λ)
∣∣,

with equality if f is continuous,
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(c) if fn, f ∈ B∞(R) such that fn → f pointwise and ‖fn‖∞ is bounded, then
fn(T )→ f(T ) in the strong sense, i.e. fn(T )v → f(T )v for any v ∈ H.

(d) for any z ∈ C \ R and the functions rz : R 3 x 7→ (x − z)−1 ∈ C there holds
rz(T ) = (T − z)−1.

Moreover, any linear map B∞(R) 3 f 7→ f(T ) ∈ B(H) satisfying the above prop-
erties (a)–(d) is given by (3.6) (in other words, the functional calculus is unique).

Proof. (a) The both properties easily follow from the definition of the multiplication
operators and the unitarity of Θ:

f(T )g(T ) = ΘMf◦hΘ
−1ΘMg◦hΘ

−1 = ΘMf◦hMg◦hΘ
−1

= ΘM(f◦h)(g◦h)Θ
−1 = ΘM(fg)◦hΘ

−1 = (fg)(T ),

f(T )∗ =
(
ΘMf◦hΘ

−1
)∗

= (Θ−1)∗(Mf◦h)
∗Θ∗

= ΘMf◦hΘ
−1 = ΘMf◦hΘ

−1 = f(T ).

(b) The unitarity of Θ and Proposition 2.7 (spectrum of multiplication operators)
show that

specT = ess ranh, spec f(T ) = ess ran f ◦ h.

The first equality implies that the set H := h−1(specT ) satisfies µ(HC) = 0. As
discussed in Remark 3.10, one has ‖f(T )‖ = ess supx∈X |f ◦ h(x)|, and we estimate

ess sup
x∈X

∣∣f ◦ h(x)
∣∣ = ess sup

x∈H

∣∣f ◦ h(x)
∣∣ = ess sup

x∈h−1(specT )

∣∣f ◦ h(x)
∣∣

≤ sup
x∈h−1(specT )

∣∣f ◦ h(x)
∣∣ = sup

λ∈specT

∣∣f(λ)
∣∣,

which shows the first claim.
Now assume additionally that f is continuous. Let

λ ∈ specT, ε > 0, Jε :=
(
f(λ)− ε, f(λ) + ε

)
,

then the set Iε := f−1(Jε) is open and contains an open interval Kδ := (λ− δ, λ+ δ)
with some δ > 0. Due to λ ∈ specT ≡ ess ranh we have

µ
(
{x ∈ X : h(x) ∈ Kδ}

)
> 0.

Due to {x ∈ X : f
(
h(x)

)
∈ Jε} = {x ∈ X : h(x) ∈ Iε} ⊃ {x ∈ X : h(x) ∈ Kδ} we

obtain
µ
(
{x ∈ X : f

(
h(x)

)
∈ Jε}

)
> 0.

As ε > 0 was arbitrary, this shows that f(λ) ∈ ess ran f ◦ h ≡ specMf◦h, and then,
with the help of (3.5),∣∣f(λ)

∣∣ ≤ sup
z∈specMf◦h

|z| = ‖Mf◦h‖ = ‖f(T )‖.

This shows that supλ∈specT |f(λ)| ≤ ‖f(T )‖ and completes the proof of (b).

64



For (c), let K > 0 be such that ‖fn‖ ≤ K for all n, then also |f | ≤ K. Let v ∈ H
and φ := Θ−1v ∈ L2(X,µ), then the convergence fn(T )v → f(T )v is equivalent to
Mfn◦hφ 7→Mf◦hφ. We have

∥∥Mfn◦hφ−Mf◦hφ
∥∥2

=

∫
X

∣∣Mfn◦hφ(x)−Mf◦hφ(x)
∣∣2 dµ(x)

=

∫
X

∣∣∣fn(h(x)
)
φ(x)− f

(
h(x)

)
φ(x)

∣∣∣2 dµ(x)

=

∫
X

∣∣∣fn(h(x)
)
− f

(
h(x)

)∣∣∣2|φ(x)|2︸ ︷︷ ︸
=:Fn(x)

dµ(x).

Due to the initial assumptions on fn and f we have:

• |Fn| ≤ 4K2|φ|2 ∈ L1(X,µ),

• limn→∞ Fn(x) = 0 for a.e. x ∈ X (while fn(y) converge to f(y) for any y ∈ X,
the function φ is defined µ-a.e. only),

and the dominated convergence theorem shows that ‖Mfn◦hφ−Mf◦hφ
∥∥→ 0.

(d) Actually this part was already implicitly covered in the proof of the spectral
theorem, but we repeat the constructions. Let v ∈ H and ϕ := Θ−1v. Then
ψ := (rz ◦ h)ϕ ∈ D(Mh) and (Mh − z)ψ = ϕ, i.e. (Mh − z)Mrzϕ = ϕ, i.e.

Θ−1(T − z)Θ︸ ︷︷ ︸
=Mh−z

MrzΘ
−1v = Θ−1v ⇒ Θ−1(T − z)rz(T )v = Θ−1v.

By applying (T − z)−1Θ on the both sides we arrive at rz(T )v = (T − z)−1v.
It remains to show the uniqueness. This parts uses a number of facts from the

measure and integration theory, so we only present the main steps. Let Φ1,Φ2 :
B∞(R) → B(H) be two linear maps satisfying (a)–(d). From (d) it follows that Φ1

and Φ2 coincide on the linear combinations
∑
cjrzj with cj ∈ C and zj ∈ C \ R.

Using the Stone-Weierstrass theorem one easily sees that these linear combinations
are dense (with respect to ‖·‖∞) in the space C0

∞(R) of bounded continuous functions
on R that vanish at infinity, and then due to (b) the maps Φ1 and Φ2 agree on C0

∞(R).
Now consider

A :=
{
f ∈ B∞(R) : Φ1(f) = Φ2(f)

}
,

then A is an algebra of functions by (a), and we have just shown that C0
∞(R) ⊂ A.

Furthemore, due to (c) the set A is closed under pointwise limits of uniformly
bounded sequences. The characteristic function of any closed interval can be real-
ized as the pointwise limit of a uniformly bounded sequence of bounded continuous
functions vanishing at infinity, which shows that the characteristic function of any
closed interval belongs to A. We now remark that the supports of functions in
A form a σ-algebra. We have just shown that this σ-algebra contains all closed
intervals, hence, it contains all Borel subsets. It then follows that A contains the
characteristic functions of all Borel subsets and then also all simple Borel functions
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(i.e. Borel functions taking only a finite number of values). As each bounded Borel
functions can be realized as the pointwise limit of a uniformly bounded sequence of
simple Borel functions, one arrives at A = B∞(R).

Remark 3.12. Remark that the approach used in the part (c) of the proof is very
typical and powerful, as it reduces the convergence in an abstract Hilbert space H
to the use of the dominated convergence in a measure space: this passage is made
possible due to the spectral theorem. Similar arguments will be used later at many
places.

Remark 3.13. Remark that the assertion (b) means that the only the values of f
on specT are of importance for the definition of f(T ): if f, g ∈ B∞(R) with f = g
on specT , then

‖f(T )− g(T )‖ = ‖(f − g)(T )‖ ≤ sup
λ∈specT

∣∣(f − g)(λ)
∣∣ = 0,

i.e. f(T ) = g(T ). Denote

B∞(specT ) :=
{
f : specT → C : f is Borel and bounded

}
and for f ∈ B∞(specT ) let f̃ ∈ B∞(R) be any extension of f to the whole of R (for
example, one can simply take the extension by zero), and one sets

f(T ) := f̃(T ),

then one directly arrives the following technical improvement:

Corollary 3.14. All assertions of Theorem 3.11 hold for B∞(R) replaced by
B∞(specT ).

The second assertion in (b) (the exact norm for continuous functions) follows
from the fact that any bounded continuous function on specT can be extended
to a bounded continuous function on R with the same sup-norm (Tietze extension
theorem).

Remark 3.15. For practical computations one does not need to have the canonical
representation from Theorem 3.8 to construct the Borel functional calculus. It
is sufficient to represent T = UMHU

−1, where U : H → L2(X, dµ) is a unitary
operator and MH is the multiplcation operator by some function H in some measure
space (X,µ). Then for any f ∈ B∞(R) one can put f(T ) = UMf◦HU

−1, and one
easily checks that all the required properties are satisfied. For example, if T is
the free Laplacian in L2(Rd), then we know already that T = F−1MHF where
MH is the multiplication by |ξ2| in L2(Rd) and F is the Fourier transform. Then
f(T ) = F−1MFF with F : ξ 7→ f(|ξ|2).

For example, if f(x) = cos
√
x for x ∈ [0,∞) and ϕ ∈ C∞c (Rd), then

f(T )ϕ(x) ≡
(

cos
√
−∆

)
ϕ(x) =

1

(2π)d/2

∫
Rd
eiξ·x

(
cos |ξ|

)
ϕ̂(ξ) dξ.

In fact, one can also define f(T ) for unbounded functions f using the same
expressions: the functional calculus for unbounded functions is also unique if one
assumes that suitable convergences of functions imply suitable convergences of the
associated operators.
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3.3 Some direct applications of the spectral theorem

In a sense, the rest of the course will consist of various applications of the spectral
theorem and the functional calculus. Nevertheless, let us discuss the most immediate
consequences (some of them can be proved by other methods, but the use of the
spectral theorem gives a particularly transparent proof). We will use without further
comments the objects appearing in the formulation of the spectral theorem.

Proposition 3.16 (The norm of the resolvent). For any z ∈ resT one has

‖(T − z)−1‖ =
1

dist(z, specT )
.

Proof. One has (T − z)−1 = r(T ) for the bounded continuous function

r : specT 3 x 7→ (x− a)−1 → C,

hence,

‖(T − z)−1‖ = sup
λ∈specT

|r(λ)| = sup
λ∈specT

1

|λ− z|

=
1

infλ∈specT |λ− z|
=

1

dist(z, specT )
.

The above norm equality is often used in the following form:

Corollary 3.17 (Distance to spectrum). Let 0 6= v ∈ D(T ) and z ∈ C, then

dist(z, specT ) ≤
∥∥(T − z)v

∥∥
‖v‖

.

Proof. If z ∈ specT , then the left-hand side is zero, and the inequality is valid.
Assume now that z /∈ specT and use Proposition 3.16:

‖v‖ = ‖(T−z)−1(T−z)v‖ ≤ ‖(T−z)−1‖ ‖(T−λ)v‖ =
1

dist(z, specT )
‖(T−z)v‖.

Remark 3.18. The above norm equality for the resolvent is one of the basic tools
to approximate the spectra of self-adjoint operators. For non-self-adjoint operators
the estimate fails even in the finite-dimensional case. For example, take H = C2

and

T =

(
0 1
0 0

)
,

then specT = {0}, and for z 6= 0 we have

(T − z)−1 = − 1

z2

(
z 1
0 z

)
.

For the vectors e1 = (1, 0) and e2 = (0, 1) one has 〈e1, (T − z)−1e2〉 = −z−2, which
shows that the norm of the resolvent near z = 0 is of order z−2 = dist(z, specT )−2.
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Theorem 3.19 (Bounds for spectra imply bounds for operators). Let T be
a self-adjoint operator and c ∈ R, then

(a) T ≥ c if and only specT ⊂ [c,∞).

(b) T is bounded with ‖T‖ ≤ c if and only if spec ⊂ [−c, c].

Proof. (a) If T ≥ c, then the inclusion specT ⊂ [c,∞) was already shown in
Theorem 2.23.

Now assume that specT ⊂ [c,∞) for some c ∈ R. Then ess ranh ⊂ [c,∞), in
particular, h ≥ c µ-a.e., and for any ϕ ∈ D(Mh) one has

〈ϕ,Mhϕ〉L2(X,µ) =

∫
X

ϕ(x)h(x)ϕ(x) dµ(x)

=

∫
X

h(x)|ϕ(x)|2 dµ(x) ≥
∫
X

c|ϕ(x)|2 dµ(x) = c‖ϕ‖2
L2(X,µ).

If v ∈ D(T ), then ϕ := Θ−1v ∈ D(Mh) and

〈v, Tv〉H = 〈Θϕ, TΘϕ〉 = 〈ϕ,Θ−1TΘϕ〉L2(X,µ) ≡ 〈ϕ,Mhϕ〉L2(X,µ)

≥ c‖ϕ‖2
L2(X,µ) = c‖Θ−1v‖2

L2(X,µ) = c‖v‖2
H,

which means that T ≥ c.
(b) If T is bounded, then specT ∈

[
− ‖T‖, ‖T‖

]
⊂ [−c, c] by Proposition 2.15.

Now assume that specT ⊂ [−c, c]. This means that ess ranh ≡ specT ⊂ [−c, c]
and then |h| ≤ c µ-a.e., and thenMh is bounded with ‖Mh‖ ≤ c. Then T = ΘMhΘ

−1

is also bounded and has the same norm as Mh.

In what follows we will use very frequently f(T ) for f :=indicator function of a
set. Such operators have a special name:

Definition 3.20 (Spectral projectors). Let Ω ⊂ R be a Borel subset. The
spectral projector of T on Ω is the operator PT (Ω) := 1Ω(T ), where 1Ω is the indicator
function of Ω.

Let us summarize the most important properties of the spectral projectors.

Proposition 3.21 (Properties of spectral projectors). For any self-adjoint
operator T acting in a separable Hilbert space H the following assertions hold true:

(a) Let Ω ⊂ R be a Borel subset, then

(a.1) PT (Ω) is an orthogonal projector.

(a.2) PT (Ω)D(T ) ⊂ D(T ),

(a.3) TPT (Ω) = PT (Ω)T on D(T ).

(b) If Ω, Ω̃ ⊂ R are Borel subsets, then

(b.1) if Ω ∩ Ω̃ = ∅, then
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– ranPT (Ω) ⊥ ranPT (Ω̃),

– PT (Ω ∪ Ω̃) = PT (Ω) + PT (Ω̃),

– ranPT (Ω ∪ Ω̃) = ranPT (Ω) + ranPT (Ω̃).

(b.2) if Ω ⊂ Ω̃, then ranPT (Ω) ⊂ ranPT (Ω̃),

(b.3) PT (Ω) + PT (ΩC) = I. This means that ranPT (ΩC) = ranPT (Ω)⊥.

(c) PT
(
(a, b)

)
= 0 if and only if specT ∩ (a, b) = ∅.

(d) for any λ ∈ R there holds ranPT ({λ}) = ker(T − λ).

(e) specT = {λ ∈ R : PT
(
(λ− ε, λ+ ε)

)
6= 0 for all ε > 0}.

(f) For any λ ∈ R and ε > 0 then

(f.1) ranPT
(
(λ− ε, λ+ ε)

)
∈ D(T ) and

∥∥(T − λ)PT
(
(λ− ε, λ+ ε)

)∥∥ ≤ ε,

(f.2) for any ϕ ∈
[
I−PT

(
(λ−ε, λ+ε)

)]
D(T ) there holds ‖(T −λ)ϕ‖ ≥ ε‖ϕ‖,

(f.3) for any ϕ ∈ PT
(
[λ,∞)

)
D(T ) there holds 〈ϕ, Tϕ〉 ≥ λ‖ϕ‖2.

(g) For any λ ∈ R one has PT ({λ}) = s− limε→ PT
(
(λ− ε, λ+ ε)

)
.5.

Proof. Due to the spectral theorem and the functional calculus, without loss of
generality one may assume that H = L2(X,µ) and T = Mh with X,µ, h as in the
spectral theorem (Theorem 3.8), then PT (Ω) = M1Ω◦h.

To prove (a.1) we remark that 12
Ω = 1Ω and 1Ω = 1Ω, which gives

PT (Ω)2 = PT (Ω), PT (Ω)∗ = PT (Ω).

The first equality means that PT (Ω) is a projector, and the second one means that
this projector is orthogonal. If g : X → C is bounded and measurable, then the
explicit description of D(Mh) shows that MgD(Mh) ⊂ D(Mh) with MgMhϕ =
MhMgϕ for any ϕ ∈ D(Mh). Taking g := 1Ω ◦ h one shows (a.2) and (a.3).

(b.1) If ϕ ∈ ranPT (Ω), then ϕ = (1Ω ◦ h)ϕ, and ϕ(x) = 0 for all µ-a.e. x /∈ Ω.

Analogously, if ψ ∈ ranPT (Ω̃), then ψ(x) = 0 for µ-a.e. x /∈ Ω̃. If Ω ∩ Ω̃ = ∅, then
ϕ(x)ψ(x) = 0 µ-a.e., which implies 〈ϕ, ψ〉L2(X,µ) = 0. This shows the orthogonality

ranPT (Ω) ⊥ ranPT (Ω̃). The second identity follows from

PT (Ω) + PT (Ω̃) = 1Ω(T ) + 1Ω̃(T ) = (1Ω + 1Ω̃)(T )

= 1Ω∪Ω̃(T ) = PT (Ω ∪ Ω̃),

and the third identity follows from the general properties of projectors: if P and P ′

are orthogonal projectors with ranP ⊥ ranP ′, then ran(P + P ′) = ranP + ranP ′.

5Recall that if An, A are bounded linear operators in H, then A = s− limAn means that
Av = limAnv for any v ∈ H (one says that An converges strongly to A).

69



(b.2) Using (a.1) and (b) we have

ranPT (Ω̃) = ran
(
PT (Ω) + PT (Ω̃ \ Ω)

)
= ranPT (Ω) + ranPT (Ω̃ \ Ω) ⊃ ranPT (Ω).

(b.3) follows from (b.1) and the observation that I = 1R(T ) = PT (R).
(c) The condition PT

(
(a, b)

)
= 0 is equivalent to 1(a,b)◦h = 0 µ-e.a., which in turn

means that (a, b) ∩ ess ranh = ∅, and it remains to recall that ess ranh = specMh.
(d) For ϕ ∈ L2(X,µ) one has hϕ = λϕ if and only if ϕ(x) = 0 for h(x) 6= λ, i.e.

if ϕ = (1{λ} ◦h)ϕ, which exactly means ϕ = PT ({λ})ϕ. As PT ({λ}) is an orthogonal
projector, the set of such ϕ coincides with ranPT ({λ}).

(e) The condition PT
(
(λ−ε, λ+ε)

)
6= 0 for all ε > 0 is equivalent 1(λ−ε,λ+ε)◦h 6= 0

for all ε > 0, which in turn means that

µ{x ∈ X : h(x) ∈ (λ− ε, λ+ ε)} > 0 for all ε > 0,

which is exactly the condition λ ∈ ess ranh ≡ specMh.
(f.1) Let φ ∈ L2(X,µ) and ϕ := PT

(
(λ − ε, λ + ε)

)
φ = (1(λ−ε,λ+ε) ◦ h)φ, then

ϕ(s, n) = 0 for all (s, n) ∈ X with s /∈ (λ−ε, λ+ε). Therefore, if x := (s, n) ∈ X with
ϕ(x) 6= 0, then h(x) ≡ s ∈ (λ− ε, λ+ ε), i.e. one has the inequalities |h(x)−λ| < ε,
as then |h(x)| ≤ |λ|+ ε. It follows that∫
X

∣∣h(x)ϕ(x)
∣∣2 dµ(x) =

∫
{x∈X:ϕ(x)6=0}

∣∣h(x)ϕ(x)
∣∣2 dµ(x)

≤
(
|λ|+ ε

)2
∫
{x∈X:ϕ(x)6=0}

∣∣ϕ(x)
∣∣2 dµ(x) =

(
|λ|+ ε

)2‖ϕ‖2 <∞,

which shows that ϕ ∈ D(Mh). Similarly,

‖(Mh − λ)ϕ‖2 =

∫
X

∣∣h(x)− λ
∣∣ |ϕ(x)

∣∣2 dµ(x)

=

∫
{x∈X:ϕ(x)6=0}

∣∣h(x)− λ
∣∣ |ϕ(x)

∣∣2 dµ(x)

≤ ε2

∫
{x∈X:ϕ(x) 6=0}

|ϕ(x)
∣∣2 dµ(x)

= ε2

∫
{x∈X:ϕ(x)6=0}

|φ(x)
∣∣2 dµ(x)

≤ ε2

∫
X

|φ(x)
∣∣2 dµ(x) ≤ ε2‖φ‖2.

(f.2) Let φ ∈ D(Mh) and ϕ :=
[
I − PT

(
(λ− ε, λ+ ε)

)]
φ = (1− 1(λ−ε,λ+ε) ◦ h)φ,

then ϕ(s, n) = 0 for all (s, n) ∈ X with s ∈ (λ−ε, λ+ε). It follows that if (s, n) ∈ X
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with ϕ(s, n) 6= 0, then h(s, n) ≡ s /∈ (λ− ε, λ+ ε), i.e. |h(s, n)− λ| ≥ ε, and then

‖(Mh − λ)ϕ‖2 =

∫
X

∣∣h(x)− λ
∣∣ |ϕ(x)

∣∣2 dµ(x)

=

∫
{x∈X:ϕ(x)6=0}

∣∣h(x)− λ
∣∣ |ϕ(x)

∣∣2 dµ(x)

≥ ε2

∫
{x∈X:ϕ(x)6=0}

|ϕ(x)
∣∣2 dµ(x) = ε2‖ϕ‖2.

(f.3) Let φ ∈ D(Mh) and ϕ := PT
[
λ,∞)

)
φ ≡ (1− 1[λ,∞) ◦ h)φ, then ϕ(s, n) = 0

for all s < λ, and then h(s, n) ≡ s ≥ λ for all (s, n) ∈ X with ϕ(s, n) 6= 0, and

〈ϕ,Mhϕ〉 =

∫
X

h(x)|ϕ(x)|2 dµ(x)

=

∫
{x∈X:ϕ(x) 6=0}

h(x)|ϕ(x)|2 dµ(x)

≥ λ

∫
{x∈X:ϕ(x)6=0}

|ϕ(x)|2 dµ(x) = λ‖ϕ‖2.

(g) Remark that ‖1(λ−ε,λ+ε)‖∞ ≤ 1 and 1(λ−ε,λ+ε) → 1{λ} pointwise. By the
functional calculus (Theorem 3.11) it follows that

s− lim
ε→0+

PT
(
(λ− ε, λ+ ε)

)
= s− lim

ε→0+
1(λ−ε,λ+ε)(T ) = 1{λ}(T ) = PT ({λ}).

Remark 3.22. In order to have a better “feeling” of the spectral projectors, let us
consider the most simple case. Let Ω := (a, b) ⊂ R and assume that the spectrum
of T in Ω consists of N <∞ eigenvalues a < λ1 < · · · < λN < b. By Prop. 3.21(b,c)
one has

PT (Ω)
)

= PT
(
(a, λ1)

)︸ ︷︷ ︸
=0

+PT ({λ1}) + PT
(
(λ1, λ2)

)︸ ︷︷ ︸
=0

+PT ({λ2}) + . . .

=
N∑
k=1

PT ({λk}).

By (d), each operator PT ({λn}) is the orthogonal projector on ker(T −λk): if nk :=
dim ker(T −λk) ∈ N∪{∞} and (ϕkj )j∈{1,...,nk} is an orthonormal basis in ker(T −λk),
then for any v ∈ H one has

PT ({λk}) v =

nk∑
j=1

〈ϕkj , v〉ϕkj , PT (Ω) v =
N∑
k=1

nk∑
j=1

〈ϕkj , v〉ϕkj ,

and span
(
(ϕkj )k∈{1,N}, j∈{1,...,nk}

)
= ranPT (Ω), in particlar, dim ranPT (Ω) is exactly

the number of eigenvalues of T in Ω.

Recall that Weyl sequences were defined in Proposition 2.5.
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Corollary 3.23 (Spectrum and Weyl sequences). Let T be self-adjoint, then
λ ∈ specT if and only if there exists a Weyl sequence for λ.

Proof. If there exist a Weyl sequence for λ, then λ ∈ specT by Proposition 2.5.
On the other hand, let λ ∈ specT . For n ∈ N denote In := (λ − 2−n, λ + 2−n),

then by (d) one has PT (In) 6= 0. By Prop. 3.21(a) one can find un with ‖un‖ = 1 and
un = PT (In)un. By Prop. 3.21(f) one has un ∈ D(T ) and ‖(T − λ)un‖ ≤ 2−n‖un‖,
which shows that (un) is a Weyl sequence for λ.

Proposition 3.24 (Isolated points of the spectrum). Let λ be an isolated point
of the spectrum of a self-adjoint operator T , then:

(a) λ is an eigenvalue of T ,

(b) there exists c > 0 such that ‖(T −λ)u‖ ≥ c‖u‖ for all u ∈ D(T )∩ker(T −λ)⊥.

Proof. (a) By Prop. 3.21(d) it is sufficient to show that PT ({λ}) 6= 0. Let ε > 0
such that (λ− ε, λ+ ε) ∩ specT = {λ}, then

(λ− ε, λ) ∩ specT = (λ, λ+ ε) ∩ specT = ∅.

By Prop. 3.21(e) we have PT
(
(λ − ε, λ + ε)

)
6= 0, and using to Prop. 3.21(b,c) we

arrive at

PT ({λ}) = PT
(
(λ− ε, λ)

)︸ ︷︷ ︸
=0

+PT ({λ}) + PT
(
(λ, λ+ ε)

)︸ ︷︷ ︸
=0

= PT
(
(λ− ε, λ+ ε)

)
6= 0.

(b) Recall that if P is an orthogonal projector on some closed subspace V , then
P⊥ := I − P is the orthogonal projection on V ⊥. As already seen, P := PT ({λ}) is
the orthogonal projector on ker(T − λ), then P⊥ := I − PT ({λ}) is the orthogonal
projector on ker(T−λ)⊥. Therefore, for any u ∈ D(T ) one has u ⊥ ker(T−λ) if and
only if u = P⊥u. As seen in (a), for some ε > 0 one has PT ({λ}) = PT

(
(λ−ε, λ+ε)

)
.

Now let u ∈ D(T ) with u ⊥ ker(T−λ), then u = P⊥u ≡
[
I−PT

(
(λ−ε, λ+ε)

)]
u,

and ‖(T − λ)u‖ ≥ ε‖u‖ due to Prop. 3.21(e.2).
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4 Classification of spectra and perturbations

4.1 Discrete and essential spectra

In this section, let T be a self-adjoint operator in a separable Hilbert space H. Up
to now we just distinguished between the whole spectrum (specT ) and the point
spectrum (specp T ), i.e. the set of eigenvalues. Let us introduce another classification
of spectra, which is useful when studying various perturbations.

Definition 4.1 (Discrete spectrum, essential spectrum). The discrete spec-
trum specdisc T of T is defined by

specdisc T :=
{
λ ∈ specT : ∃ε > 0 with dim ranPT

(
(λ− ε, λ+ ε)

)
<∞

}
,

and essential spectrum specess T is

specess T := specT \ specdisc T.

By definition, the discrete spectrum and the essential spectrum are disjoint. Let
us find equivalent characterizations for both of them.
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Theorem 4.2 (Characterization of the discrete spectrum).
Let λ ∈ R, then the following two conditions are equivalent:

(a) λ ∈ specdisc T ,

(b) λ is an eigenvalue of T of finite multiplicity and an isolated point of specT .

(Such eigenvalues are usually called discrete eigenvalues).

Proof. (a⇒b) Let λ ∈ specdisc T , then:

• for any ε > 0 one has PT
(
(λ− ε, λ+ ε)

)
6= 0 by Prop. 3.21(e),

• for some ε0 > 0 one has N := dim ranPT
(
λ− ε0, λ+ ε0)

)
<∞.

For 0 < ε < ε′ < ε0 one has ranPT
(
(λ− ε, λ+ ε)

)
⊂ ranPT

(
(λ− ε′, λ+ ε′)

)
(Prop.

3.21(b)). In particular, the function

κ : (0, ε0) 3 ε 7→ dim ranPT
(
(λ− ε, λ+ ε)

)
∈ {1, . . . , N}

is non-decreasing. It follows that there exist ε1 ∈ (0, ε0) and k ∈ {1, . . . , N} such
that κ(ε) = k for all ε ∈ (0, ε1), and then it follows that V := ranPT

(
(λ− ε, λ+ ε)

)
is the same for all ε ∈ (0, ε1) with dimV = k ≥ 1.

Let P be the orthogonal projector on V , then P 6= 0. As orthogonal projectors
are unquely determined by their ranges, it follows P = PT

(
(λ − ε, λ + ε)

)
for all

ε ∈ (0, ε1), in particular, P = s− limε→0+ PT
(
(λ−ε, λ+ε)

)
= PT ({λ}) by Prop. 3.21,

and then λ ∈ specp T by Prop. 3.21(d).

Now pick any ε ∈ (0, ε1), then due to PT
(
(λ− ε, λ+ ε)

)
= PT ({λ}) and

PT
(
(λ− ε, λ+ ε)

)
= PT ({λ}) + PT

(
(λ− ε, λ) ∪ (λ, λ+ ε)

)
we obtain PT

(
(λ− ε, λ) ∪ (λ, λ+ ε)

)
= 0. Using Prop. 3.21(b) again we obtain

{0} = ranPT
(
(λ− ε, λ) ∪ (λ, λ+ ε)

)
= ranPT

(
(λ− ε, λ)

)
+ ranPT

(
(λ, λ+ ε)

)
,

which means ranPT
(
(λ − ε, λ)

)
= ranPT

(
(λ, λ + ε)

)
= {0}, and by Prop. 3.21(c)

this means specT ∩ (λ − ε, λ) = specT ∩ (λ, λ + ε) = ∅, i.e. λ is an isolated point
of specT .

(b⇒a) Let λ be an eigenvalue of finite multiplicity and an isolated point of the
spectrum. One has dim ranPT ({λ}) = dim ker(T−λ) <∞ by Prop. 3.21(d), and for
some ε > 0 one has (λ− ε, λ)∩ specT = (λ, λ+ ε)∩ specT = ∅. Using Prop. 3.21(c)
we obtain

PT
(
(λ− ε, λ+ ε)

)
= PT

(
(λ− ε, λ)

)︸ ︷︷ ︸
=0

+PT ({λ}) + PT
(
(λ, λ+ ε)

)︸ ︷︷ ︸
=0

= PT ({λ}),

and dim ranPT
(
(λ− ε, λ+ ε)

)
= dim ranPT ({λ}) <∞.

Theorem 4.3 (Characterization of the essential spectrum).
Let λ ∈ specT , then λ ∈ specess T if and only if at least one of the following

three conditions holds:
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• λ /∈ specp T ,

• λ is an accumulation point of specT ,

• dim ker(T − λ) =∞.

Furthermore, specess T is a closed set.

Proof. The first part just describes the points of the spectrum which are not eigen-
values of finite multiplicity or not isolated. For the second part we note that specess T
is obtained from the closed set specT by removing some isolated points. Each iso-
lated point is a relatively open subset, and any set of isolated points is again rela-
tively open (as the union of arbitrarily many open sets is open), so removing such a
set from the closed set specT gives a closed set.

Example 4.4 (Essential spectrum for compact operators). If T is a compact
self-adjoint operator in an infinite-dimensional space H, then one easily sees that
specess T = {0}.

Namely, by Theorem 2.24 for any ε > 0 the set specT \(−ε, ε) consists of a finite
number of eigenvalues of finite multiplicity, hence we have: specess T \ (−ε, ε) =
∅ and dim ranPT

(
R \ (−ε, ε)

)
< ∞ (see Remark 3.22). On the other hand, by

Prop. 3.21(b.3) one has

dim ranPT
(
R \ (−ε, ε)

)︸ ︷︷ ︸
<∞

+ dim ranPT
(
(−ε, ε)

)
= dim ranH =∞

which gives dim ranPT
(
(−ε, ε)

)
=∞ for any ε > 0, i.e. 0 ∈ specess T .

Definition 4.5 (Purely discrete and purely essential spectra). Let T be a
self-adjoint operator and I ⊂ R some open interval. We say that T has

• a purely discrete spectrum in I if specess T ∩ I = ∅,

• a purely essential spectrum in I if specdisc T ∩ I = ∅.

If specess T = ∅, then we say simply that the spectrum of T is purely discrete,
and for specdisc T = ∅ we says that the spectrum of T is purely essential.

Example 4.6. The spectrum of the free Laplacian in L2(Rd) has [0,+∞), and it is
purely essential, as it has no isolated points.

Example 4.7. If T is a self-adjoint operator with compact resolvent, it has no
essential spectrum (each point of the spectrum is an eigenvalue of finite multilplicity,
and the spectrum has no accumulation points). In fact, one can easily show that
a self-adjoint operator has purely discrete spectrum if and only if it has compact
resolvent.

The main difference between the discrete and the essential spectra comes from
their behavior with respect to perturbations. This will be discussed in the following
sections.
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4.2 Relatively bounded perturbations

We have seen since the beginning of the course that one needs to pay attention
to the domains of unbounded operators. The aim of the present subsection is to
describe some classes of operators in which such problems can be avoided using the
idea that if one perturbs a “good” operator by adding a “small” operator, then the
result is again “goood”.

Recall that a linear operator T is essentially self-adjoint if its closure is a self-
adjoint operator (or , equivalently, that the adjoint T ∗ is symmetric). In addition,
we say that a linear operator T is essentially self-adjoint on a subspace D ⊂ D(T ),
if the closure of the restriction T |D of T on D is a self-adjoint operator. We already
know that an essentially self-adjoint operator has a unique self-adjoint extension.

The following simple result will be used several times:

Lemma 4.8. Let T be a symmetric operator and λ ∈ R \ {0}, then:

(a) ran(T + iλ) = ran(T + iλ),

(b) ran(T + iλ) is closed if and only if T is closed.

Proof. It is clear that (b) is a consequence of (a). To prove (a) we remark first that
for any x ∈ D(T ) we have:∥∥(T + iλ)x

∥∥2
=
〈
(T + iλ)x, (T ± iλ)x

〉
= 〈Tx, Tx〉+ λ2〈x, x〉+ iλ

(
〈Tx, x〉 − 〈x, Tx〉︸ ︷︷ ︸
=0 as T is symmetric

)
= ‖Tx‖2 + λ2‖x‖2.

(4.1)

Let y ∈ ran(T + iλ) and yn ∈ ran(T + iλ) with yn → y, then (yn) is a Cauchy
sequence in H. One has yn = (T + iλ)xn with some xn ∈ D(T ), and due to (4.1)
the sequence (xn) is also Cauchy in H and converges to some x ∈ D(T ). As T is
closable, then the operator T + iλ is also closable, which shows that x ∈ D(T ) and
y = (T + iλ)x ≡ (T + iλ)x, i.e. y ∈ ran(T + iλ).

Now let y ∈ ran(T + iλ), then y = (T + iλ)x for some x ∈ D(T ). This means
that there are xn ∈ D(T ) such that x → x in H and yn := (T + iλ)xn → y in H
Due to yn ∈ D(T ) one obtains y ∈ ran(T + iλ).

Theorem 4.9 (Self-adjointness criterion). Let T be a closed densely defined
symmetric operator in a Hilbert space H and λ > 0, then the following three asser-
tions are equivalent:

(A) T is self-adjoint,

(B) ker(T ∗ + iλ) = ker(T ∗ − iλ) = {0},

(C) ran(T + iλ) = ran(T − iλ) = H.
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Proof. (A⇒B) is clear, as a self-adjoint operator cannot have non-real eigenvalues.
(B⇒C). One has ran(T ∓ iλ) = ker(T ∗ ± iλ)⊥ = H (Prop. 2.16), and the

subspaces ran(T ± iλ) are closed by Lemma 4.8(b).
(C⇒A). Let ϕ ∈ D(T ∗). Due to the surjectivity of T − iλ one can find ψ ∈ D(T )

with (T − iλ)ψ = (T ∗ − iλ)ϕ. As T ⊂ T ∗, we have (T ∗ − iλ)(ψ − ϕ) = 0. We have

ker(T ∗ − iλ) = ran(T + iλ)⊥ = H⊥ = {0},

which means that ϕ = ψ ∈ D(T ) and then T ∗ϕ = Tϕ. This shows T ∗ ⊂ T , and T
is self-adjoint.

By combining Theorem 4.9 with Lemma 4.8(a) we immediately obtain:

Theorem 4.10 (Essential self-adjointness criterion). Let T be a densely de-
fined symmetric operator in a Hilbert space H and λ > 0, then the following three
assertions are equivalent:

(A) T is essentially self-adjoint,

(B) ker(T ∗ + iλ) = ker(T ∗ − iλ) = {0},

(C) ran(T + iλ) and ran(T − iλ) are dense in H.

Remark that for semibounded operators we have an alternative version with less
conditions to check, which is proved in a very similar way (exercise):

Theorem 4.11 (Essential self-adjointness for semibounded operators). Let
T be a densely symmetric operator in a Hilbert space H with T ≥ 0 and let a > 0,
then:

• ran(T + a) = ran(T + a),

• ran(T + a) is closed if and only if T is closed,

and the following three assertions are equivalent:

(a) T is essentially self-adjoint,

(b) ker(T ∗ + a) = {0},

(c) ran(T + a) is dense in H.

Now we would like to apply the above assertions to the study of some perturba-
tions of self-adjoint operators.

Definition 4.12 (Relative boundedness). Let A be a self-adjoint operator in a
Hilbert space H and B be a linear operator with D(A) ⊂ D(B). Assume that there
exist a, b > 0 such that

‖Bf‖ ≤ a‖Af‖+ b‖f‖ for all f ∈ D(A),
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then B is called relatively bounded with respect to A or, for short, A-bounded. The
infimum of all possible values a is called the relative bound of B with respect to A.
If the relative bound is equal to 0 (i.e. if for any a > 0 one can find b > 0 such
that the above estimate holds), then B is called infinitesimally small with respect
to A.

Theorem 4.13 (Kato-Rellich). Let A be a self-adjoint operator in H and let B
be a symmetric operator in H which is A-bounded with a relative bound < 1, then

(i) the operator A+B with domain D(A+B) = D(A) is self-adjoint.

Moreover:

(ii) if A is essentially self-adjoint on some subspace D ⊂ D(A), then A + B is
essentially self-adjoint on D,

(iii) if A is semibounded from below, then also A+B is semibounded from below.

Proof. We will only prove (i), and (ii) and (iii) will be discussed as exercises.
By assumption, one can find a ∈ (0, 1) and b > 0 such that

‖Bu‖ ≤ a‖Au‖+ b‖u‖ for all u ∈ D(A). (4.2)

Remark that A + B with domain D(A + B) = D(A) is at least symmetric. The
proof of (i) is now decomposed in three steps.

Step 1. Let λ > 0, then as in (4.1) one obtains

‖(A+B ± iλ)u‖2 = ‖(A+B)u‖2 + λ2‖u‖2 for all u ∈ D(A).

Therefore, for all u ∈ D(A) one can estimate

2
∥∥(A+B ± iλ)u

∥∥ ≥ ∥∥(A+B)u
∥∥+ λ‖u‖

≥ ‖Au‖ − ‖Bu‖+ λ‖u‖ = (1− a)‖Au‖+ (λ− b)‖u‖.
(4.3)

Let us pick some λ > b.
Step 2. Let us show that A+B with D(A+B) = D(A) is a closed operator.
Let (un) ⊂ D(A) and fn := (A + B)un such that both un and fn converge in

H. By (4.3), the sequence Aun is Cauchy. As A is closed, the sequence un converge
to some u ∈ D(A) and Aun converge to Au. By (4.2), the sequence Bun is Cauchy
and converges to some v ∈ H. For any h ∈ D(A) one has 〈v, h〉 = lim〈Bun, h〉 =
lim〈un, Bh〉 = 〈u,Bh〉 = 〈Bu, h〉. As D(A) is dense, it follows that v = Bu, i.e.
limBun = Bu. So finally (A + B)un = Aun + Bun converge to (A + B)u, which
shows that A+B is closed.

Step 3. Let us show that the operators A + B ± iλ : D(A) → H are bijective
at least for large λ. As previously, for any u ∈ D(A) we have ‖(A ± iλ)u‖2 =
‖Au‖2 + λ2‖u‖2 and then

‖Bu‖ ≤ a‖Au‖+ b‖u‖

≤ a
∥∥(A± iλ)u

∥∥+
b

|λ|
∥∥(A± iλ)u

∥∥ =
(
a+

b

|λ|
)∥∥(A± iλ)u

∥∥.
78



Let v ∈ H, then u := (A± iλ)−1v ∈ D(A), and the preceding inequality gives

‖B(A± iλ)−1v‖ ≤
(
a+

b

|λ|

)
‖v‖.

As a ∈ (0, 1), we can choose λ sufficiently large to have a+ b/|λ| < 1, then it follows
that

∥∥B(A± iλ)−1
∥∥ < 1.

Now we represent A + B ± iλ =
(
I + B(A ± iλ)−1

)
(A ± iλ). Recall that the

operators A ± iλ : D(A) → H are bijective. If λ is sufficiently large, then the
operators I + B(A ± iλ)−1 : H → H are bijections due to

∥∥B(A ± iλ)−1
∥∥ < 1.

Therefore, the operators A+B±iλ are bijective, in particular, ran(A+B±iλ) = H.
By Theorem 4.9 the operator A+B is self-adjoint.
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4.3 Essential self-adjointness of Schrödinger operators

The Kato-Rellich theorem is one of the tools used to simplify the consideration of
the Schrödinger operators.

Theorem 4.14 (Kato-Rellich for Schrödinger operators). Let d ∈ N,

p = 2 for d ≤ 3, p >
d

2
for d ≥ 4,

and V ∈ Lp(Rd)+L∞(Rd) real-valued. Then the operator T = −∆+V with domain
D(T ) = H2(Rd) is self-adjoint in H = L2(Rd). Moreover, it is essentially self-
adjoint on C∞c (Rd) and semibounded from below.

Proof. We give the proof only for the dimension d ≤ 3 (some comments on d ≥ 4
are given at the end). For all f ∈ C∞c (Rd), λ > 0, x ∈ Rd we have, using the Fourier
inversion formula and the Cauchy-Schwarz inequality,∣∣f(x)

∣∣ =

∣∣∣∣ 1

(2π)d/2

∫
Rd
eiξ·xf̂(ξ) dξ

∣∣∣∣ ≤ 1

(2π)d/2

∫
Rd

∣∣f̂(ξ)
∣∣ dξ

=
1

(2π)d/2

∫
Rd

1

|ξ|2 + λ

(
|ξ|2 + λ

)∣∣f̂(ξ)
∣∣ dξ

≤ 1

(2π)d/2

∥∥∥ 1

|ξ|2 + λ

∥∥∥
L2

∥∥∥(|ξ|2 + λ
)
f̂
∥∥∥
L2

≤ 1

(2π)d/2

∥∥∥ 1

|ξ|2 + λ

∥∥∥
L2

(∥∥|ξ|2f̂∥∥
L2︸ ︷︷ ︸

=‖∆f‖2
L2

+λ ‖f̂ ‖L2︸ ︷︷ ︸
=‖f‖2

L2

)
= aλ‖∆f‖L2 + bλ‖f‖L2

with

aλ =
cλ

(2π)d/2
, bλ =

λcλ
(2π)d/2

, cλ :=
∥∥∥ 1

|ξ|2 + λ

∥∥∥
L2
.

Remark that the condition cλ <∞ is equivalent to d ≤ 3. Therefore,

‖f‖∞ ≤ aλ‖∆f‖+ bλ‖f‖, (4.4)

which extends by density to all f ∈ H2(Rd).
Let V = V2 + V∞ with V2 ∈ L2(Rd) and V∞ ∈ L∞(Rd). Using (4.4), for any

f ∈ H2(Rd) and any λ > 0 we have

‖V f‖L2 = ‖(V2 + V∞)f‖L2 ≤ ‖V2f‖L2 + ‖V∞f‖L2

≤ ‖V2‖L2‖f‖∞ + ‖V∞‖∞‖f‖L2 ≤ ãλ‖∆f‖+ b̃λ‖f‖,
ãλ := ‖V2‖L2aλ, b̃λ = ‖V2‖L2bλ + ‖V∞‖∞.

As limλ→+∞ aλ = 0, the operator of multilplication by V is infinitesimally small
with respect to the free Laplacian, and all the claims follow from the Kato-Rellich
theorem (Theorem 4.13).

80



The above proof uses that the function Rd 3 ξ 7→
(
|ξ|2 +λ

)−1
belongs to L2(Rd)

for d ≤ 3. For d ≥ 4 it does not work, and one must use additional results stat-
ing that Hk(Rd) are continuously embedded in Lq(Rd) for suitable combinations of
k, q, d.

Example 4.15 (Coulomb potential). Consider H = L2(R3) and T = −∆ + V
with the Coulomb potential V (x) = q/|x|, q ∈ R. Let Ω be any ball centered at the
origin, then

1ΩV ∈ L2(R3), (1− 1Ω)V ∈ L∞(R3), V = 1ΩV + (1− 1Ω)V ∈ L2(R3) +L∞(R3)

and by Theorem 4.14 the operator T is self-adjoint on H2(R3) and essentially self-
adjoint on C∞c (R3).

Let us mention some other results (of non-perturbative nature) allowing to show
the essential self-adjointness for a larger class of potentials .

Theorem 4.16 (Essential self-adjointness for locally bounded potentials).
Let H = L2(Rd) and let V ∈ L∞loc(Rd) be real-valued such that T = −∆ + V with
domain D(T ) = C∞c (Rd) is semibounded from below (remark that we require the
semiboundness of T and not the semiboundedness of V ). Then T is essentially
self-adjoint on C∞c (Rd).

Proof. By adding a constant to the potential V one may assume that T ≥ 1. In
other words, using the integration by parts,∫

Rd

(∣∣∇u(x)
∣∣2 + V (x)

∣∣u(x)
∣∣2) dx ≥

∫
Rd

∣∣u(x)
∣∣2 dx (4.5)

for all u ∈ C∞c (Rd), and this extends by density at least to all u ∈ H1
comp(Rd), where

H1
comp stands for H1 functions vanishing outside a compact set. By Theorem 4.11 it

is sufficient to show that ranT is dense in H.
Let f ⊥ ranT , which means that f ∈ L2(Rd) and

〈
f, (−∆+V )u

〉
= 0 for all u ∈

C∞c (Rd). Note that T preserves the real-valuedness, and we can suppose without loss
of generality that f is real-valued (otherwise consider its real and imaginary parts
separately). We have at least (−∆+V )f = 0 weakly, and then ∆f = V f ∈ L2

loc(Rd)
(this uses the assumption V ∈ L∞loc). The elliptic regularity theorem (Theorem 1.54)
shows that f ∈ H2

loc(Rd).
For any real-valued ϕ, u ∈ C∞c (Rd) one has∫
Rd
∇(ϕf) · ∇(ϕu) dx =

∫
Rd

(f∇ϕ+ ϕ∇f) · (u∇ϕ+ ϕ∇u) dx

=

∫
Rd

(
|∇ϕ|2fu+ ϕ∇ϕ · (f∇u+ u∇f) + ϕ2∇f · ∇u

)
dx

=

∫
Rd

(
|∇ϕ|2fu+ ϕ∇ϕ · (f∇u− u∇f)

)
dx

+

∫
Rd

(
2ϕ∇ϕu+ ϕ2∇u) · ∇f dx.
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Using the definition of weak derivatives one transforms the last summand:∫
Rd

(
2ϕ∇ϕu+ ϕ2∇u) · ∇f dx =

∫
Rd

(
∇(ϕ2)u+ ϕ2∇u

)
· ∇f dx

=

∫
Rd
∇(ϕ2u) · ∇f dx =

∫
Rd
ϕ2u (−∆f) dx,

and then∫
Rd
∇(ϕf)·∇(ϕu) dx =

∫
Rd

(
|∇ϕ|2fu+ϕ∇ϕ·(f∇u−u∇f)

)
dx+

∫
Rd
ϕ2u (−∆f) dx.

It follows that for any u ∈ C∞c (Rd) one has∫
Rd
∇(ϕf) · ∇(ϕu) dx+

∫
Rd
V ϕf ϕu dx

=

∫
Rd

(
|∇ϕ|2fu+ ϕ∇ϕ · (f∇u− u∇f)

)
dx+

∫
Rd
ϕ2u (−∆ + V )f︸ ︷︷ ︸

=0

dx

=

∫
Rd

(
|∇ϕ|2fu+ ϕ∇ϕ · (f∇u− u∇f)

)
dx,

which then extends by density at least to all u ∈ H1
loc(Rd). In particular, one can

take u := f , then f∇u− u∇f ≡ 0 and∫
Rd

(∣∣∇(ϕf)
∣∣2 + V |ϕf |2

)
dx =

∫
Rd
|∇ϕ|2f 2 dx.

Using (4.5) for u := ϕf we arrive at∫
Rd
|∇ϕ|2f 2 dx ≥

∫
Rd
|ϕf |2 dx (4.6)

for all real-valued ϕ ∈ C∞c (Rd).
Let ϕ ∈ C∞c (Rd) be real-valued such that ϕ(x) = 1 for all |x| ≤ 1 and ϕ(x) = 0

for all |x| ≥ 2. Consider ϕn : x 7→ ϕ(x/n), then (4.6) gives∫
Rd

∣∣∇ϕn∣∣2f 2 dx ≥
∫
Rd
ϕ2
nf

2 dx, n ∈ N.

Recall that f ∈ L2(Rd) and ‖∇ϕn‖∞ = 1
n
‖∇ϕ‖∞. Furthermore, if N ≥ N, then for

all n ≥ N one has ϕn = 1 on BN(0), and then∫
BN (0)

f 2 dx ≤
∫
Rd
ϕ2
nf

2 dx ≤
∫
Rd

∣∣∇ϕn∣∣2f 2 dx

≤ ‖∇ϕn‖2
∞‖f‖2

L2 ≤
1

n2
‖∇ϕ‖2

∞‖f‖2
L2

n→∞−→ 0,

which shows that f = 0 in BN(0) a.e. As N ∈ N is arbitrary, one has f = 0.

Remark 4.17. Theorem 4.16 still holds if one replaces the assumption V ∈ L∞loc(Rd)
by the weaker assumption V ∈ L2

loc(Rd), but then one needs more advanced ma-
chineries for the proof.
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4.4 Stability of the essential spectrum

We have seen above that the spectrum of a self-adjoint operator can be characterized
using Weyl sequences (Proposition 2.5). The following theorem gives a description
of the essential spectrum in a similar spirit.

Theorem 4.18 (Weyl criterion for the essential spectrum). For any self-
adjoint operator T in a Hilbert space H the condition λ ∈ specess T is equivalent to
the existence of a sequence (un) ⊂ D(T ) satisfying the following three properties:

(a) ‖un‖ ≥ c with some c > 0,

(b) un converge weakly to 0,

(c) (T − λ)un converge to 0 in H.

Such a sequence will be called a singular Weyl sequence for λ. Moreover, it will be
shown in the proof that the conditions (a) and (b) above can be replaced by the single
condition

(AB) un form an orthonormal sequence.

Proof. Let W (T ) be the set of all λ for which one can find a singular Weyl sequence,
then we need to show that W (T ) = specess T . Remark first that

W (T ) ⊂ specT ⊂ R,

because any singular Weyl sequence is also a Weyl sequence.
(a) We first show the inclusion W (T ) ⊂ specess T . Let λ ∈ W (T ) and let (un)

be an associated singular Weyl sequence. We know already that λ ∈ specT , so
assume by contradiction that λ ∈ specdisc T and let Π := PT ({λ}) be the orthogonal
projector on ker(T − λ). Recall (Prop. 3.24) that one can find c > 0 such that

‖(T − λ)(I − Π)u‖ ≥ c‖(I − Π)u‖ for all u ∈ D(T ). (4.7)

The finite-rank operator Π is compact, hence, Πun converge to 0 in H. Therefore,
the vectors wn := (1 − Π)un satisfy ‖wn‖ ≥ 1

2
for large n. On the other hand, the

vectors (T − λ)wn = (1−Π)(T − λ)un converge to 0 in H, which contradicts (4.7).
(b) Now we pass to the proof of specess T ⊂ W (T ). Let λ ∈ specess T , then there

are two possibilities.
(b: Possibility 1) Assume that λ is an isolated point of specT . Then it is an

eigenvalue of infinite multiplicity, and any infinite orthonormal family in ker(T −λ)
forms a singular Weyl sequence and λ ∈ W (T ).

(b: Possibility 2) Assume that λ is an accumulation point of specT . Consider
the intervals Iε := (λ− ε, λ + ε), then for 0 < ε′ < ε one has Iε′ ⊂ Iε, which yields
ranPT (Iε′) ⊂ ranPT (Iε).

Now we prove the following claim: for any ε > 0 there exists ε′ ∈ (0, ε) such
that ranPT (Iε′) 6= ranPT (Iε). Assume the opposite, i.e. that for some ε > 0 one
has ranPT (Iε′) = ranPT (Iε) for all ε′ ∈ (0, ε). Then Prop. 3.21(g) gives

PT (Iε) = lim
ε′→0

PT (Iε′) = PT ({λ}),
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and due to PT (Iε) = PT ({λ}) + PT (Iε \ {λ}) we have PT (Iε \ {λ}) = 0, and

{0} = ranPT (Iε \ {λ}) ≡ ranPT
(
(λ− ε, λ) ∪ (λ, λ+ ε)

)
= ranPT

(
(λ− ε, λ)

)
+ ranPT

(
(λ, λ+ ε)

)
,

which shows ranPT
(
(λ − ε, λ)

)
= ranPT

(
(λ, λ + ε)

)
= {0}, and it follows that

specT ∩ (λ−ε, λ) = specT ∩ (λ, λ+ε) = ∅, i.e. that λ is an isolated point of specT .
This contradiction proves the above claim.

It follows from the claim that there is a strictly decreasing sequence εn > 0
with limn→∞ εn = 0 such that for the intervals Jn := (λ − εn, λ + εn) one has
ranPT (Jn+1) ⊂ ranPT (Jn) and ranPT (Jn+1) 6= ranPT (Jn) for any n ∈ N. In view
of Jn+1 ⊂ Jn and of the orthogonal decomposition (Prop. 3.21(b))

ranPT (Jn) = ranPT (Jn+1) + ranPT (Jn \ Jn+1)

we have PT (Jn \ Jn+1) 6= 0 for any n, and we can find un ∈ H with ‖un‖ = 1 and
PT (Jn \ Jn+1)un = un. As the sets Jn \ Jn+1 are mutually disjoint, the vectors un
form an orthonormal sequence (Prop. 3.21(b)) and, in particular, converge weakly
to 0. Due to un ∈ ranPT (Jn \ Jn+1) ⊂ ranPT (Jn) we have by Prop. 3.21(f)

un ∈ D(T ), ‖(T − λ)un‖ ≤ εn‖un‖ = εn
n→∞−→ 0,

This shows that (un) is a singular Weyl sequence for λ and λ ∈ W (T ).

The following theorem provides a starting point to the study of perturbations of
self-adjoint operators.

Theorem 4.19 (Stability of the essential spectrum). Let A and B be self-
adjoint operators such that K(z) := (A− z)−1− (B− z)−1 is a compact operator for
some z ∈ resA ∩ resB, then specess A = specess B.

Proof. Let λ ∈ specess A and let (un) be an associated singular Weyl sequence.
Without loss of generality assume that ‖un‖ = 1 for all n. We have

lim
(

(A− z)−1 − 1

λ− z

)
un = lim

1

z − λ
(A− z)−1(A− λ)un = 0. (4.8)

As K(z) is compact, the sequence K(z)un converges to 0 in H, and

lim
1

z − λ
(B − λ)(B − z)−1un = lim

(
(B − z)−1 − 1

λ− z

)
un

= lim
(

(A− z)−1 − 1

λ− z

)
un − limK(z)un = 0.

Now denote vn := (B−z)−1un, then the preceding computations already shows that
(B − λ)vn converge to 0 in H. As un weakly converge to 0, for any h ∈ H one has

〈h, vn〉 = 〈h, (B − z)−1un〉 =
〈(

(B − z)−1)∗h, un
〉 n→∞−→ 0,
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showing that vn converge weakly to 0. In addition we have

vn −
1

λ− z
un = (B − z)−1un −

1

λ− z
un

= (A− z)−1un −
1

λ− z
un︸ ︷︷ ︸

→0 by (4.8)

−K(z)un︸ ︷︷ ︸
→0

→ 0,

which gives

lim ‖vn‖ = lim
1

|λ− z|
‖un‖︸︷︷︸

=1

=
1

|λ− z|
> 0.

Therefore, the vectors vn (with sufficiently large n) form a singular Weyl sequence
for B and λ, and λ ∈ specess B due to the Weyl criterion (Theorem 4.18).

The above argument shows specess A ⊂ specess B, and by interchanging the roles
of A and B one obtains specess A ⊃ specess B.

Remark 4.20. (a) a simple algebra based on the resolvent identities shows that if
K(z) in Theorem 4.19 is compact for some z ∈ resA ∩ resB, then it is compact for
all z ∈ resA ∩ resB.

(b) The simplest situation in which the assumption of Theorem 4.19 is satisfied
is B = A+K with a compact self-adjoint operator K: in this case one has that

(A+i)−1−(B+i)−1 = (B+i)−1K(A+i)−1 = bounded·compact·bounded = compact.

But this does not exhaust all possibilities: the assumption can be satisfied even for
B = A+K with some unbounded K: this is what we are going to discuss.

Definition 4.21 (Relatively compact operators). Let A be a self-adjoint op-
erator in a Hilbert space H, and let B a closable linear operator in H with
D(A) ⊂ D(B). We say that B is relatively compact with respect to A (or simply
A-compact) if B(A− z)−1 is compact for some z ∈ resA.

Remark 4.22. It follows from the resolvent identitites that if B(A−z)−1 is compact
for some z ∈ resA, then it is compact for all z ∈ resA. If B is compact, then it is
relatively compact with respect to any A.

We first show that relatively compact perturbations are covered by the Kato-
Rellich theorem:

Lemma 4.23. If B is relatively compact with respect to A, then it is also infinites-
imally small with respect to A.

Proof. We show first that

lim
λ→+∞

∥∥B(A− iλ)−1
∥∥ = 0 (4.9)

Assume that (4.9) is false, then one can find a constant α > 0, 0 6= un ∈ H and
λn > 0 with limλn = +∞ such that

∥∥B(A− iλ)−1un
∥∥ > α‖un‖ for all n. Consider
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vn := (A − iλn)−1un ∈ D(A), then ‖Bvn‖ > α‖(A − iλ)vn‖. Taking the square on

both sides and using
∥∥(A− iλn)vn

∥∥2
= ‖Avn‖2 + λ2

n‖vn‖2 we arrive at

‖Bvn‖2 > α2‖Avn‖2 + α2λ2
n‖vn‖2.

Without loss of generality assume the normalization ‖Bvn‖ = 1, then:

(i) the sequence Avn is bounded and (ii) vn converge to 0.

Let z ∈ resA, then (A − z)vn is also bounded and, therefore, it contains a
weakly convergent subsequence (A − z)vnk . As B(A − z)−1 is a compact operator,
the vectors B(A− z)−1(A− z)vnk ≡ Bvnk converge in H to some w with ‖w‖ = 1.
As vnk converge to 0, the closability of B implies w = 0. This contradiction shows
that (4.9) is true.

Let a > 0, then one can find λ > 0 such that ‖B(A − iλ)−1u‖ ≤ a‖u‖ for all
u ∈ H. Taking u := (A− iλ)v with an arbitrary v ∈ D(A) we see that

‖Bv‖ ≤ a‖(A− iλ)v‖ ≤ a‖Av‖+ aλ‖v‖ for all v ∈ D(A).

As a > 0 is arbitrary, we get the result.

Now we arrive at the main result of this section:

Theorem 4.24 (Essential spectrum under relatively compact perturba-
tions). Let A be a self-adjoint operator in a Hilbert space H and let B be symmetric
and A-compact, then:

• the operator A+B with D(A+B) = D(A) is self-adjoint,

• if A is semibounded, so A+B is also semibounded,

• specess(A+B) = specess A.

Proof. The self-adjointness/semiboundedness of A+B follow by the Kato-Rellich
theorem 4.13 (which is applicable due to Lemma 4.23). One has

(A+ i)−1 − (A+B + i)−1 = (A+B + i)−1︸ ︷︷ ︸
bounded

B(A+ i)−1︸ ︷︷ ︸
compact

= compact,

and specess(A+B) = specess A by Theorem 4.19.
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4.5 Essential spectra for Schrödinger operators

Definition 4.25 (Potentials of Kato class). Let d ∈ N and

p = 2 for d ≤ 3, p >
d

2
for d ≥ 4

(i.e. p are the same as in the Kato-Rellich theorem for Schrödinger operators,
Theorem 4.14). A measurable function V : Rd → R belongs to the Kato class on
Rd if for any ε > 0 one can find real-valued Vp ∈ Lp(Rd) and V∞ ∈ L∞(Rd) with
V = Vp + V∞ and ‖V∞‖∞ < ε.

Theorem 4.26 (Essential spectrum for Kato class potentials). If V is a Kato
class potential in Rd, then V is compact with respect to the free Laplacian in L2(Rd),
and the essential spectrum of T = −∆ + V is equal to [0,∞).

Proof. First remark that V is covered by Theorem 4.14, so T is uniquely defined.
We give the proof for d ≤ 3 only.

Let F and T0 be the Fourier transform and the free Laplacian in L2(Rd). Then
T0 = F−1M|ξ|2F and for any z /∈ specT0 one has

(T0 − z)−1 = F−1(M|ξ|2 − z)−1F ≡ F−1M 1
|ξ|2−z
F ,

i.e. for any f ∈ L2(Rd) one has

F(T0 − z)−1f(ξ) =
1

|ξ2| − z
f̂(ξ). (4.10)

The function ξ 7→ (|ξ2| − z)−1 is in L2(Rd) and can be written as (2π)
d
2 ĥz for some

function hz ∈ L2(Rd). Then (4.10) takes the form

F(T0 − z)−1f = (2π)
d
2 ĥzf̂(ξ),

which means (T0 − z)−1f = hz ∗ f , where ∗ is the convolution product,6 and

(T0 − z)−1f =

∫
Rd
hz(x− y)f(y) dy.

Let ε > 0 and let V = V2 +V∞ with V2 ∈ L2(Rd) and ‖V∞‖∞ < ε. Then V2(T −z)−1

is an integral operator,

V2(T0 − z)−1f(x) =

∫
Rd
K(x, y)f(y) dy, K(x, y) = V2(x)hz(x− y).

One has∫
Rd

∫
Rd

∣∣K(x, y)
∣∣2 dx dy =

∫
Rd

∣∣V2(x)
∣∣2 ∫

Rd

∣∣hz(x− y)
∣∣2 dy dx

(substitution s := x− y) =

∫
Rd

∣∣V2(x)
∣∣2 ∫

Rd

∣∣hz(s)∣∣2 ds dx = ‖V2‖2
L2‖hz‖2

L2 <∞,

6One easily checks the identity f̂ ∗ g = (2π)d/2f̂ ĝ for “good” functions f and g, which is then
suitably extended using appropriate limit passages.
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which means that Vε(T0 − z)−1 is a Hilbert-Schmidt operator and, therefore, is
compact, see Subsection 2.3. At the same time we have the estimate

‖V∞(T0 − z)−1‖ ≤ ‖V∞‖∞‖(T0 − z)−1‖ ≤ ε‖(T − z)−1‖.

Therefore, V (T0 − z)−1 = V2(T0 − z)−1 + V∞(T0 − z)−1, the first summand is a
compact operator and the second summand is a bounded operator whose norm can
be made arbitrarily small, which shows that V (T0−z)−1 is also a compact operator.
It follows by Theorem 4.24 that specess T = specess T0 = [0,∞).

Example 4.27 (Coulomb potential). The previous theorem easily applies e.g.
to the operators −∆ + q

|x| . For any R > 0 one has

1

|x|
=

1|x|<R
|x|

+
1x≥|R|
|x|

.

the first summand is in L2(R3) and the second summand is bounded and its sup-
norm can be made arbitrarily small if one takes R sufficiantly large. So the essential
spectrum of −∆ + q/|x| is always the same as for the free Laplacian, i.e. coincides
with [0,+∞).
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5 Min-max principle and applications

5.1 Min-max principle

The min-max principle is one of the main tools in the spectral analysis of semi-
bounded self-adjoint operators. It has numerours applications, in particular, it
allows one to obtain various inequalitites for the eigenvalues and to compare the
spectra of operators acting in different Hilbert spaces: we will see some applications
in the subsequent chapters.

Throughout this subsection let T be a lower semibounded self-adjoint operator
in an infinite-dimensional Hilbert space H. We denote

Σ ≡ Σ(T ) :=

{
inf specess T, if specess T 6= ∅,
+∞, otherwise.

Theorem 5.1 (Min-max principle: operator version). Introduce the
min-max numbers of T as follows:

Λn = Λn(T ) = inf
V⊂D(T )
dimV=n

sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

, n ∈ N,

then the sequence (Λn) is non-decreasing, and we are in one and only one of the
following situations:

(a) For any n ∈ N there holds Λn < Σ.

Then T has infinitely many discrete eigenvalues in (−∞,Σ), and Λn(T ) is
exactly the n-th eigenvalue of T , if one counts them in the non-decreasing
order and takes the multiplicities into account.

(b) There exists N ∈ N0 such that Λn < Σ for all n ≤ N with and ΛN+1 ≥ Σ.

Then T has exactly N discrete eigenvalues in (−∞,Σ), and the number Λn is
exactly the nth eigenvalue of T for each n ∈ {1, . . . , N}, while Λn = Σ for all
n ≥ N + 1.

Remark that the case N = 0 is possible: this means than Λn ≥ Σ for all n ∈ N,
and T has no discrete eigenvalues in (−∞,Σ).

Proof. For any W ⊂ D(T ) with dimW = n + 1 one can find V ⊂ D(T ) with
dimV = n and V ⊂ W , and then

sup
ϕ∈W,ϕ6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

≥ sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

≥ inf
V⊂W

dimV=n

sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

.

It follows that

Λn+1 = inf
W⊂D(T )

dimW=n+1

sup
ϕ∈W,ϕ6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

≥ inf
W⊂D(T )

dimW=n+1

inf
V⊂W

dimV=n

sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

≥ inf
V⊂D(T )
dimV=n

sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

= Λn.
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By assumption, the spectrum of T in (−∞,Σ) is purely discrete, and the discrete
eigenvalues in (−∞,Σ) may only accumulate to Σ (as any accumulation point of
the spectrum belongs to the essential spectrum). Hence, all these eigenvalues can be
enumerated in the non-decreasing order (one counts according to the mutliplicitieis):
we denote them by Ek and denote by vk associated eigenvectors, k ∈ {1, . . . , N}
and N ∈ N ∪ {∞}. We may assume without loss of generality that vk form an
orthonormal family, i.e. 〈vj, vk〉 = δj,k.

Let n ∈ {1, . . . , N} and Vn = span(v1, . . . , vn), then Vn ⊂ D(T ) with dimVn = n.
For any ϕ ∈ Vn we have

〈ϕ, Tϕ〉 =
〈 n∑
j=1

〈vj, ϕ〉vj, T
n∑
j=1

〈vj, ϕ〉vj
〉

=
〈 n∑
j=1

〈vj, ϕ〉vj,
n∑
j=1

〈vj, ϕ〉Ejvj
〉

=
n∑
j=1

Ej|〈ϕ, vj〉|2 ≤ En

n∑
j=1

|〈ϕ, vj〉|2 = En‖ϕ‖2,

and it follows that Λn ≤ En.
Now let n ∈ {1, . . . , N}, V be any n-dimensional subspace of D(T ), P be the

orthogonal projector on Vn−1. If one has the strict inequality En−1 < En, then
E1, . . . , En−1 exhausts the whole spectrum of T in (−∞, En) and one has the equality
P = PT

(
(−∞, En)

)
, see Remark 3.22. If En−1 = En, then choose the largest

k ≤ n − 1 with Ek < En, then E1, . . . , Ek exhausts the whole spectrum of T in
(−∞, En), and ranPT

(
(−∞, En)

)
= Vk ⊂ Vn−1 = ranP . Therefore, in all cases one

has the inclusion ranPT
(
(−∞, En)

)
⊂ ranP .

Remark that due to dimV = n > n − 1 = dim ranP one can find a non-zero
ψ ∈ V with Pψ = 0. The condition Pψ = 0 implies ψ ⊥ ranPT

(
(−∞, En)

)
, which

is equivalent to ψ ∈ ranPT
(
[En,+∞)

)
, see Prop. 3.21(b.3). Then by Prop. 3.21(g)

we arrive at 〈ψ, Tψ〉 ≥ En‖ψ‖2. Therefore,

sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

≥ 〈ψ, Tψ〉
〈ψ, ψ〉

≥ En.

As V was an arbitrary n-dimensional subspace of D(T ), this proves Λn ≥ En.
The above discussion shows that Λn = En for any n ∈ {1, . . . , N}. Now consider

two cases:
(Case 1) N =∞, then we have already Λn = En for all n ∈ N.
(Case 2) N < ∞. We have already Λn = En for any n ∈ {1, . . . , N}. Let us

show that Λn = Σ for all n ≥ N + 1.
First remark that dim ranPT

(
(−∞,Σ)

)
= N (see Remark 3.22). Let n ≥ N + 1

and V be any n-dimensional subspace of D(T ), then there is a non-zero ψ ∈ V
with ψ ⊥ ranPT

(
(−∞,Σ)

)
, which means that ψ ∈ ranPT

(
[Σ,∞)

)
and implies

〈ψ, Tψ〉 ≥ Σ‖ψ‖2. Then

sup
ϕ∈V, ϕ 6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

≥ 〈ψ, Tψ〉
〈ψ, ψ〉

≥ Σ,

and Λn ≥ Σ due to the arbitrary choice of V .
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On the other hand, let ε > 0, then W = ranPT
(
(Σ − ε,Σ + ε)

)
if an infinite-

diemsnional subspace of D(T ) (as Σ ∈ specess T ) and contains an infinite orthonor-
mal family (uj)j∈N. Then

Wn := span(u1, . . . , un) ⊂ ranPT
(
(Σ− ε,Σ + ε)

)
⊂ D(T )

is an n-dimensional subspace. For any u ∈ Wn we have ‖(T − Σ)u‖ ≤ ε‖u‖ and∣∣〈u, Tu〉 − Σ〈u, u〉
∣∣ =

∣∣〈u, (T − Σ)u〉
∣∣ ≤ ‖u‖∥∥(T − Σ)u

∥∥ ≤ ε‖u‖2,

in particular, 〈u, Tu〉 ≤ (Σ + ε)‖u‖2. Therefore,

Λn = inf
V⊂D(T )
dimV=n

sup
u∈V
u6=0

〈u, Tu〉
〈u, u〉

≤ sup
u∈Wn
u6=0

〈u, Tu〉
〈u, u〉

≤ Σ + ε.

As ε > 0 was arbitrary, one has Λn ≤ Σ for any n ∈ N. Together with the above
estimates one obtains Λn = Σ for all n ≥ N + 1.

We now see that the case 1 corresponds to the situation (a) of the claim, while
the case 2 corresponds to the situation (b) of the claim, and this covers all possible
situations.

For some operators the domain is not given explicitly (or has a very complcated
description), and would be preferrable to work with the sesquilinear form instead of
the operator. Hence, the following reformulation is useful:

Theorem 5.2 (Min-max principle: form version). Let t be the closed sesquilin-
ear form of T and D ⊂ D(t) be a dense subspace with respect to 〈·, ·〉t. Then for
any n ∈ N one has

Λn(T ) = inf
V⊂D

dimV=n

sup
ϕ∈V, ϕ 6=0

t(ϕ, ϕ)

〈ϕ, ϕ〉
. (5.1)

Proof. Denote by µn(D) the quantity on the right-hand side of (5.1), then the stan-
dard density argument shows that µn(D) = µn

(
D(t)

)
. We know by Theorem 1.61

that D(T ) is dense in D(t), therefore, µn
(
D(T )

)
= µn

(
D(t)

)
. For ϕ ∈ D(T ) we

have t(ϕ, ϕ) = 〈ϕ, Tϕ〉, which shows that µn
(
D(T )

)
= Λn(T ).

It is clearly of interest to have more candidates for D in Theorem 5.2 (suitable
D are often referred to as test subspaces). The following assertion can be useful:

Proposition 5.3. If T is essentially self-adjoint on some subspace D ⊂ D(T ), then
D is dense in D(t) and can be used as a test subspace in (5.1).

Proof. Without loss of generality assume T ≥ 1, then 〈u, v〉t = t(u, v) = 〈u, Tv〉 for
all u, v ∈ D(T ). Let u ∈ D(T ), then there exist un ∈ D with un → u and Tun → Tu
in H, and

‖u− un‖2
t =

〈
u− un, T (u− un)

〉
≤ ‖u− un‖ ‖Tu− Tun‖

n→∞−→ 0.

This shows that any u ∈ D(T ) can be approximated by vectors from D in D(t). As
D(T ) is dense in D(t), the claim follows.
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For what follows it will be convenient to introduce the following notation: if T
has N eigenvalues in (−∞,Σ), then for n ∈ {1, . . . , N} one denotes

En(T ) := the n-th eigenvalue of T (if enumerated in the non-decreasing order
with multiplicities taken into account).

The following assertions are obvious cosequences of Theorem 5.1:

Corollary 5.4 (Min-max and existence of eigenvalues). The following rela-
tions hold:

(a) limn→∞ Λn(T ) = Σ(T ),

(b) for each N ∈ N the following two assertions are equivalent:

– T has at least N eigenvalues in
(
−∞,Σ(T )

)
,

– ΛN(T ) < Σ(T ).

If one of these conditions is satisfied, then for any n ∈ {1, . . . , N} one has
En(T ) = Λn(T ).
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5.2 Comparison of operators

It is important that with the help of the min-max principle it is sometimes possible
to compare the spectral properties of two operators even if they acs in different
Hilbert spaces. The assertions of this section are simple corollaries of the min-max
principle, but they will play a central role in what follows.

Corollary 5.5 (Min-max for perturbations). Let T be a lower semibounded
self-adjoint operators in H and A = A∗ ∈ B(H), then∣∣Λn(T + A)− Λn(T )

∣∣ ≤ ‖A‖ for any n ∈ N.

Proof. For any u ∈ D(T ) with u 6= 0 one has
〈
u, (T + A)u

〉
= 〈u, Tu〉 + 〈u,Au〉

and
∣∣〈u,Au〉∣∣ ≤ ‖A‖ ‖u‖2, therefore,

〈u, (T + A)u〉
‖u‖2

≤ 〈u, Tu〉
‖u‖2

+ ‖A‖.

Therefore, for any subspace F ⊂ D(T ) one has

sup
ϕ∈F, ϕ6=0

〈ϕ, (T + A)ϕ〉
〈ϕ, ϕ〉

≤ sup
ϕ∈F, ϕ6=0

〈ϕ, Tϕ〉
〈ϕ, ϕ〉

+ ‖A‖,

and taking the infimum over all subspaces F with dimF = n first on the lef-hand
side and then on the right-hand side one shows Λn(T +A) ≤ Λn(T ) + ‖A‖. Writing
T = (T + A)− A one obtains Λn(T ) ≤ Λn(T + A) + ‖A‖.

Corollary 5.6. If T is a lower semibounded self-adjoint operator with compact re-
solvent and A = A∗ ∈ B(H), then∣∣En(T + A)− En(T )

∣∣ ≤ ‖A‖ for any n ∈ N.

Proof. From the equality

(T + A+ i)−1 = (T + i)−1︸ ︷︷ ︸
compact

− (T + A+ i)−1A︸ ︷︷ ︸
bounded

· (T + i)−1︸ ︷︷ ︸
compact

it follows that T + A has compact resolvent, and then En = Λn for any n and for
both T and T + A, and the inequality follows from Corollary 5.5.

Corollary 5.7 (Min-max spectral estimates). Let T and T̃ be lower semi-

bounded seml-adjoint operators in Hilbert spaces H and H̃ such that

Λn(T ) ≤ Λn(T̃ ) for all n ∈ N, (5.2)

then the following assertions hold true:

(a) Σ(T ) ≤ Σ(T̃ ),

(b) if for some λ ∈ R the following two assumptions are satisfied:
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– the spectra of both T and T̃ in (−∞, λ) are purely discrete,

– T̃ has N eigenvalues (counting the multiplicity) in (−∞, λ),

then:

– T has at least N eigenvalues in (−∞, λ),

– for any n ∈ {1, . . . , N} one has En(T ) ≤ En(T̃ ).

(c) if for some λ ∈ R the spectrum of T in (−∞, λ) is purely discrete and consists
of N eigenvalues (counting with multiplicities), then:

– the spectrum of T̃ in (−∞, λ) is also purely discrete,

– T̃ has at most N eigenvalues (counting the multiplicity) in (−∞, λ).

Proof. The claim (a) follows from Corollary 5.4(a). For (b) we remark that under

the assumptions made one has λ < min
{

Σ(T ),Σ(T̃ )
}

and ΛN(T̃ ) < λ, and it

follows (Corollary 5.4(b)) that En(T̃ ) = Λn(T̃ ) for any n ≤ N . Due to (5.2) we have

ΛN(T ) ≤ ΛN(T̃ ) < a < Σ(T ), which means that T has at least N eigenvalues in(
−∞,Σ(T )

)
, and then En(T ) = Λn(T ) for any n ≤ N . Finally, for any n ≤ N we

have En(T ) = Λn(T ) ≤ Λn(T̃ ) = En(T̃ ).
(c) By assumption we have λ ≤ Σ(T ) ≡ limn→∞ Λn(T ). Due to (5.2) we also

have λ ≤ limn→∞ Λn(T̃ ), which shows that the spectrum of T̃ in (−∞, λ) is purely

discrete. We are now in the situation of (b), and the number of eigenvalues of T̃ in
(−∞, λ) cannot exceed N .

Let let us discuss situations in which the main assumption (5.2) of Corollary 5.7
is satisfied. One of the most frequently used constructions is as follows:

Definition 5.8 (Comparison of operators via an identification map). Let

T and T̃ be lower semibounded self-adjoint operators in Hilbert spaces H and H̃,
generated by closed sesqulinear forms t and t̃. Let D̃ ⊂ D(t̃ ) be a dense subspace
(with respect to ‖·‖t̃) and assume that there exists a linear map (identification map)

J : D̃ → D(t) such that for any ϕ ∈ D̃ one has:

‖Jϕ‖H = ‖ϕ‖H̃, t(Jϕ, Jϕ) ≤ t̃(ϕ, ϕ),

then we write
T ≤ T̃ via J.

In the subsequent chapter we will see several types of very specific identification
maps, but their main application is as follows:

Corollary 5.9 (Min-max inequality via an identification operator). Let T

and T̃ be lower semibounded self-adjoint operators in Hilbert spaces H and H̃ such
that T ≤ T̃ via some identification map J . Then Λn(T ) ≤ Λn(T̃ ) for all n ∈ N (in
particular, all assertions of Corollary 5.7 hold true).
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Proof. Let t and t̃ be the sesquilinear forms for t and t̃ Let D̃ ⊂ D(t̃ ) be a dense

subsset and J : D̃ → D(t) be an identification map. Then J is injective, and

dim J(V ) = dimV for any subspace V ⊂ D̃. Then one has

Λn(T ) = inf
V⊂D(t)
dimV=n

sup
ϕ∈V
ϕ6=0

t(ϕ, ϕ)

〈ϕ, ϕ〉H
≤ inf

V=J(Ṽ )

Ṽ⊂D̃
dimV=n

sup
ϕ∈V
ϕ6=0

t(ϕ, ϕ)

〈ϕ, ϕ〉H

= inf
Ṽ⊂D̃

dim Ṽ=n

sup
φ∈Ṽ
φ 6=0

t(Jφ, Jφ)

〈Jφ, Jφ〉H
≤ inf

Ṽ⊂D̃
dim Ṽ=n

sup
φ∈Ṽ
φ 6=0

t̃(φ, φ)

〈φ, φ〉H̃
= Λn(T̃ ).

Definition 5.10 (Comparison of operators). Let T and T̃ be lower semibounded
self-adjoint operators in a Hilbert space H. We write

T ≤ T̃

if T ≤ T̃ via the identity map, which means more precisely that the closed sesquilin-
ear forms t and t̃ of T and T̃ satisfy

D(t̃) ⊂ D(t), t(ϕ, ϕ) ≤ t̃(ϕ, ϕ) for all ϕ ∈ D(t̃).

By applying Corollary 5.9 one arrives at:

Corollary 5.11. Let T and T̃ be lower semibounded self-adjoint operators in H with
T ≤ T̃ . Then Λn(T ) ≤ Λn(T̃ ) for all n ∈ N (and all assertions of Corollary 5.7 hold
true).

Remark 5.12 (Spectral properties of direct sums). The preceding comparison
results will be often used for the case when one of the operators is a direct sum. So
let us look at this case more attentively.

(A) Let Q and Q′ be self-adjoint operators in Hilbert spaces H and H′. Recall
that their direct sum Q⊕Q′ is the self-adjoint operator in H×H′ given by

D(Q⊕Q′) = D(Q)×D(Q′), (Q⊕Q′)(u, u′) = (Qu,Q′u′).

As discussed in the exercises, one has

spec(Q⊕Q′) = specQ ∪ specQ′, specp(Q⊕Q′) = specp Q ∪ specpQ
′.

(B) Remark that a number λ belong to specdisc(Q⊕Q′) if and only if

• it is an isolated point of spec(Q⊕Q′) ≡ specQ ∪ specQ′,

• and dim ker
(
Q⊕Q′ − λ

)
<∞.

Due to

dim ker
(
(Q⊕Q′ − λ

)
= dim

(
ker(Q− λ)× ker(Q′ − λ)

)
= dim ker(Q− λ) + dim ker(Q′ − λ)

95



we conclude that λ ∈ specdisc(Q⊕Q′) if and only if it is in the discrete spectrum of
one of Q, Q′ and not in the essential spectrum of the other operator, or, equivalently,

specess(Q⊕Q′) = specess Q ∪ specess Q
′.

(C) Recall that if both Q and Q′ are semibounded from below and q and q′ are
closed sesquilinear forms for Q and Q′, then Q⊕Q′ is also semibounded from below
and its closed sesquilinear form q ⊕ q′ is given by

D(q ⊕ q′) = D(q)×D(q′), (q ⊕ q′)
(
(u, u′), (u, u′)

)
= q(u, u) + q′(u′, u′).

(D) Furthermore, if for some µ ∈ R one has Q′ ≥ µ, then Q′ has no spectrum if
(−∞, µ), and the spectrum of Q⊕Q′ in (−∞, µ) coincides wit the spectrum of Q in
(−∞, µ) (this also holds for the discrete and the essential spectrum). In particular,

if Q′ ≥ µ, then Λn(Q⊕Q′) = Λn(Q) for any n ∈ N with Λn(Q) < µ.

5.3 Basic inequalities for Laplacian eigenvalues

In this section we discuss some application of the general spectral theory to the
eigenvalues of the Dirichlet and Neumann Laplacians. Let us introduce the precise
setting.

Let Ω ⊂ Rd be a open set, then By definition, the Dirichlet Laplacian TD ≡ TDΩ
and the Neumann Laplacian TN ≡ TNΩ are the self-adjoint operators in H := L2(Ω)
associated with the sesqulinear forms tD ≡ tDΩ and tNΩ respectively,

tD(u, v) = tDΩ (u, v) =

∫
Ω

∇u · ∇v dx, D(tD) = Q(TD) = H1
0 (Ω),

tN(u, v) = tNΩ (u, v) =

∫
Ω

∇u · ∇v dx, D(tN) = Q(TN) = H1(Ω).

If TΩ
D resp. TΩ

N have compact resolvent, we consider their eigenvalues Consider their
eigenvalues

ED
n (Ω) := En(TΩ

D) resp.EN
n (Ω) := En(TΩ

N ), n ∈ N,

enumerated in the non-decreasing order and taking into accound the multiplicities.
These eigenvalues are clearly non-negative (as TΩ

D/N ≥ 0), and they are usually

referred to as the Dirichlet resp. Neumann eigenvalues of Ω (the presence of the
Laplace operator is assumed implicitly).

We would like to discuss various inequalities between these eigenvalues their
relations to the geometric object Ω. In view of the min-max principle one has

ED/N
n (Ω) = Λn(TΩ

D/N) for any n ∈ N, (5.3)

which delivers the principal method of study.

Proposition 5.13 (First Neumann eigenvalue). If Ω is a open set of
finite measure, then
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(a) 0 is an eigenvalue of the Neumann Laplacian TΩ
N , and it is the lower edge of

spectrum,

(b) kerTΩ
N is spanned by the locally constant functions,

(c) dim kerTNΩ =the number of connected component of Ω.

(Remark that no compact embedding and no assumption on the boundary are required
for the above statements.)

Proof. We abbreviate T := TΩ
N and t := tΩN . Due to T ≥ 0 we have specT ⊂ [0,∞).

Let v be a function which is constant on each connected component of Ω, then
∇v = 0. Due to |Ω| < ∞ such v belongs to L2(Ω), and due to ∇v = 0 one has
v ∈ H1(Ω). For any u ∈ H1(Ω) we have

t(u, v) =

∫
Ω

∇u · ∇v dx =

∫
Ω

∇u · ∇v︸︷︷︸
=0

dx = 0 = 〈u, 0〉L2 ,

which means that v ∈ D(TΩ
N ) with Tv = 0. This shows that kerT contains all locally

constant functions (remark the dimension of the space of local constant functions
on Ω is exactly the number of connected components of Ω).

On the other hand, let u ∈ kerT , then Tu = −∆u weakly. If Tu = 0, then the
elliptic regularity (Theorem 1.54 gives u ∈ C∞(Ω). Furthermore,

0 = 〈u, Tu〉 = t(u, u) =

∫
Ω

|∇u|2 dx = 0,

i.e. ∂ju = 0 for each j ∈ {1, . . . , d}, which shows that u is constant on each connected
component of Ω.

Proposition 5.14 (First Dirichlet eigenvalue). If the Dirichlet Laplacian on Ω
has compact resolvent, then its first eigenvalue is strictly positive.

Proof. Let T := TΩ
D and t := tΩD. Let E be the first eigenvalue, then due to T ≥ 0

we have at least E ≥ 0. Let v ∈ ker(T − E) ⊂ D(T ) ⊂ D(t) = H1
0 (Ω) with

‖v‖L2 = 1, then

E = E‖v‖2
L2 = E〈v, v〉L2 = 〈v, Tv〉L2 = t(v, v) =

∫
Ω

|∇v|2 dx.

Assume that E = 0, then ∇v = 0. Let ṽ be the extension of v by zero to Rd, then
(Prop. 1.67) we have ṽ ∈ H1(Rd) with ∇ũ = 0 and ‖ṽ‖L2(Rd) = 1. Then for any
u ∈ H1(Rd) we have ∫

Rd
∇u · ∇ṽ︸︷︷︸

=0

dx = 0 = 〈u, 0〉L2(Rd),

which shows that ṽ an eigenfunction of the free Laplacian in Rd for the zero eigen-
value .This is a contradiction, as the free Laplacian in Rd has no eigenvalues.
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Proposition 5.15 (Domain monotonicity for Dirichlet). If Ω̃ ⊂ Ω and the

embedding H1
0 (Ω) ↪→ L2(Ω) is compact, then TΩ

D and T Ω̃
D have compact resolvents,

and ED
n (Ω̃) ≥ ED

n (Ω) for all n ∈ N (i.e. “smaller domains have higher eigenvalues”).

Proof. Let J : L2(Ω̃) → L2(Ω) be the operator of extension by zero and J̃ :

L2(Ω) → L2(Ω̃) be the operator of restriction to Ω̃. Then for any u ∈ H1
0 (Ω̃) we

have ‖u‖L2(Ω̃) = ‖Ju‖L2(Ω) and Ju ∈ H1
0 (Ω) with and J∂ju = ∂jJu, which shows

tΩD(Ju, Ju) =

∫
Ω

|∇(Ju)|2 dx =

∫
Ω̃

|∇u|2 dx = tΩ̃D(u, u).

In other words, J : H1
0 (Ω̃)→ H1

0 (Ω) is an isometry (and then continuous), and the

embedding H1
0 (Ω̃) ↪→ L2(Ω̃) can be decomposed as

J̃ (embedding H1
0 (Ω) ↪→ L1(Ω))︸ ︷︷ ︸

compact

J = compact.

Therefore, one has compact embedding H1
0 ↪→ L2 for both Ω and Ω̃, which gives

the resolvent compactness for TΩ
D and T Ω̃

D . Furthermore; the above equalities means
that TΩ

D ≤ TΩ
D via J (Definition 5.8), and the min-max argument (Corollary 5.9)

shows that Λn(TΩ
D) ≥ Λn(T Ω̃

D) for all n ∈ N, and in our case En = Λn as we deal
with operators with compact resolvents.

Remark 5.16 (No domain monotonicity for Neumann). The inclusion Ω̃ ⊂ Ω
does not imply any inequality between the respective Neumann eigenvalues. 7

(a) Let Ω̃ = (0, 1)× (0, 1) and Ω = (0, 1)× (0, 2), then Ω̃ ⊂ Ω and

EN
2 (Ω̃) = π2 >

π2

4
= EN

2 (Ω).

(b) Let t ∈ (0, 1) and Ω̃ be the rectangle with the vertices (t, 0), (0, t), (1− t, t)
and (1, 1 − t), then the side lengths of Ω̃ are

√
2t and

√
2(1 − t). To be definite,

assume that t < 1
2
. The eigenvalues of the Neumann Laplacian in Ω̃ are

π2m2

2t2
+

π2n2

2(1− t)2
, m, n ∈ N0, which gives EN

2 (Ω̃) =
π2

2(1− t)2
.

On the other hand, Ω̃ ⊂ (0, 1) × (0, 1) =: Ω and EN
2 (Ω̃) < π2 = EN

2 (Ω) if t is
sufficiently close to 0.

7In fact, the resolvent compactness of TΩ
N does not imply the resolvent compactness of T Ω̃

N (will
be considered in the exercises).
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Nevertheless, we mention at least one important case for which the domain mono-
tonicity for the Neumann case still holds.

Proposition 5.17 (Restricted domain monotonicity for Neumann). Let

Ω̃,Ω ⊂ Rd be open sets such that Ω̃ ⊂ Ω, the embedding H1(Ω̃) ↪→ L2(Ω̃) is compact

and |Ω \ Ω̃| = 0, then:

(a) the embedding H1(Ω) ↪→ L2(Ω) is also compact,

(b) for any n ∈ N one has En(Ω̃) ≤ En(Ω).

Proof. For a function u defined on Ω denote by ũ its restriction on Ω̃. Due to
|Ω \ Ω̃| = 0 the map J̃ : L2(Ω) 3 u 7→ ũ ∈ L2(Ω̃) is an isometry, in particular,

continuous. Furthermore, for u ∈ H1(Ω) one has ũ ∈ H1(Ω̃) with ∇ũ = (∇u)|Ω̃,

which means that J̃ also defines an isometry H1(Ω)→ H1(Ω̃). Finally, if J denotes

the extension by zero from Ω̃ to Ω, then J is also an isometry. The embedding
H1(Ω) ↪→ L2(Ω) can be decomposed as

J (embedding H1(Ω̃) ↪→ L2(Ω̃))︸ ︷︷ ︸
compact

J̃

and, hence, is a compact operator, and this shows (a). For any u ∈ H1(Ω) we have

tΩ̃N(ũ, ũ) =

∫
Ω̃

|∇ũ|2 dx =

∫
Ω

|∇u|2 dx = tΩN(u, u)

which means that T Ω̃
N ≤ TΩ

N via J̃ , and (b) follows by the comparison principle
(Corollary 5.9).

Finally we obtain the following classical result:

Proposition 5.18 (Neumann≤Dirichlet). If the embedding H1(Ω) ↪→ L2(Ω) is
compact, then the Dirichlet and Neumann Laplacians in Ω have compact resolvent,
and for any n ∈ N one has EN

n (Ω) ≤ ED
n (Ω).

Proof. The embedding H1
0 (Ω) ↪→ H1(Ω) is always bounded, which implies the

compactness of the embedding H1
0 (Ω) ⊂ L2(Ω) and the resolvent compactness for

both TΩ
N and TΩ

D . The sesquilinear form of the Neumann Laplacian extends the
sesquilinear form for the Dirichlet Laplacian, so TΩ

N ≤ TΩ
D (Definition 5.10), and the

claim follows by the min-max principle (Corollary 5.11).

Remark that if d = 1 and Ω = (0, `) with ` > 0, then E1(TΩ
N ) = 0, while

En+1(TΩ
N ) =

π2

n2`2
≡ En(TΩ

D) for any n ∈ N,

which is much stronger than the statement of Prop. 5.18. In higher dimensions, there
are very few Ω for which the eigenvalues can be computed and compared explicitly,
but, in fact, an even stronger inequality can be proved:
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Theorem 5.19 (Friedlander’s inequality8). Let d ≥ 2 and Ω ⊂ Rd be an open
set such that the embedding H1(Ω) ↪→ L2(Ω) is compact and |Ω| <∞, then

EN
n+1(Ω) < ED

n (Ω) for any n ∈ N.

The proof is accessible but will not be discussed in detail here.

5.4 Weyl asymptotics for Dirichlet Laplacians

In this subsection we will discuss some aspects of the asymptotic behavior of the
Laplacian eigenvalues ED

n (Ω) as n becomes large.
For Ω ⊂ Rd satisfying the “compactness assumption”

the embedding H1(Ω) ↪→ L2(Ω) is compact (5.4)

one introduces the counting functions λ 7→ ND/N(λ,Ω) as follows: for each λ ∈ R,

ND/N(λ,Ω) = the number of n ∈ N for which ED/N
n (Ω) ∈ (−∞, λ].

Clearly, ND/N(λ,Ω) is finite for any λ, and the function λ 7→ ND/N(λ,Ω) in non-
decreasing, with values in N0 (there it is piecewise constant), and has a jump at
each eigenvalue of TΩ

D/N (the jump is equal to the multiplicity of the eigenvalue).
Our main result is:

Theorem 5.20 (Weyl asymptotics for Dirichlet eigenvalues). For any
bounded open subset Ω ⊂ Rd with |∂Ω| = 0 we have

lim
λ→+∞

ND(λ,Ω)

λ
d
2

=
ωd

(2π)d
|Ω|,

where ωd denotes the volume of the unit ball in Rd.

To keep simple notation we proceed with the proof for the case d = 2 only. Due
to ω2 = π we are reduced to prove

lim
λ→+∞

ND(λ,Ω)

λ
=
|Ω|
4π
. (5.5)

The proof consists of several steps.

Lemma 5.21. If Ω is a rectangle, then

lim
λ→+∞

ND/N(λ,Ω)

λ
=
|Ω|
4π
.

8The result was first proved in the paper L. Friedlander, Some inequalities between Dirichlet
and Neumann eigenvalues. Arch. Rat. Mech. Anal. 116 (1991) 153–160 for domains with smooth
boundaries. The proof we present here is from the paper N. Filonov, On an inequality between
Dirichlet and Neumann eigenvalues for the Laplace operator. St. Petersburg Math. J. 16 (2005)
413–416.
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Proof. As the spectra of TΩ
D/N are invariant under isometries of Ω, without loss of

generality consider Ω = (0, a) × (0, b) with a, b > 0. As discussed in the exercises,
the Neumann eigenvalues of Ω are the numbers

λ(m,n) :=
(πm
a

)2

+
(πn
b

)2

with m,n ∈ N0, and the Dirichlet spectrum consists of the eigenvalues λ(m,n) with
m,n ∈ N. Denote

Sλ :=
{

(x, y) ∈ R2 :
x2

a2
+
y2

b2
≤ λ

π2
, x ≥ 0, y ≥ 0

}
,

then ND(λ,Ω) = #Sλ ∩
(
N× N

)
and NN(λ,Ω) = #Sλ ∩

(
N0 × N0

)
.

First, counting the points (n, 0) and (0, n) with n ∈ N0 that lie in Sλ we obtain
the upper bound

NN(λ,Ω)−ND(λ,Ω) ≤ a+ b

π

√
λ+ 2, λ > 0.

At the same time, Sλ contains the union of the unit squares [m− 1,m]× [n− 1, n]
with (m,n) ∈ Sλ ∩

(
N× N

)
. As there are exactly ND(λ,Ω) such squares, we have

ND(λ,Ω) ≤ |Sλ| =
λab

4π
.

We also observe that Sλ is contained in the union of the unit squares [m,m + 1]×
[n, n + 1] with (m,n) ∈ Sλ ∩

(
N0 × N0

)
. As the number of such squares is exactly

NN(λ,Ω), this gives

NN(λ,Ω) ≥ |Sλ| =
λab

4π
.

Putting all together we arrive at

λab

4π
≤ NN(λ,Ω) ≤ ND(λ,Ω) +

a+ b

π

√
λ+ 2 ≤ λab

4π
+
a+ b

π

√
λ+ 2.

Then

ab

4π
≤ NN(λ,Ω)

λ
≤ ab

4π
+
a+ b

π

1√
λ

+
2

λ
,

ab

4π
+
a+ b

π

1√
λ

+
2

λ
≤ ND(λ,Ω)

λ
≤ ab

4π
,

and it remains to recall that |Ω| = ab.

Remark 5.22 (Dirichlet-Neumann bracketing). Now let us discuss in greater
details the behavior of N (λ,Ω) with respect to Ω.

(A) By Proposition 5.18 one has ND(λ,Ω) ≤ NN(λ,Ω).

(B) The domain monotonicity shows that ND(λ, Ω̃) ≤ ND(λ,Ω) for Ω̃ ⊂ Ω.
(C) Let Ω1,Ω2 be two disjoint open sets, then
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• TΩ1∪Ω2
N is unitarily equivalent to TΩ1

N ⊕ T
Ω2
N ,

• TΩ1∪Ω2
D is unitarily equivalent to TΩ1

D ⊕ T
Ω2
D .

In fact, if one introduces the unitary map

Θ : L2(Ω)→ L2(Ω1)× L2(Ω2), Θu := (u1, u2) with uj := u|Ωj ,

then

ΘD(tΩ1∪Ω2
N ) = H1(Ω1 ∪ Ω2) = H1(Ω1)×H1(Ω2) = D(tΩ1

N ⊕ t
Ω2
N ),

tΩ1∪Ω2
N (u, u) =

∫
Ω1∪Ω2

|∇u|2 dx =

∫
Ω1

|∇u|2 dx+

∫
Ω2

|∇u|2 dx

=

∫
Ω1

|∇u1|2 dx+

∫
Ω2

|∇u2|2 dx = tΩ1
N (u1, u1) + tΩ2

N (u2, u2)

= (tΩ1
N ⊕ t

Ω2
N )
(
(u1, u2), (u1, u2)

)
= (tΩ1

N ⊕ t
Ω2
N )(Θu,Θu),

which shows the unitary equivalent for the Neumann case, and the Dirichlet case
is considered in the same way. In particular, if for both Ω1 and Ω2 satisfy the
compactness assumption (5.4), then the same holds for Ω1 ∪ Ω2 too, and

ND(λ,Ω1∪Ω2) = ND(λ,Ω1)+ND(λ,Ω2), NN(λ,Ω1∪Ω2) = NN(λ,Ω1)+NN(λ,Ω2).

(D) Now assume that Ω1,Ω2 are disjoint open subsets of Ω, both satisfying (5.4),
such that |Ω\(Ω1∪Ω2)| = 0. Then using the above considerations and the restricted
domain monotonicity for the Neumann eigenvalues (Prop. 5.17) we arrive at the so-
called Dirichlet-Neumann bracketing

ND(λ,Ω1) +ND(λ,Ω2) = ND(λ,Ω1 ∪ Ω2) ≤ ND(λ,Ω) ≤ NN(λ,Ω)

≤ NN(λ,Ω1 ∪ Ω2) = NN(λ,Ω1) +NN(λ,Ω2),
(5.6)

which will be our main argument below. By iterations this extends to finitely many
disjoint unions.

Definition 5.23 (Open sets composed from rectangles). We say that an open
set Ω is composed from rectangles if there exists a finite family of disjoint open

rectangles Ωj = (aj, bj)× (cj, bj) ⊂ Ω, j = 1, . . . , k, such that
∣∣∣Ω \⋃k

j=1 Ωj

∣∣∣ = 0.

We remark that the unions and intersections of finitely many open sets composed
from rectangles are again open sets composed from rectangles. Furthermore, the
discussion in Proposition 5.17 and Remark 5.22 shows that any open composed
from rectangles satsfies the compactness assumption (5.4).

Lemma 5.24. The Weyl asymptotics (5.5) holds for Ω composed from rectangles.

Proof. Let Ωj, j = 1, . . . , k be rectangles as in Definition 5.23, then∣∣∣∣Ω \ k⋃
j=1

Ωj

∣∣∣∣ = 0, |Ω1|+ · · ·+ |Ωk| = |Ω|.
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Using the Dirichlet-Neumann bracketing (5.6) we obtain the chain

ND(λ,Ω1) + · · ·+NN(λ,Ωk)

λ
=
ND(λ,Ω1 ∪ · · · ∪ Ωk)

λ
≤ ND(λ,Ω)

λ

≤ NN(λ,Ω)

λ
≤ NN(λ,Ω1 ∪ · · · ∪ Ωk)

λ
=
NN(λ,Ω1) + · · ·+ND(λ,Ωk)

λ
,

and it remains to use

ND/N(λ,Ωj)

λ

λ→+∞−→ |Ωj|
4π

by Lemma 5.21.

Lemma 5.25 (Approximation by rectangles). Let Ω be bounded with |∂Ω| = 0.

Then for any ε > 0 one can find two bounded open sets Ω̃ε ⊂ Ω ⊂ Ωε, both composed
from rectangles, such that |Ωε \ Ω̃ε| < ε.

Proof. Let ε > 0, then the condition |∂Ω| = 0 means that one can cover ∂Ω by a
family of rectangles ωj = (aj, bj) × (cj, bj) with

∑∞
j=1 |ωj| < ε. As ∂Ω is compact

(because Ω is bounded), there is a finite subcovering, so let n ∈ N with

∂Ω ⊂
n⋃
j=1

ωj =: ω,
n∑
j=1

|ωj| < ε, then |ω| < ε.

Pick R > 0 such that the square S := (−R,R) × (−R,R) contains Ω and ω.
The open set W := S \ ω is composed from rectangles, so let W1, . . . ,WN ⊂ W be
mutually disjoint rectangles with |W \

⋃N
k=1Wk| = 0. Note that none of Wk intersects

∂Ω and, moreover, each Wk is contained either in Ω or in Ω
C

(if the intersection of
Wk with each of these two sets is non-empty, then Wk becomes a disjoint union of
two non-empty open sets, which is impossible as Wk is connected). So let

K :=
{
k ∈ {1, . . . , N} : Wk ⊂ Ω

}
, K ′ := {1, . . . , N} \K,

then

Ω̃ε :=
⋃
k∈K

Wj ⊂ Ω ⊂ S \
⋃
k∈K′

Wk =: Ωε.

The three mutually disjoint open sets⋃
k∈K

Wj, ω,
⋃
k∈K′

Wk

exhausts S up to zero measure sets (recall that the boundaries of sets composed

from rectangles have zero measure), which means that |Ωε \ Ω̃ε| = |ω| < ε.

Proof of the Weyl asymptotics (Theorem 5.20). Let ε > 0. By Lemma 5.25

one can find two bounded open sets Ω̃ε ⊂ Ω ⊂ Ωε, both composed from rectangles,
such that |Ωε \ Ω̃ε| < ε, then |Ω| − ε ≤ |Ω̃ε| ≤ |Ω| ≤ |Ω̃ε| ≤ |Ω| + ε. Due to the
domain monotonicity one has, for any λ > 0,

ND(λ, Ω̃ε)

λ
≤ ND(λ,Ω)

λ
≤ ND(λ,Ωε)

λ
.
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The terms with Ω̃ε and Ωε are covered by Lemma 5.24 and one obtains

|Ω| − ε
4π

≤ |Ω̃ε|
4π
≤ lim inf

λ→+∞

ND(λ,Ω)

λ
≤ lim sup

λ→+∞

ND(λ,Ω)

λ
≤ |Ωε|

4π
≤ |Ω|+ ε

4π
.

As ε was arbitrary, the theorem is proved.

We note that the Weyl asymptotics also holds for the Neumann Laplacian if the
domain is sufficiently smooth, which can be proved using suitable extension theorem
for Sobolev spaces. The Weyl asymptotics is one of the basic results on the relations
between the Dirichlet/Neumann eigenvalues and the geometric properties of the do-
main. It states, in particular, that the Dirichlet eigenvalues contain the information
on the dimension and the volume of the domain. There are various refinements
involving lower order terms with respect to λ, and the respective coefficients contain
some information on the topology of the domain, on its boundary etc.
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5.5 Discrete spectrum of Schrödinger operators

As seen above in Theorem 4.26, if V is a Kato class potential on Rd, then the
associated Schrödinger operator T = −∆+V in L2(Rd) acting is semibounded below
with specess T = [0,+∞) and Σ = 0. It means for the spectrum of T in (−∞, 0)
(which is usually called negative spectrum) there are only three possibilities:

• the negative spectrum is empty,

• the negative spectrum spectrum consists of finitely many eigenvalues of finite
multiplicites,

• the negative spectrum consists of infinitely many eigenvalues of finite mul-
tilplicities, and these eigenvalues form a sequence converging to 0 (no other
accumulation point is possible, as any accumulation point of the spectrum
belongs to the essential spectrum).

In this section we discuss some conditions on V allowing one to understand which
of these options is realized. We remark first that the condition V ≥ 0 (for V from
a Kato class) excludes the existence of negative eigenvalues: in this case one has
T ≥ 0, which finally gives specT = [0,∞), so the above questions only make sense
if V takes negative eigenvalues.

For the existence of negative eigenvalues we make first a very simple observation:

Lemma 5.26. Let T be a lower semibounded self-adjoint operator generated by a
closed sesquilinear form t. If there exists 0 6= u ∈ D(t) with t(u, u) < Σ‖u‖2, then
T has at least one eigenvalue in (−∞,Σ).

Proof. One has

Λ1(T ) ≤ t(u, u)

‖u‖2
< Σ,

which shows that Λ1(T ) is the first eigenvalue of T .

We have a simple sufficient condition for the one- and two-dimensional cases.

Theorem 5.27 (Existence of negative eigenvalues in 1D and 2D). Let d ∈
{1, 2} and V ∈ L2(Rd) ∩ L1(Rd) be real-valued such that∫

Rd
V (x) dx < 0, (5.7)

then the Schrödinger operator T = −∆ + V has at least one negative eigenvalue.

Proof. The potential V is in the Kato class, which shows that the operator T is
semibounded from below and its essential spectrum is [0,∞), see Theorems 4.13
and 4.26, and Σ(T ) = 0. In view of Lemma 5.26 it is sufficient to show that there
exists u ∈ D(T ) with t(u, u) < 0.

Case d = 1. Let ϕ ∈ C∞c (R) with ϕ(0) = 1 and

uε : R 3 x 7→ ϕ(εx).
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Then uε ∈ C∞c (R) ⊂ D(T ), and due to
∣∣V ∣∣|uε|2 ≤ ∣∣V ∣∣‖ϕ‖2

∞ ∈ L1(R) the dominated
convergence gives∫

R
V (x)

∣∣uε(x)
∣∣2 dx =

∫
R
V (x)

∣∣ϕ(εx)
∣∣2 dx

ε→0+

−→
∫
R
V (x) dx < 0,

while ∫
R

∣∣u′ε(x)
∣∣2 dx = ε2

∫
R

∣∣ϕ′(εx)
∣∣2 dx Substitution y = εx

= ε2 · 1

ε

∫
R
∣∣ϕ′(y)

∣∣2 dy = ε ‖ϕ′‖2
L2(R) = O(ε),

which shows that

t(uε, uε) =

∫
R
|u′ε(x)|2 dx+

∫
R
V (x)|uε(x)|2 dx

ε→0+

−→ V0 < 0,

and t(uε, uε) < 0 if ε > 0 is sufficiently small.
Case d = 2. Pick ϕ ∈ C∞(R) such that ϕ(t) = 1 for all t ≤ 1 and ϕ(t) = 0 for

|t| > 2. Then the functions

uε : R2 3 x 7→ ϕ
(
ε ln |x|

)
belong to C∞c (R2) ⊂ D(T ) with uε(x) = 1 for |x| ≤ e1/ε and uε(x) = 0 for |x| ≥ e2/ε.
As in the case d = 1 one easily obtains

lim
ε→0+

∫
R2

V (x)|uε(x)|2 dx =

∫
R2

V (x) dx < 0,

Furthermore,

∂juε(x) =
εxj
|x|2

ϕ′
(
ε ln |x|

)
,

∣∣∇uε(x)
∣∣2 =

ε2

|x|2
∣∣∣ϕ′(ε ln |x|

)∣∣∣2,∫
R2

|∇uε(x)|2 dx = ε2

∫
R2

1

|x|2
∣∣∣ϕ′(ε ln |x|

)∣∣∣2 dx

= ε2

∫
e1/ε≤|x|≤e2/ε

1

|x|2
∣∣∣ϕ′(ε ln |x|

)∣∣∣2 dx

(use polar coordinates) = 2πε2

∫ e2/ε

e1/ε

|ϕ′(ε ln r)|2

r
dr ≤ 2π‖ϕ′‖2

∞ε
2

∫ e2/ε

e1/ε

dr

r
.

The last integral can be directly computed:∫ e2/ε

e1/ε

dr

r
=
[

ln r
]r=e2/ε
r=e1/ε

=
2

ε
− 1

ε
=

1

ε
,

which gives ∫
R2

|∇uε(x)|2 dx = O(ε).
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It follows that

t(uε, uε) =

∫
R2

|∇uε(x)|2 dx+

∫
R2

V (x)|uε(x)|2 dx
ε→0+

−→
∫
R2

V (x) dx << 0,

and t(uε, uε) < 0 is ε > 0 is chosen sufficiently small.

Remark 5.28. The assumption (5.7) can be satisfied for very small V . For example,
if (5.7) holds for some V , then it also holds for λV with any λ > 0. It follows that
for any λ > 0 the Schrödinger operator −∆ + λV has the essential spectrum [0,∞)
and at least one negative eigenvalue.

It is remarkable that Theorem 5.27 cannot be extended to higher dimensions:

Proposition 5.29 (Absense of eigenvalues for small potentials in higher
dimensions). Let d ≥ 3 and V : Rd → R be bounded and such that

V (x) = O
( 1

|x|2
)

as |x| → ∞.

For λ ∈ R consider Tλ := −∆ + λV in L2(Rd). Then there is λ0 > 0 with

specTλ = [0,+∞) for all λ ∈ (−λ0, λ0).

Proof. Due to the assumptions on V one can find a constant C > 0 such that∣∣V (x)
∣∣ ≤ C

|x|2
for all x ∈ Rd.

Remark first that Tλ is essentially self-adjoint on C∞c (Rd). For R > 0 one has the
representation V = 1|x|≤RV + 1|x|>RV in which the first summand is in L2(Rd) and
the sup-norm of the second summand is ≤ C/R2 and can be made arbitrarily small
by choosing a sufficiently large R > 0. This shows that λV is in Kato class and
specess Tλ = [0,∞) for any λ ∈ R (Theorem 4.26). It remains to show the inclusion
specTλ ⊂ [0,∞) if λ is sufficiently small.

Recall the Hardy inequality (Proposition 1.81): for any u ∈ C∞c (Rd) we have

(d− 2)2

4

∫
Rd

|u(x)|2

|x|2
dx ≤

∫
Rd
|∇u(x)|2 dx.

Let λ0 := (d− 2)2/(4C) and λ ∈ (−λ0, λ0). For any u ∈ C∞c (Rd) we have

〈u, Tλu〉 =

∫
Rd

∣∣∇u(x)
∣∣2 dx+ λ

∫
Rd
V (x)

∣∣u(x)
∣∣2dx

≥
∫
Rd

∣∣∇u(x)
∣∣2dx− |λ| ∫

Rd

∣∣V (x)
∣∣ ∣∣u(x)

∣∣2 dx

≥
∫
Rd

∣∣∇u(x)
∣∣2dx− |λ|C︸︷︷︸

≤ (d−2)2

4

∫
Rd

∣∣u(x)
∣∣2

|x2|
dx

≥
∫
Rd

∣∣∇u(x)
∣∣2dx− (d− 2)2

4

∫
Rd

|u(x)|2

|x|2
dx ≥ 0.

the inequality extends to all u ∈ D(Tλ). Hence, Tλ ≥ 0 and specTλ ⊂ [0,+∞).
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Theorem 5.30 (Discrete spectrum for potential wells). Let V ∈ L∞loc(Rd) be
semibounded from below and let E ∈ R be such that the set S = {x : V (x) < E}
is bounded.9 Then the spectrum of T = −∆ + V in (−∞, E) is purely discrete and
consists of (at most) finitely many eigenvalues.

Proof. The operator T is essentially self-adjoint on C∞c (Rd), see Theorem 4.16 and,
at the same time, it is generated by its closed sesquilinear form t defined on H1

V (Rd):

t(u, u) =

∫
Rd

(
|∇u|2 + V |u|2

)
dx.

Let B be an open ball containing the above set S. The idea is to “decouple” the
two sides of ∂B and to compare T with the direct sum of two operators acting in
the Hilbert spaces G := L2(B) and G ′ := L2(Rd \B).

Consider the following closed sesquilinear form t̃ extending t:

t̃(u, u) =

∫
Rd\∂B

(
|∇u|2 + V |u|2

)
dx,

D(t̃) =
{
u ∈ H1(Rd \ ∂B) :

∫
Rd
V |u|2 dx <∞

}
,

and let T̃ be the self-adjoint operator generated by t̃. Then T̃ ≤ T (see Defini-

tion 5.10) and Λn(T̃ ) ≤ Λn(T ) for any n ∈ N.
Remark that Rd \ ∂B consists of two connected components B and Rd \ B.

Consider the unitary transform

Θ : L2(Rd) 7→ G × G ′, Θu = (u|B, u|Rd\B),

then one easily sees (Remark 5.22) that ΘT̃Θ−1 = Q⊕Q′, where:

• Q is the self-adjoint operator in G given by its sesquilinear form

q(u, u) =

∫
B

(
|∇u|2 + V |u|2

)
dx, D(q) = H1(B);

we recall that V is bounded on B,

• Q′ is the self-adjoint operator in G ′ given by its sesquilinear form

q′(u, u) =

∫
Rd\B

(
|∇u|2 + V |u|2

)
dx,

D(q′) =
{
u ∈ H1(Rd \B) :

∫
Rd\B

V |u|2 dx <∞
}
,

and then Λn(T̃n) = Λn(Q⊕Q′). So we have proved that

Λn(T ) ≥ Λn(Q⊕Q′) for any n ∈ N. (5.8)

Now remark that:
9In quantum mechanics one says that V is a finite potential well below E.
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• the operator Q has compact resolvent, as D(q) is compactly embedded in G.
Then Λn(Q) is the nth eigenvalue of Q, and the eigenvalues converge to +∞,
and the number N of eigenvalues of Q in (−∞, E) is finite.

• in Rd \ B we have V ≥ E, which gives Q′ ≥ E, and Q′ has no spectrum in
(−∞, E).

It follows that the spectrum of Q⊕Q′ in (−∞, E) consists of exactly N eigenvalues
(=the first N eigenvalues of Q), which gives ΛN+1(Q ⊕ Q′) ≥ E. By (5.8) one has
ΛN+1(T ) ≥ E, and the spectrum of T in (−∞, E) consists of at most N eigenvalues.

Corollary 5.31 (Compactly supported potentials). Let V ∈ L∞(Rd) be real-
valued with compact support and T = −∆ + V in L2(Rd), then specess T = [0,∞),
and T has at most finitely many negative eigenvalues.

Proof. The potential V is in Kato class, hence, specess H = [0,+∞) (see Subsec-
tion 4.5), and the finiteness of the discrete spectrum follows by Theorem 5.30 with
E = 0.

In fact, one can show the finiteness of the negative discrete spectrum under a
weaker assumption that the potentials decay “rapidly” at infinity (the condition
to have a compact support in an “extreme” version of such a decay): this will
considered in the exercises.

Theorem 5.32 (Potentials producing infinite discrete spectrum). Let V be
a Kato class potential in Rd and T = −∆ + V in L2(Rd). Assume that for some
R > 0, c > 0 and p ∈ (0, 2) one has

V (x) ≤ − c

|x|p
for all x ∈ Rd with |x| ≥ R.

Then specess T = [0,+∞) and T has infinitely many negative eigenvalues.

Proof. The equality for the essential spectrum is already proved (Theorem 4.26),
and one simply needs to show that Λn(T ) < 0 ≡ Σ(T ) for any n ∈ N.

Pick any ϕ ∈ C∞c (Rd) with suppϕ ⊂ {x ∈ Rd : R < |x| < 2R} and ‖ϕ‖L2(Rd) = 1.

For t > 1 consider the functions ϕt(x) = t−d/2ϕ(x/t), then ϕt ∈ C∞c (Rd) with
‖ϕt‖L2(Rd) = 1 and suppϕt ⊂ {x ∈ Rd : tR < |x| < 2tR}. We compute∫

Rd
|∇ϕt|2 dx =

∫
Rd

1

t2+d

∣∣∣(∇ϕ)
(x
t

)∣∣∣2 dx = (Substitute x = ty) =

=
1

t2

∫
Rd
|∇ϕ(y)|2 dy︸ ︷︷ ︸

=:a>0

≡ a

t2
,

∫
Rd
V |ϕt|2 dx =

1

td

∫
tR<|x|<2tR

V (x)
∣∣∣ϕ(x

t

)∣∣∣2 dx
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≤ 1

td

∫
tR<|x|<2tR

(
− c

|x|p
)∣∣∣ϕ(x

t

)∣∣∣2 dx = (Substitute x = ty) =

= − c
tp

∫
R<|y|<2R

1

|y|p
∣∣ϕ(y)

∣∣2 dy

︸ ︷︷ ︸
=:b>0

= −bc
tp
.

As p < 2, one can choose s > 1 sufficiently large to have

〈ϕt, Tϕt〉 =

∫
Rd

(
|∇ϕt|2 + V |ϕt|2

)
dx

=
a

t2
− bc

tp
=
a− bct2−p

t2
< 0 for all t ≥ s.

Now for n ∈ N put ψn := ϕ2ns, then ψn have mutually disjoint supports and,
therefore, form an orthonormal family, and

〈ψm, Tψn〉 = 0 for m 6= n, λn := 〈ψn, Tψn〉 < 0.

Let N ∈ N and consider F := span{ψ1, . . . , ψN}, then dimF = N . If

ψ ∈ F, ψ =
N∑
n=1

ξnψn, ξ = (ξ1, . . . , ξN) ∈ CN ,

then ‖ψ‖2 =
∑N

n=1 |ξn|2 and

〈ψ, Tψ〉 =
N∑

m,n=1

ξmξn〈ψm, Tψn〉 =
N∑
n=1

λn|ξ2
n| ≤ max{λ1, . . . , λN}︸ ︷︷ ︸

=:µN<0

N∑
n=1

|ξ2
n| ≡ µN‖ψ‖2.

Therefore,

ΛN(T ) ≤ sup
ψ∈F, ψ 6=0

〈ψ, Tψ〉
〈ψ, ψ〉

≤ µN < 0,

while N ∈ N was arbitrary.
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6 Some asymptotic aspects

6.1 Definitions and preliminary observations

In the present section we proceed with a more detailed study using the mix-max
principle. Let us introduce a general framework, which will cover a variety of situa-
tions.

Throughout the whole chapter, let Ω ⊂ Rd be a non-empty open subset. Fur-
thermore, let V ∈ L2

loc(Ω) be a real-valued potential. We consider the negative and
positive parts of V ,

V− := max{−V, 0}, V+ := max{V, 0},

then V = V+−V− and |V | = V+ +V−. We will make the rather general “smallness”
assumption for V−

for any a > 0 there is b > 0 such that∫
Ω

V−|u|2 dx ≤ a

∫
Ω

|∇u|2 dx+ b

∫
Ω

|u|2 dx

for all u ∈ C∞c (Ω).

(6.1)

Remark that this assumption holds if V is semibounded from below: then V− ∈ L∞
and one takes b := ‖V ‖∞ and any a > 0), which covers a large class of reasonable
situation. But some unbounded V− can be included as well: if d = 3, the computa-
tion of Example 1.83 show that (6.1) holds if V (x) ≥ −q/|x| for some q > 0. Many
further examples are possible.

Now consider the operator

T̃ : C∞c (Ω) 3 u 7→ −∆u+ V u ∈ L2(Ω) (6.2)

and remark that (6.1) guarantees that T̃ is semibounded from below in L2(Ω): if
one chooses b > 1

2
such that∫

Ω

V−|u|2 dx ≤ 1

2

∫
Ω

|∇u|2 dx+ b

∫
Ω

|u|2 dx,

for all u ∈ C∞c (Ω), then for the same u one has

〈u, T̃u〉 =

∫
Ω

u
(
−∆u+ V u

)
dx =

∫
Ω

|∇u|2 dx+

∫
Ω

V+|u|2 dx︸ ︷︷ ︸
≥0

−
∫

Ω

V−|u|2 dx

≥
∫

Ω

|∇u|2 dx−
(1

2

∫
Ω

|∇u|2 dx+ b

∫
Ω

|u|2 dx
)

=
1

2

∫
Ω

|∇u|2 dx− b
∫

Ω

|u|2 dx,
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and one obtains

〈u, T̃u〉+ 2b‖u‖2 ≥ 1

2

∫
Ω

|∇u|2 dx+ b

∫
Ω

|u|2 dx

≥ 1

2

(∫
Ω

|∇u|2 dx+

∫
Ω

|u|2 dx
)
≡ 1

2
‖u‖2

H1(Ω) ≥ 0.

(6.3)

Now we denote

T (Ω, V ) := the Friedrichs extension in L2(Ω) of the operator (6.2)

and let tΩV be the sesquilinear form for T (Ω, V ). By construction we have

tΩV (u, u) ≡ 〈u, T̃u〉 =

∫
Ω

(
|∇u|2 + V |u|2

)
dx for all u ∈ C∞c (Ω),

and the inequality (6.1) extends by density to all u ∈ D(tΩV ). The inequality (6.3)
shows that D(tΩV ) ⊂ H1

0 (Ω) and, moreover, the embedding D(tΩV ) ↪→ H1
0 (Ω) is con-

tinuous. As the embedding H1
0 (Ω) ↪→ L2(Ω) is compact for bounded Ω (Prop. 2.36)

one concludes by Theorem 2.33 that

if Ω is bounded, then T (Ω, V ) has compact resolvent. (6.4)

Furthermore, if u ∈ D(tΩV ) and h ∈ C∞(Ω) such that h and ∇h are bounded, then
hu ∈ D(tΩV ): if un ∈ C∞c (Ω) converge to u in D(tΩV ), then a simple computation
shows that hun is a Cauchy sequence in D(tΩV ) and hun converge to hu in L2(Ω),
which gives the result (see Prop. 1.73).

In fact, the most important cases for us are:

• Ω = Rd, then T (Ω, V ) is the usual Schrödinger operator −∆ + V in L2(Rd),

• V ≡ 0, then T (Ω, V ) is the Dirichlet Laplacian in Ω,

but many further situations are possible.
Remark that the precise description of the domains of the operator T (Ω, V ) and

the form tΩV will not be very important: as C∞c (Ω) is dense in D(tΩV ) due to the
construction of the Friedrichs extension, due to the form version of the min-max
principle (Theorem 5.2) one has

Λn

(
T (Ω, V )

)
= inf

F⊂C∞c (Ω)
dimF=n

sup
u∈F, u6=0

tΩV (u, u)

‖u‖2
L2(Ω)

for any n ∈ N. (6.5)

We also remark that if the main assumption (6.1) holds for a pair (Ω, V ), then

it also holds for (Ω̃, λV ) for any open subset Ω̃ ⊂ T and any λ ≥ 0, which gives rise

to the associated operators T (Ω̃, λV ). The inclusion C∞c (Ω̃) ⊂ C∞c (Ω) immediately
gives

the domain monotonicity: Ω̃ ⊂ Ω ⇒ T (Ω, V ) ≤ T (Ω̃, V ), (6.6)

which holds for any admissible V .
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6.2 Truncated operators and IMS partitions

The open set Ω and the potential V will be fixed this section. For R > 0 we denote

ΩR := Ω ∩ {x ∈ Rd : |x| < R}, ΩC
R := Ω ∩ {x ∈ Rd : |x| > R}, (6.7)

T := T (Ω, V ), TR := T (ΩR, V ), T C
R := T (ΩC

R, V ),

and denote by t, tR, tCR the sesquilinear forms for T , TR, T C
R .

Remark that for any R > 0 one has ΩR ⊂ Ω and ΩC
R ⊂ Ω, and the domain

monotonicity shows that

Λn(T ) ≤ Λn(TR) and Λn(T ) ≤ Λn(T C
R) for any n ∈ N and R > 0. (6.8)

Furthermore, if R becomes larger, then ΩR becomes larger but ΩC
R becomes smaller,

and the domain monotonicity shows that

R 7→ Λn(TR) is non-increasing for any fixed n ∈ N,

R 7→ Λn(T C
R) is non-decreasing for any fixed n ∈ N, (6.9)

which holds for all R such that ΩR resp. ΩC
R are non-empty.

We are going to compare our operator T with the direct sum of two other oper-
ators using the following identity:

Lemma 6.1 (IMS formula10). Let u ∈ H1(Ω) and χ, χ̃ ∈ C∞(Ω) be real-valued
functions such that:

• χ, χ̃,∇χ,∇χ̃ are bounded,

• χ2 + χ̃2 = 1,

then∫
Ω

|∇u|2 dx =

∫
Ω

|∇(χu)|2 dx+

∫
Ω

|∇(χ̃u)|2 dx−
∫

Ω

(
|∇χ|2 + |∇χ̃|2

)
|u|2 dx.

Proof. We have∣∣∇(χu)
∣∣2 = |u∇χ+ χ∇u|2 =

∣∣(∇χ)u
∣∣2 + 2<

(
uχ∇χ · ∇u

)
+ χ2|∇u|2

=
∣∣(∇χ)u

∣∣2 + <
[
u∇(χ2) · ∇u

]
+ χ2|∇u|2

and similarly∣∣∇(χ̃u)
∣∣2 =

∣∣(∇χ̃)u
∣∣2 + <

[
u∇(χ̃ 2) · ∇u

]
+ χ̃2|∇u|2.

It follows that∣∣∇(χu)
∣∣2+
∣∣∇(χ̃u)

∣∣2
=
(
|∇χ|2 + |∇χ̃|2

)
|u|2 + <

[
u∇(χ2 + χ̃2︸ ︷︷ ︸

≡1

) · ∇u
]

+
(
χ2 + χ̃2︸ ︷︷ ︸
≡1

)|∇u|2

=
(
|∇χ|2 + |∇χ̃|2

)
|u|2 + |∇u|2,

and the integration over Ω gives the result.

10The IMS formula is usually attributed to Ismagilov, Morgan, Simon, Sigal.
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Now we make some special choice for χ and χ̃ (it will be used several times):

Remark 6.2 (IMS partition of unity). Let χ, χ̃ : Rd → R be C∞-functions such
that χ2 + χ̃2 = 1 and

χ(x) = 1 for |x| ≤ 5

4
, χ̃(x) = 1 for |x| ≥ 7

4
.

For any R > 0 consider the C∞-functions χR, χ̃R : Rd → R,

χR : x 7→ χ
( x
R

)
, χ̃R : x 7→ χ̃

( x
R

)
.

For R > 0 we have χ2
R + χ̃2

R = 1, and if u ∈ C∞c (Ω), then

χRu ∈ C∞c (Ω2R), χ̃Ru ∈ C∞c (ΩC
R),

‖u‖2
L2(Ω) = ‖χRu‖2

L2(Ω2R) + ‖χ̃Ru‖2
L2(ΩC

R).
(6.10)

In addition, the function |∇χ|2 + |∇χ̃|2 is smooth and supported in the bounded set{
x ∈ Rd : 1 < |x| < 2

}
. Therefore, it is bounded, so we denote

B :=
∥∥ |∇χ|2 + |∇χ̃|2

∥∥
∞ <∞.

For any x ∈ Rd there holds then(
|∇χR|2 + |∇χ̃R|2

)
(x) =

1

R2

(
|∇χ|2 + |∇χ̃|2

)( x
R

)
≤ B

R2
.

Lemma 6.3 (IMS decoupling). Let χR, χ̃R and B be as in Remark 6.2, then for
any u ∈ D(t) and any R > 0 such that both Ω2R and ΩC

R are non-empty one has

t(u, u) ≥ t2R(χRu, χRu) + tCR(χ̃Ru, χ̃Ru)−BR−2‖u‖2
L2(Ω).

Proof. One has

t(u, u) =

∫
Ω

|∇u|2 dx+

∫
Ω

V |u|2 dx

(Lemma 6.1) =

∫
Ω

|∇(χRu)|2 dx+

∫
Ω

|∇(χ̃Ru)|2 dx−
∫

Ω

(
|∇χR|2 + |∇χ̃R|2

)
|u|2 dx

+

∫
Ω

V |χRu|2 dx+

∫
Ω

V |χ̃Ru|2 dx

=

∫
Ω2R

(
|∇(χRu)|2 + V |χRu|2

)
dx+

∫
ΩC
R

(
|∇(χ̃Ru)|2 + V |χ̃Ru|2

)
dx

−
∫

Ω

(
|∇χR|2 + |∇χ̃R|2

)
|u|2 dx

≥ t2R(χRu, χRu) + tCR(χ̃Ru, χ̃Ru)−BR−2‖u‖2
L2(Ω).

Corollary 6.4. For any R > 0 such that both Ω2R and ΩC
R are non-empty and any

n ∈ N one has
Λn(T +BR−2) ≥ Λn(T2R ⊕ T C

R)

with B > 0 independent of Ω, V and R.
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Proof. In view of (6.10) and Lemma 6.3 the map

J : C∞c (Ω) 3 u 7→ (χRu, χ̃Ru) ∈ D(t2R)×D(tCR) ≡ D(t2R ⊕ tCR)

can be viewed as an identification map: one has

t2R(χRu, χRu) + tCR(χ̃Ru, χ̃Ru) = (t2R ⊕ tCR)
(
(χRu, χ̃Ru), (χRu, χ̃Ru)

)
≡ (t2R ⊕ tCR)(Ju, Ju),

and the result of Lemma 6.3 means that

(t2R ⊕ tCR)(Ju, Ju) ≤ t(u, u) +BR−2‖u‖2
L2(Ω) for all u ∈ C∞c (Ω).

In the language of Definition 5.8 one has T2R ⊕ T C
R ≤ T + BR−2 using J , and the

min-max principle (Corollary 5.9) shows that for any n ∈ N one has

Λn(T2R ⊕ T C
R) ≤ Λn(T +BR−2).

It remains to remark that the choice of χ and χ̃ (and then the value of B) are
independent of Ω, V and R by construction.

6.3 Persson theorem for the essential spectrum

As the first application we prove the following result:

Theorem 6.5 (Persson theorem for the bottom of the essential spectrum).
If Ω is unbounded, then

inf specess T = lim
R→+∞

inf specT C
R . (6.11)

The formula (6.11) has at least two curious aspects:

• the essential spectrum appears explicitly only on the left-hand side,

• there is no “limit” of ΩC
R as R→ +∞ (the set ΩC

R escapes to infinity).

Proof. Remark first that inf specT C
R = Λ1(T C

R) for any R > 0. The monotonicity
of R 7→ Λ1(T C

R), see (6.9), shows that the limit

Λ := lim
R→+∞

inf specT C
R ≡ lim

R→+∞
Λ1(T C

R)

always exists (can be equal to +∞).
(a) Let us show first that inf specess T ≤ Λ. If Λ = +∞, then the inequality

holds. Now let Λ <∞. Our strategy is as follows: we take ε > 0 and show that

Λn(T ) ≤ Λ + ε for any n ∈ N. (6.12)

Then inf specess T = limn→∞ Λn(T ) ≤ Λ + ε for any ε > 0, which gives the result.
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It remains to show (6.12). AsR 7→ Λ1(T C
R) is non-decreasing, one has Λ1(T C

R) ≤ Λ
for any R > 0. The definition of Λ1 shows that for any R > 0 we have

Λ1(T C
R) = inf

u∈C∞c (ΩC
R), u 6=0

tCR(u, u)

‖u‖2
L2(ΩC

R)

≡ inf
u∈C∞c (ΩC

R), u 6=0

t(u, u)

‖u‖2
L2(Ω)

≤ Λ.

Pick any R1 > 0, then one can find u1 ∈ C∞c (ΩC
R1

) with ‖u1‖2
L2(Ω) = 1 such that

t(u1, u1) < Λ + ε. Let R2 > 0 with suppu1 ⊂ BR2(0), then one can find a function
u2 ∈ C∞c (ΩC

R2
) with ‖u2‖2

L2(Ω) = 1 such that t(u2, u2) ≤ Λ + ε. Take R3 > 0

with suppu2 ∈ BR3(0) and continue similarly. We obtain an infinite sequence of
functions uj ∈ C∞c (Ω) with mutually disjoint supports such that ‖uj‖L2(Ω)=1 and
t(uj, uj) < Λ + ε for all j ∈ N. In particular, t(uj, uk) = 0 and 〈uj, uk〉L2(Ω) = 0 for
all j 6= k.

Let n ∈ N and F := span{u1, . . . , un}, then F ⊂ C∞c (Ω) with dimF = n. If
u ∈ F , then one has the unique representation un = ξ1u1 + · · · + ξnun with some
ξj ∈ C, and then

‖u‖2 =
n∑
j=1

|ξj|2, t(u, u) =
∑
j,k=1

ξj ξk t(uj, uk)

=
n∑
j=1

|ξj|2t(uj, uj) ≤ (Λ + ε)
n∑
j=1

|ξj|2 = (Λ + ε)‖u‖2,

which gives (6.12) and concludes the part (a).
(b) Let us show the reverse inequality inf specess T ≥ Λ. By Corollary 6.4 we

have Λn(T ) +BR−2 ≥ Λn(T2R ⊕ T C
R), and for n→∞ we obtain

inf specess T +BR−2 ≡ inf specess(T +BR−2) ≥ inf specess(T2R ⊕ T C
R).

The operator T2R has compact resolvent (as Ω2R is bounded), so specess T2R = ∅ and
(Remark 5.12)

inf specess(T2R ⊕ T C
R) ≡ inf( specess T2R︸ ︷︷ ︸

=∅

∪ specess T
C
R) = inf specess T

C
R ≥ inf specT C

R ,

so we arrive at inf specess T + BR−2 ≥ inf specT C
R , and one arrives at the sought

conclusion by taking the limit R→∞.

Corollary 6.6 (Eigenvalues in truncated domains). Let Ω be unbounded and
N ∈ N.

(a) if EN(TR) < inf specess T for some R > 0, then T has at least N eigenvalues
below inf specess T .

(b) if T has at least N eigenvalues in (−∞, inf specess T ), then

EN(TR) = EN(T ) +O
( 1

R2

)
as R→ +∞,

in other words, the eigenvalues of the “finite part” TR of T below inf specess T
approximate the respective eigenvalues of T as R→∞.
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Proof. (a) Use the domain monotonicity:

ΛN(T ) ≤ ΛN(TR) ≡ EN(TR) < inf specess T,

and this shows that ΛN(T ) = EN(T ).
(b) Recall that for any n ∈ N we have En(TR) = Λn(TR) and

Λn(T ) ≤ Λn(T2R), Λn(T2R ⊕ T C
R) ≤ Λn(T ) +BR−2. (6.13)

By assumption one has ΛN(T ) = EN(T ) ≤ inf specess T .
Take any E with ΛN(T ) < E < inf specess T . Due to Persson theorem, for all

sufficiently large R one has ΛN(T )+BR−2 < E < Λ1(T C
R), and the second inequality

in (6.13) gives ΛN(T2R ⊕ T C
R) < E.

We claim that ΛN(T2R) < E. In fact, if one assumes that ΛN(T2R) ≥ E, then
using T C

R > E one obtains that the spectrum of T2R ⊕ T C
R in (−∞, E) consists

of at most N − 1 eigenvalues, which then shows ΛN(T2R ⊕ T C
R) ≥ E and gives a

contradiction.
Due to ΛN(T2R) < E and T C

R > E we obtain ΛN(T2R ⊕ T C
R) = ΛN(T2R), and

using the both inequalities (6.13) one arrives at

ΛN(T2R)−BR−2 ≤ ΛN(T ) ≤ ΛN(T2R)

for all sufficiently large R, and one recalls that both ΛN are actually EN .
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6.4 Strong coupling asymptotics

We will continue to work with the truncated domains ΩR and ΩC
R defined in (6.7)

but prefer to use the “full notation” T (Ω, V ) as both Ω and V will be varying.
We are interested in the behavior of the spectrum of T (Ω, λV ) when Ω and V

are fixed but λ→ +∞. The constant λ (measuring the “strength” of the potential
term) is usually referred to as the coupling constant, and the case λ → +∞ is
referred to as the strong coupling.

Theorem 6.7 (Strong coupling asymptotics at first order). Assume that V
is semibounded from below and denote Vmin := ess inf V . Then for any fixed n ∈ N
there holds

Λn

(
T (Ω, λV )

)
= Vminλ+ o(λ) as λ→ +∞.

Proof. During the proof set Tλ := T (Ω, λV ). Without loss of generality assume
that Vmin = 0. Then V ≥ 0 a.e. and Tλ ≥ 0 for all λ > 0. This gives Λn(Tλ) ≥ 0 for
all n ∈ N and λ > 0.

For the upper bound remark that the spectrum of MV (the operator of multipli-
cation by V ) is purely essential, so 0 = ess inf V = inf specess MV and Λn(MV ) = 0
by the min-max principle. One easily shows that it is essentially self-adjoint on
C∞c (Ω), and for any n ∈ N one can find an n-dimensional subspace U of C∞c (Ω)
such that

〈ϕ,MV ϕ〉 =

∫
Ω

V |ϕ|2 dx ≤ ε‖ϕ‖2
L2(Ω) for all ϕ ∈ U .

As U is finite-dimensional, there exists C > 0 such that∫
Ω

|∇ϕ|2 dx

‖ϕ‖2
L2(Ω)

≤ C for all ϕ ∈ U \ {0}.

Then

Λn(Tλ) ≤ sup
ϕ∈U,ϕ6=0

∫
Ω

|∇ϕ|2 dx+ λ

∫
Ω

V |ϕ|2 dx

‖ϕ‖2
L2(Ω)

≤ C + 2ελ.

As ε > 0 is arbitrary, this shows that Λn(Tλ) = o(λ) for large λ.

Remark 6.8. If Ω is bounded, then in Theorem 6.7 one can replace Λn by En, as
T (Ω, V ) has compact resolvent. For unbounded Ω, it may happen that all Λn are
the same, and no eigenvalues are present (e.g. for Ω = Rd and V = 0). Nevertheless,
one can guarantee the existence of eigenvalues by an additional assumption on V .

Corollary 6.9 (Existence of eigenvalues in the strong coupling regime).
Assume that Ω is unbounded and that V is semibounded from below and denote

Vmin := ess inf V, V∞ := lim inf
|x|→+∞

V (x).

If Vmin < V∞, then for any n ∈ N:
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• there exists λn > 0 such that T (Ω, λV ) has at least n eigenvalues below the
bottom of the essential spectrum for all λ > λn,

• there holds En
(
T (Ω, λV )

)
= Vmin λ+ o(λ) as λ→ +∞.

Proof. In view of Theorem 6.7 one simply needs to show that Λn is the nth eigen-
value, i.e. that it lies strictly below the essential spectrum (Corollary 5.4).

Take any c with Vmin < c < V∞. By assumption there is R > 0 such that
V (x) ≥ c for all x ∈ ΩC

R, then T (ΩC
r , λV ) ≥ cλ for all r ≥ R, and Persson theorem

shows that
inf specess T (Ω, λV ) = lim

r→∞
T (ΩC

r , λV ) ≥ cλ.

For large λ one has Λn

(
T (Ω, λV )

)
= Vminλ+o(λ) < cλ ≤ inf specess T (Ω, λV ), which

gives the result.

We are now interested in more precise asymptotic expansions for the eigenvalues
En(T (Ω, λV )

)
for large λ. This problem has no general solution: in fact, the asymp-

totics depend on the way how V attains its minimum: it can be reached e.g. at a
single point, or on a submanifold, or on an open set, and the respective eigenvalue
asymptotics are different. We only consider the “generic” case when the minimum
is attained at a single point.

Theorem 6.10 (Detailed strong coupling asymptotics). Assume that:

• 0 ∈ Ω is the unique global minimum of V on Ω,

• for any r > 0 there holds ess infΩC
r
V > V (0)

(in other words, V does not approach the value V (0) at other places),

• V is C3-smooth near 0 and its Hessian matrix V ′′(0) in 0 is non-degenerate.

Denote

µ1, . . . , µd := the eigenvalues of V ′′(0),

E := the disjoint union
⊔

(n1,...,nd)∈Nd

{ d∑
j=1

(2nj − 1)

√
µj
2

}
,

εn := the n-th element of E.

Let n ∈ N, then for λ→ +∞ the operator T (Ω, λV ) has the n-th eigenvalue, and

En
(
T (Ω, λV )

)
= V (0)λ+ εn

√
λ+O(λ

2
5 ).

As a preparation for the proof consider an explicit example.

Example 6.11 (Multidimensional harmonic oscillator). Let A0 be a positive
definite d × d real matrix with eigenvalues α1, . . . , αd > 0. Consider the potential
V0 : Rd 3 x 7→ x · A0x and the Schrödinger operator Hλ := −∆ + λV0 in L2(Rd)
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with λ > 0. Let us show that specHλ can be computed explicitly (remark that V0

is in the class covered by Theorem 6.10).
There exists an orthogonal matrix θ with θ−1A0θ = diag(α1, . . . , αd) =: A1, and

for any x ∈ Rd one has

V0(θx) = θx · A0θx = x · (θ−1A0θ)x = x · A1x ≡
d∑
j=1

αjx
2
j =: V1(x).

Consider the unitary transform Θ : L2(Rd) → L2(Rd) defined by (Θu)(x) = u(θx)
and the Schrödinger operator Gλ := −∆ + λV1 = −∆ + λα1x

2
1 + · · · + λαdx

2
d in

L2(Rd). For any u ∈ C∞c (Rd) one has

(GλΘu)(x) = −
d∑

k=1

∂2
xk
u(θx) + λV1(x)u(θx)

= −
d∑

i,j,k=1

θikθjk∂
2
iju(θx) + λV0(θx)u(θx).

We have
∑d

k=1 θikθjk = (θθt)ij = δij, which gives

(GλΘu)(x) = −∆u(θx) + V0(θx)u(θx) = (ΘHλu)(x),

i.e. Θ−1GλΘ = Hλ on C∞c (Rd). As both Gλ and Hλ are essentially self-adjoint on
C∞c (Rd), this extends to the whole domain and shows that Θ−1GλΘ = Hλ, so Gλ

and Hλ are unitarily equivalent and have the same eigenvalues.
We know that the eigenvalues of the one-dimensional harmonic oscillator

T = − d

dx2
+ ω2x2, ω > 0,

are (2n − 1)ω with n ∈ N and the respective normalized eigenfunctions ψn,ω form
an orthonormal basis in L2(R) (for any fixed ω > 0). Then the functions

Ψ(n1,...,nd) : (x1, . . . , xd) 7→ ψn1,
√
λα1

(x1) · . . . · ψnd,√λαd(xd), (n1, . . . , nd) ∈ Nd,

form an orthonormal basis in L2(Rd), see Lemma 2.29, and

GλΨ(n1,...,nd) =
(

(2n1 − 1)
√
λα1 + . . .+ (2nd − 1)

√
λαd︸ ︷︷ ︸

=α(n1,...,nd)

)
Ψ(n1,...,nd),

i.e. each Ψ(n1,...,nd) is an eigenfunction of Gλ with eigenvalue α(n1, . . . , nd), and these
eigenvalues exhaust the whole spectrum of Gλ and of the unitary equivalent Hλ. So
we note that the spectrum of Hλ consists of the eigenvalues(

(2n1 − 1)
√
α1 + . . .+ (2nd − 1)

√
αd

)√
λ, (n1, . . . , nd) ∈ Nd.
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Proof of Theorem 6.10. Without loss of generality assume that V (0) = 0. Consider
the matrix A0 := 1

2
V ′′(0), whose eigenvalues are

µj
2

and the potential V0 : x 7→ x·A0x
(=the quadratic approximation of V near 0). The operator T (Rd, λV0) is exactly
the harmonic oscillator Hλ from Example 6.11 and εn

√
λ is its n-th eigenvalue (for

any λ > 0). We are reduced to prove that for any n ∈ N there holds

Λn

(
T (Ω, λV )

)
= Λn

(
T (Rd, λV0)

)
+O(λ

2
5 ) as λ→ +∞. (6.14)

Let s > 0 (to be chosen later) and n ∈ N. Using the domain monotonicity and
the IMS constructions (Corollary 6.4 with R := λ−s) we obtain with some B > 0:

Λn

(
T (Ω2λ−s , λV )⊕ T (ΩC

λ−s , λV )
)
−Bλ2s

≤ Λn

(
T (Ω, λV )

)
≤ Λn

(
T (Ω2λ−s , λV )

)
, (6.15)

Now let us fix n ∈ N and look at Λn

(
T (Ω2λ−s , V )

)
. Using the Taylor expansion

of V one finds c > 0 such that
∣∣V (x)− V0(x)

∣∣ ≤ c|x|3 as x → 0. It follows that for
sufficiently large λ > 0 one has∣∣V (x)− V0(x)

∣∣ ≤ 8cλ−3s for all x ∈ Ω2λ−s .

Let MV−V0 be the operator of multiplication by V − V0 in L2(Ω2λ−s), then

‖MV−V0‖ ≤ 8cλ−3s, T (Ω2λ−s , λV ) = T (Ω2λ−s , λV0) + λMV−V0 ,

and the min-max principle for perturbations (Corollary 5.5) gives

Λn

(
T (Ω2λ−s , λV )

)
= Λn

(
T (Ω2λ−s , λV0)

)
+O(λ1−3s). (6.16)

Now we apply the IMS estimates for V0 and Rd. Denote

Br :=
{
x ∈ Rd : |x| < r

}
≡ (Rd)r, BC

r := {x ∈ Rd : |x| > r
}
≡ (Rd)Cr .

then (Corollary 6.4 with R := λ−s)

Λn

(
T (B2λ−s , λV0)⊕ T (BC

λ−s , λV0)
)
−Bλ2s

≤ Λn

(
T (Rd, λV0)

)
≤ Λn

(
T (B2λ−s , λV0)

)
. (6.17)

One has Λn

(
T (Rd, λV0)

)
= εnλ

1
2 = O(λ

1
2 ). Remark that V0(x) ≥ c0|x|2 for all x ∈ Rd

(with some fixed c0 > 0), and it follows that for x ∈ BC
λ−s one has V0(x) ≥ c0λ

−2s

and then T (BC
λ−s , λV0) ≥ c0λ

1−2s.
From now on assume that s < 1

4
, then 1

2
< 1− 2s and for all sufficiently large λ

one has Λn

(
T (Rd, λV0)

)
≤ inf specT (BC

λ−s , λV0). Then (Remark 5.12)

Λn

(
T (B2λ−s , λV0)⊕ T (BC

λ−s , λV0)
)

= Λn

(
T (B2λ−s , λV0)

)
.

For large λ one has B2λ−s = Ω2λ−s , and then the estimate (6.17) shows that

Λn

(
T (Ω2λ−s , λV0)

)
≡ Λn

(
T (B2λ−s , λV0)

)
= Λn

(
T (Rd, λV0)

)
+O(λ2s).
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The substitution into (6.16) gives

Λn

(
T (Ω2λ−s , λV )

)
= Λn

(
T (B2λ−s , λV0)

)
= Λn

(
T (Rd, λV0)

)︸ ︷︷ ︸
εnλ

1
2

+O(λ1−3s+λ2s). (6.18)

Assume additionally that s > 1
6
, then 1− 3s < 1

2
and

Λn

(
T (Ω2λ−s , λV )

)
= εnλ

1
2 +O(λ1−3s + λ2s) = O(λ

1
2 ).

Using the Taylor expansion of V we find r > 0 and c1 > 0 such that V (x) ≥ c1|x|2
for all x ∈ Ωr. By assumption one can find a > 0 such that V (x) ≥ a for a.e. x ∈ ΩC

r .
For large λ one has

ess inf
ΩC
λ−s

V = min
{

ess inf
ΩC
λ−s
∩Ωr

V, ess inf
ΩC
r

V
}
,

V (x) ≥ c1|x|2 ≥ c1λ
−2s for x ∈ ΩC

λ−s ∩ Ωr, V (x) ≥ a > 0 for x ∈ ΩC
r ,

which gives ess infΩC
λ−s

V ≥ c1λ
−2s and (using again s < 1

4
)

inf specT (ΩC
λ−s , λV ) ≥ λ ess inf

ΩC
λ−s

V ≥ c1λ
1−2s > Λn

(
T (Ω2λ−s , λV )

)
= O(λ

1
2 )

and then Λn

(
T (Ω2λ−s , λV )⊕T (ΩC

λ−s , λV )
)

= Λn

(
T (Ω2λ−s , λV )

)
. Using this equality

in (6.15) one obtains

Λn

(
T (Ω, λV )

)
= Λn

(
T (Ω2λ−s , λV )

)
+O(λ2s)

(6.18)
= Λn

(
T (Rd, λV0)

)
+O(λ1−3s + λ2s).

Recall that this estimate holds with arbitrary s ∈ (1
6
, 1

4
). We optimize the remainder

by taking s = 1
5

and arrive at the sought estimate (6.14).

Remark 6.12 (Semiclassical asymptotics). In the quantum mechanics one often
considers the Schrödinger operators in L2(Rd) of the form −h2∆ + V with h→ 0+.
This asymptotic regime is usually referred to as the semiclassical asymptotics. This
case is equivalent to the strong coupling: if one denotes h := λ−

1
2 , then

En(−∆ + λV ) = λEn(−h2∆ + V ),

and under the assumptions of Theorem 6.10, for h→ 0+ one obtains

En(−h2∆ + V ) = V (0) + εnh+O(h
6
5 ).

For d = 1 one has

εn = (2n− 1)

√
V ′′(0)

2
, En(−h2∆ + V ) = V (0) + (2n− 1)

√
V ′′(0)

2
h+O(h

6
5 ),

and the last formula is often referred to the WKB11 asymptotics for the eigenvalues.
We remark that the remainders in the above asymptotics can be improved with the
help of different approaches.

11WKB= Wentzel, Kramers, Brillouin
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