Spectral theory of differential operators

Exercise set 1

Exercise 1 (Unbounded+continuous). In this exercise, by the sum A + B of a
linear operator A with a continuous operator B (both acting in a Hilbert space H),
we mean the operator defined by A+ B : u — Au+ Bu on the domain D(A+ B) =
D(A).

1. Assume that A is closable. Show that A + B is closable with A + B = A+ B.

2. Assume, in addition, that A is densely defined. Show that (A+ B)* = A*+ B*.

Exercise 2 (Maximality). Let A and B be self-adjoint operators in a Hilbert
space H such that D(A) € D(B) and Au = Bu for all u € D(A). Show that
D(A) = D(B). (This property is called the mazimality of self-adjoint operators.)

Exercise 3 (Unitary equivalence).

1. Let ‘H; and Hs be Hilbert spaces. Recall that a linear operator U : Hi; — Hs
is called unitary if it is bijective and [|[Uf|| = ||f|| for all f € H; (which is
equivalent to U* = U™1).

Let A be a linear operator in H, B be a linear operator in H,. Assume that
there exists a unitary operator U : H; — Hs such that UD(A) = D(B) and
UAU-'f = Bf for all f € D(B): such A and B are called unitary equivalent,
one uses the writing B = UAU .

Let A and B be as above. Show:

(a) if A is closable then B is closable too, and in that case B = UAU L.

(b) if A is closable and densely defined, then also B is closable and densely
defined and B* = UA*U L.

(c) If Ais closed /symmetric/self-adjoint, then also B has the respective prop-
erty.

(Remark that in all questions the roles of A and B can be interchanged.)

2. Let (A\,) be an arbitrary sequence of complex numbers, n € N. In the Hilbert
space (?(N) consider the following linear operator S:

D(S) = {(x,) : there exists N such that z,, = 0 for all n > N},

Describe S and S*



3. Let H be a separable Hilbert space and (e,) be an orthonormal basis in H.
Consider the linear operator T" with

D(T) := the set of the finite linear combinations of e,

and assume that there exist \,, € C such that Te,, = \,¢,, for all n.

(a) Describe T and T™*.
(b) Let all A, be real. Show that T is essentially self-adjoint.

Exercise 4 (Harmonic oscillator in 1D). Consider the following differential
expressions on R:
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LT = dx+x’ L™ dx+:c, H de—l—:z:.

For the moment we consider them as linear maps on C*(R),

(LT f)(x) = = f'(z) + xf(x) ete.

1. Show the identities H = LYL™ + I and LT (H +2[) = HL™, with I being the
identity map.

2. Consider the function ¢; : z — e~**/2. Show that ¢, is an eigenfunction of H

and find the corresponding eigenvalue \;.

3. For n > 2 define recursively ¢,, := LT ¢,_;. Show that all ¢,, are eigenfunctions
of H and find the corresponding eigenvalues \,,.

Now consider H := L?(R) and the linear operator S:
S:f—Hf, D(S):=C*R).
4. Is S closable? symmetric?

5. Let f be a finite linear combination of ¢,. Show that f € D(S).

Hint: Let x € C°(R) with x(x) = 1 for || < 1 and x(x) = 0 for |z| > 2.
Consider the functions yy : x — X(%) and fy := xnf with large N.

6. Show that (¢,) are mutually orthogonal in H.
7. Let f € H with f L ¢, for all n.

(a) Show that f is orthogonal to all functions of the form z"e **/% with
n e No.

(b) Show that the function
F:C3z— / fla)e ™ e dz e C
R
is holomorph and compute F (0) for all n € Ny.
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(¢) Deduce that f = 0.

(d) Deduce that there exists an orthonormal basis of H consisting of eigen-
functions of S.

8. Show that S is essentially self-adjoint.

Exercise 5. Consider the operator M; from the lecture: Q C R? is an open set,
H = L*(Q), pick f € C°(Q), then

My :uw fuforu e D(My) ={ue L*Q): fue L*(Q)}.
Give a detailed proof for M} = M.
Exercise 6. Let H := L?(0,1). For A € C consider the linear operator
T:fesif, DIT)={feC=(0,1]): f(1) = \f(0)}.
1. For which X is T' symmetric?

2. For which X\ is T closable?

Exercise 7. Consider
Q= {(ml,mg) DXy > O} cR?} P=A.
Choose x € C°(R?) with x(x) =1 for |z| < 1 and consider the function
u: Q3 x— x(x)log|x| € C.
Show that u € D(Ppay) but u ¢ H*(Q).

Exercise 8.

1. Let f € LL (RY) and ¢ € C®(RY). Recall why the convolution f * ¢ is

loc

well-defined and belongs to C*°(R?).
2. Let k € Nand f € H¥R").

(a) Let ¢ € C®(R"). Show that f * p € H*(R").

(b) Let ps be as in the lectures. Show that f x ps converges to f in H*(R™)
for 6 — 0.

(¢) Let x € C2°(R™) such that y(z) =1 for |x| <1 and x(x) = 0 for |z| > 2.
For N > 0 define xyy : © — X(%) Show that xnf converges to f in
H*(R") for e — 0.

3. Show that C°(R") is dense in H*(R") for any k € N.



Exercise 9 (Sobolev embedding theorem). Let k,d € N and m € Ny with
E>m+ g.

1. Show: there exists ¢ > 0 such that [|0%¢||o < c|l¢||gxga) for all o € N§ with
la] < m and all p € C2(RY).
Hint: Write the Fourier inversion formula for 9%, multiply the subintegral
function by 1 = (£)7%(£)* and use the Cauchy-Schwarz inequality.
2. Equip
Cre(RY) := {u € C®(R?) : 0%u € L™(R?) for all @ € N] with |a| < m}

with the norm [[uflm,co = 32|01 10Ul co-

Show that H*(R?) c C7% (R?) and that the embedding is continuous.

Exercise 10 (Sobolev spaces HY). For a non-empty open set 2 C R" and k € N
define
HE(Q) := the closure of C2°(Q2) in H*(Q2).

Let Q C Q C R" be non-empty open sets. For a function u defined on 2 we denote
by wu its extension by zero to (2.

Show: if u € H(Q), then u € H*(Q) with HﬂHHk(ﬁ) = [|ul| gr -



Spectral theory of differential operators

Exercise set 2

Exercise 11 (Sesquilinear forms and bounded operators). Let ¢ be a closed

sesquilinear form in H and T be the operator generated by t. Furthermore, let
B = B* € B(H). Show:

1. the sesquilinear form
tg : (u,v) — t(u,v) + (u, Bu)y, D(tg)= D(t),
is closed,
2. the operator Tz generated by tp is
Tg:u+ Tu+ Bu, D(Tg)= D(T).
Exercise 12 (Direct sums of forms and operators). Let ¢; be closed sesquilin-

ear forms in Hilbert spaces #H; and T} be the associated operators in #;, j € {1, 2}.
Recall that ‘H := H; x Hs is a Hilbert space for the scalar product

((ur,u2), (V1,02))5 g, 7= (U1, v1)30, + (U2, V2) 30,
1. Show that the sesquilinear form ¢ in H,
D(t) = D(t1) x D(ta), t((ur,uz), (v1,v2)) = t1(uy, v1) + ta(uz, v)
is closed. We write t = t; @ to and say that ¢ is the direct sum of t; and t,.

2. Show that the operator T' generated by t is the direct sum, T = T} ® T, which
is defined by

D(T) = D(T}) x D(T), T(u1,us) = (Trur, Tous).

Exercise 13 (Sesquilinear forms and unitary equivalence).

1. Let © : H — H be a unitary operator between Hilbert spaces H' and H. Let
t be a closed sesquilinear form in A and 7" be the operator in ‘H generated by
t. Define a sesquilinear form ¢’ in ‘H’ by

D) =0"'D(), t(u,v)=1t(0Ou,Owv).

Show that ¢’ is closed and that the operator 7" in ‘H' generated by ¢’ is unitarily
equivalent to 7.

2. Let Q.9 C R? be open subsets and ® : O — ' be a C*®-diffeomorphism.
Show that the weak derivatives on 2 and 2’ satisfy the usual composition rule

V(uo®) = ((Vu) o @)D

(if one writes Vu as a line).



3. Let ,Q C R? be open subsets such that ' = ®(Q) for some isometry
® : R* — R Show that the Dirichlet/Neumann Laplacian in (' is unitarily
equivalent to the Dirichlet/Neumann Laplacian in €.

Hint: Any isometry ® acts as ® : z — Az + b with a unitary matrix A and
b € R4 Consider the map

O: LX) = L*Q), Ou=wuod,
and use the first two parts of this exercise.

4. Is there any link between the Dirichlet/Neumann Laplacians in 2 and \Q) with
arbitrary A > 07

Exercise 14 (Lower semiboundedness in one dimension).
1. Check if the operator T,
D(T)=CX(0,00), Tf=—if,

is semibounded from below in H = L?*(0, 00).

Hint: consider f : z +— y(z)e*® with suitable k € R and y € C%°(0, c0).

2. Show the inequality

1
Hf]|g0§5/R|f']2dm+g/R\f|2dx for all f € H'(R) and £ > 0.

Hint: One can start with |f(x)*> = / (| f]?) for f € C=(R).
3. Let V € L*(R) be real-valued. Show that the operator
T:f'_>_f”+vf7 D(T):CCOO(R):
is semibounded from below in H = L*(R).

4. Show that for any f € C2°(0,00) one has the Hardy inequality

i < f @)
/0 |f'(2)]* da 2/0 4—3;2(133-
Hint: represent f(x) = \/x g(z).

5. Let V € L?(0,00) be real-valued and o € R. Show that the operator T,
oo " a
D(T) = C(0,00), (Tf)(@) = —f"@) + (= + V(@) (@)
is semibounded from below in H = L*(0, c0).
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Exercise 15 (Lower semiboundedness in higher dimensions). We will use the
following assertion without proof: If X C R? is closed and f : X — R is a bounded
continuous function, then f can be extended to a bounded continuous function on
the whole of R?. (The assertion holds in a much more general setting of topological
spaces and is known as Tietze extension theorem.)

Let © C R? be a bounded open set with C* boundary and n : 9Q — R? be the
outer unit normal on 0f). Show:

1.

2

n can be extended to a bounded continuous function N : R? — R<.

there exists a bounded C* function N : RY — R with [|[N — N|s < 3

. there holds N - n > L on 99.

. for any u € C(Q) there holds

/ \u|2ﬁ.nds:/ (@Y + u¥a) - N + [uf? div V] do.
o0 Q

. for any & > 0 there exists C. > 0 such that for any u € C°°(Q) there holds

/ \u|2ds§€/ |Vu|2d:c+C€/ u|? d.
00 0 0

. for any bounded measurable function a : 92 — R the operator T’

T:uw —Au, D(T)={ueC>Q): du=auon I}

is semibounded from below in H = L?(£2).

Remark: the boundary condition 9,u = au is called Robin boundary condition.

There exists an alternative terminology (sometimes considered as obsolete but
still in use): the Dirichlet/Neumann/Robin boundary conditions are referred
to as the first/second/third type boundary conditions.



Spectral theory of differential operators

Exercise set 3

Exercise 16 (Spectrum, direct sums, matrix operators).
1. Let Tj be linear operators in Hilbert spaces H;, j € {1,2}. Show:

spec(Ty ® Ty) = spec Ty Uspec Ty, spec,(Ty @ Ty) = spec, Ty U spec,, Tp.

2. Let 2 C R? be a non-empty open set and let L : Q — My(C) be a continuous
2 x 2 matrix function such that L(x)* = L(x) for all x € Q. Define an operator
Ain H = L*(Q,C?) (L*-functions with values in C?) by

Af(x) = L@)f(x), D(A)={feH: / |L(2) f(2)]22 dar < +oc}).

(a) Show that A is self-adjoint.
(b) Let A1(z) < A2(x) be the eigenvalues of L(z). Show:

spec A = ran A; Uran Ay
and find a similar representation for spec, A.

Hint: For each x € Q, let & (z) and &(z) be suitably chosen eigenvectors
of L(x). Consider the map

<51(37)>

U:H—H, Uf(x):= <<§2(x),f($)><c2

—
8
~
Q
N————

and the operator B = UAU .

3. Consider the operator T in H = [*(Z) given by

if n is even
Tfn)=fn—1)+ f(n+1)+V(n)f(n), V(n)={lf2 ifziz ide

Compute the spectrum of 7T'.

Hint: Consider the operators

(2n+1)
2 2 2 2 1 ind
FLOEC) 5 P(020.C). (Fo)0) == 3ol

S:=UTU', §:=FSF '

U:12(Z) = 12(Z,C2), Uf(n):= (ff<2”> ) nez,
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Exercise 17 (Sufficient condition for [0,00) C specT).

1. Let Q C R? be an open set and T be a linear operator in H := L?(Q). Assume
that there exists an open subset Q' C € with the following properties:
o C(QY)C D(T),
e for any u € C2°(€Y) one has Tu = —Au,
e for any R > 0 there is a ball of radius R contained in €’ (open sets with
this property are sometimes called quasiconical).
For any n € N let r, € @' such that B,(r,) C Q. Pick y € C*(R?) with
suppx C B1(0) and x =1 in B%(O).
Let k € R. Define u,, € C°(£2') by

R e

(a) Show that ||uy,|* > cn? for some ¢ > 0 independent of n,

(b) Show that ||(T' = k?)u,||> = O(n®!) as n — co. Remark: one can control
L?-norms by controlling the | - ||o-norm and the size of the support.

(¢) Show that [0,00) C specT.

2. Compute the spectra of the Dirichlet and Neumann Laplacians on (0, co).

Exercise 18 (Dirichlet/Neumann Laplacians on intervals/rectangles).
Let £ € (0, 00).

1. Show that the eigenvalues of the Dirichlet Laplacian on (0, ) are simple and
given by mn?/(? n € N,

2. Show that for any ¢ € C'2°(0, ) one has

/‘gp ‘dx> /‘gp ‘dx

3. Show that the eigenvalues of the Neumann Laplacian on (0, ¢) are simple and
given by mn?/0? n € Ny := NU {0}.

4. Let 41,05 € (0,00). Compute the spectra of the Dirichlet and Neumann Lapla-
cians on (0, ¢1) x (0, 45).

Exercise 19 (Application of the trace formula for Hilbert-Schmidt oper-
ators). Let us recall some constructions from the theory of ordinary differential
equations (Green functions for boundary value problems).

Let ag,a; : [a,b] — C be continuous functions and Ly := y” 4+ a1y + agy. Let
ay, e, 1, P2 € C and Ry := aqy(a) + any/(a), Rey := Bry(b) + [y (b). Assume
that the only solution to Ly = 0 with Riy = Ry = 0 is the zero function.
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Let y; be a non-zero solution of Ly = 0 with R;y = 0 and y, be a non-zero
solution to Ly = 0 with Rey = 0. Consider W := y195 — v} y> (Wronski determinant)
and

M xr<s
DI
G(z,s) = M T >s
Wi(s) ’ |

then for any f € C°([a,b]) the function

y(x) :—/ G(z,s)f(s)ds

is the unique solution to Ly = f with Ry = Rsy = 0.
Now let T' be the Dirichlet Laplacian on the interval (0,1).

1. Show that T~! is a Hilbert-Schmidt operator, deduce that it is an integral
operator and compute its integral kernel.

2. Compute the sum of the series

N

n=1 nt

Exercise 20 (Perturbations of operators with compact resolvents).

Let U € L} (R) be real-valued, lower semibounded, limj;—4o U(z) = +00. In

addition, let W € L2 (R) N L*(R) be real-valued and V := U + W. Show that the

loc
operator
2

d
r=-" 1y
d:c2+

(defined through the Friedrichs extension) has compact resolvent.

Hint: Exercise 14 may be useful.

Exercise 21 (—A 4+ V with compact resolvent but V(x) /- +4oo for
x| = +00).

1. Let VW € L2 _(R%) be real-valued, lower semibounded, with V' < W. Show:

loc

if H)(R?) is compactly embedded in L?*(R?), then also Hy;,(R?) is compactly
embedded in L?(R?).

2. Let a > 0.

(a) Compute the spectrum of the operator

d2
Ta = —@ -+ a2x2
defined through the Friedrichs extension in L*(R).
Hint: The case a = 1 is already known (harmonic oscillator). Consider
the unitary transform U, : L*(R) — L*(R), (U,f)(z) = /af(\/azx), and
the operators U, 'T,U,,.
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(b) Deduce that for any ¢ € C°(R) there holds
[ (¢ @P + ae?o@l) d 2 a [ o) do
R R

3. Deduce that for any ¢ € C2°(R?) there holds

/RZ (|V90($7y)|2 + x2y2{<,0(x,y)}2> dz dy

= 1/ (IVet@m)|* + (2] + yl) oz, )| *) de dy.

- 5 R2
Hint: if y is fixed, then the function x — ¢(z,y) belongs to C>°(R)

4. Deduce that the two-dimensional Schrodinger operator T = —A + x%y? has
compact resolvent.

Exercise 22 (Dirichlet Laplacians with compact resolvents in unbounded
domains).

1. Write the points z € R? as x = (2, 74) with 2’ € R*! and z4 € R.

Let Q C R? be an open set which is bounded in the z'-direction, i.e. for some
r >0 one has Q C {(2/,zq) : |2/| <r} (ie. Q

Let v: R — (0,00) be continuous with limy; . v(t) = +00. Equip
Q) = {u e HI(Q): / o(z)[u(@)]? dz < oo}
Q
with the norm
lully = llull 7 o) +/Qv(xd)|u($)\2dx-
Show that H!(Q) is compactly embedded into L(£).

2. Let f: R — (0,00) be a continuous function with limy .+ f(2) = 0. Consider
the two-dimensional domain

Q:={(z,y): 0<y< f(z)} CR™.
(a kind of strip whose width tends to zero at infinity).
(a) Show that for any ¢ € C2°(€2) there holds

lew(f,y)Idez %/Q (IVsO(:v,y)ler%\sO(:v,y)lz) dz da.

Hint: for each fixed 2 the function y — ¢(z,y) is in C°(0, f(z)).
(b) Deduce that the Dirichlet Laplacian in €2 has compact resolvent.
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Spectral theory of differential operators

Exercise set 4

Exercise 23 (Abstract Schrodinger equation). Let A be a self-adjoint operator
in a separable Hilbert space H. Given ¢t € R we define e~ to be f;(A) for the
function f; : R 3 z — e~ € C. Show:

1. for each t € R the operator e~#4 is unitary,
2. e itH)A — gmitAp—isA for gll t, s € R,
3. for any v € H and t € R there holds e~#4v = lim,_,; e "*4v,
4. e D(A) C D(A) and Ae™ " = =4 A on D(A) for any t € R.
For v € D(A) consider the initial value problem
i/ (t) = Au(t) for all t € R,  u(0) = v, (1)

to be satisfied by a differentiable function u : R 5 ¢t + wu(t) € H such that u(t) €
D(A) for any t € R. Show:

5. if u is a solution of (1), then ||u|| is constant.
6. the function u : R 3 ¢t — e~y € H is a solution of (1).
7. this solution is unique.

Exercise 24 (Domains). Let T" be a self-adjoint operator in a separable Hilbert
space H and let X u, h be as in the spectral theorem.

1. For n € N with n > 2 define D, (T) := {z € D(T) : Tx € D,_1(T)}, where
we set Dy(T") :== D(T).
(a) Show that D, (T) is dense in H.
(b) Let T, be the restriction of 7" on D, (7). Show that T, is essentially

self-adjoint.

2. For any Borel function f : R — C define f(T) := OM;.,©'. Show: if T is
semibounded from below, then Q(7') = D(+/|T|). Recall that the form domain
Q(T) was defined in the chapter dealing with the Friedrichs extension.

Exercise 25 (Abstract wave equation). Let A be a self-adjoint operator in a
separable Hilbert space H such that A > 0 and ker A = {0}. We say that a function
u: R — H is a solution of the wave equation

u"(t) + Au(t) =0, (2)

12



if u € C*(R,H) and the inclusion u(t) € D(A) and the equality (2) hold for any
teR.
For t € R we define C, S; : R — R by

Cy(r) = cos(ty/z) and  Sy(z) = sin(ty/r) forx >0, Cy(z) = Si(z)=0 for z <O0.

VT
Let ug € D(A) and u; € D(v/A) and define ¢,¢ : R — H by
p(t) = Ce(Auo,  (t) = Si(A)ur.
1. Show that ¢(t) and ¥(t) belong to D(A) for any ¢ € R.
2. Show that ¢ € C*(R,H) and that ¢'(t) = —AS;(A)ug for any t € R.
3. Show that ¢ € C1(R,H) and that ¢'(t) = Cy(A)u, for any t € R.
4. Show that both ¢ and ¢ are solutions of (2).

Now we would like to show that u(t) = ¢(t) + ¥(¢) is the unique solution to (2)
satisfying the initial conditions u(0) = wy and «/(0) = w;. Let w be any solution
satisfying the same initial conditions. Set v(t) := u(t) — w(t), t € R.

5. Show the equality

% (v(t), Av(t)) = (V'(t), Av(t)) + (Av(t),v'(1)).
Hint: use the classical definition of the derivative.
6. Show that the value E(t) = (v/(t),v'(t)) + (v(t), Av(t)) is independent of ¢.
7. Show that v(t) = 0 for all t € R.
Let A :=the free Laplacian in H := L*(R).

8. Show that for f € C2°(R) one has

flx+t)+ flz—1)

CilA) () = :

Si(A)f(z) = %/jtf(s) ds, zeR.

Exercise 26 (Essential self-adjointness for semibounded operators). Let T
be a densely defined symmetric operator in a Hilbert space H with T > 0. Let
a > 0.

1. Show that for any x € D(T") there holds

IT2|* + a®|2]* < (T + a)zl|* < 2(IT2|* + a*[lz]).
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2. Show that ran(T + a) = ran(T + a).
3. Show that the following three assertions are equivalent:
(a) T is essentially self-adjoint,
(b) ker(T* + a) = {0},
(¢) ran(T + a) is dense in H.
Exercise 27 (Kato-Rellich theorem). We are going to complete the proof of the
Kato-Rellich theorem.

Let A be a self-adjoint operator in a separable Hilbert space H and B be a
symmetric operator in ‘H which is A-bounded with relative bound < 1.

1. Let D C D(A) be a subspace on which A is essentially self-adjoint. Show that
A+ B is also essentially self-adjoint on D.

2. Now assume additionally that A is semibounded from below.

(a) Show that ||[B(A+ X\)7'|| < 1 for all sufficiently large A > 0.
(b) Deduce that A 4+ B is semibounded from below.

Exercise 28. Let V € L (R?) be real-valued and consider the associated multipli-

cation operator My in H = L*(R?).
1. Show that the spectrum of My is purely essential.
2. Show that My is essentially self-adjoint on C2°(RY).

Exercise 29.
1. Let T be the free Laplacian in H := L*(R?).

(a) Show that 0; is infinitesimally small with respect to 7.

(b) Show that 0; is not T-compact.
Hint: compute the spectrum of 7"+ i0;.

(c) Let a € C>°(R?). Show that ad; is T-compact.
Hint: Use compact embeddings of H} in L? on bounded domains.

(d) Let a € C=(R?) such that limy . a(z) = 0. Show that ad; is T-
compact.

2. Let A € C°(R%,R?) such that A and VA are bounded. Consider the operator
TA = (ZV + A)2 on D(TA> = C?(Rd),
d
Ty:urs Z(if)j + AP, (i0; + Aj)u = i0;u + Aju.
j=1

Such operators are usually called magnetic Schrodinger operators.
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(a) Show that T} is essentially self-adjoint and determine the domain of its
closure. We denote the closure again by T'4.

(b) Assume that lim,,o [VA(2)| +|A(x)| = 0. Compute the essential spec-
trum of T4, then the whole spectrum of T'4.

Exercise 30 (Existence of several eigenvalues).

1. Let T be a lower semibounded self-adjoint operator in a Hilbert space H.
Assume that the essential spectrum of 7" is non-empty and denote

Y :=infspec, 1.

Furthermore, assume that there exist N linearly independent vectors
fi,..., fyv in D(T) such that all eigenvalues of the N x N matrix

N

(T =28))

=1
are strictly negative. Show that 7" has at least N eigenvalues in (—oo, X).
2. Consider the following operator T'in H = L*(R):

d* d?

7= 1929
dx4+ dx?

+1, D(T)= H*R).

(a) Show that T is self-adjoint and compute its spectrum. Hint: Use the
Fourier transform.

(b) Let V € L>®(R)N L'(R) be real-valued. Show that the operator
S:=T+V, D(S)=H'R),

is self-adjoint and compute its essential spectrum.

(¢) Let F be the Fourier transform in L2(R) and V := FV. Give an explicit
expression for the operator S := FSF~! and describe its domain.

(d) Let o € C*(R) with ¢ > 0 and |¢| ;1) = 1. For e > 0 and ¢ € R
consider the following functions:

1 £-4q
cR3E— — ( >
¥, §r -~
Show that these functions belong to D(S) and that

Ellr& <g0q76, Sgpm> =V(g—r) forq,r==l.

(e) Assume that V(0) < 0 and |‘7(2)‘ < !17(0)‘ Show that the operator S
has at least two negative eigenvalues.
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Spectral theory of differential operators
Exercise set 5

Exercise 31. Let o € R. Consider the following sesquilinear form ¢ in L?(R):
t(u,u) = / |u'(:n)‘2dx + a‘u(O)f, D(t) = H'(R).
R

1. Show that ¢ is closed. (Hint: Exercise 14.)
Denote

e T := the self-adjoint operator generated by t,

e S := the restriction of 7" on C*(R \ {0}),

e T := the free Laplacian on R,

e Sy := the restriction of 75 on C°(R\ {0}),

2. Show that S = S,.

3. Let A € C. Show that ker(S* — X) is contained in C*((—o0,0]) N C>([0, c0))
and is finite-dimensional.

4. Deduce that (T4 i)' — (To +¢)~! is a compact operator.
5. Compute the essential spectrum of T

6. Compute the discrete spectrum of 7.

Exercise 32 (Bottom of the spectrum). Let 7" be a lower semibounded self-
adjoint operator and t be its closed sesquilinear form.

1. Show that the following two conditions are equivalent:

(a) u € ker (T — Ay(T)),
(b) u € D(t) and t(u,u) = Ay (T)||u|?.

2. Let T be the Dirichlet Laplacian on an open set ). Show: if infspecT is an
eigenvalue, then it is strictly positive.

Exercise 33 (Poincaré-Wirthinger inequality).

1. Let T be a lower sembounded self-adjoint operator and ¢ be its closed sesquilin-
ear form. Assume that A;(7") is an isolated point of specT and denote by P
the orthogonal projector on ker (T'— A;(T')). Show that for any u € D(t) one
has the inequality

t(u,u) > Ay (T)]| Pull® + Ao (T) || (1 — P)ul|”.

16



2. Let € R? be a bounded connected open set with Lipschitz boundary and T
be the Neumann Laplacian in 2. Show that for any u € H'(Q) one has

[ 1vuta)de = Bar) [ futo) =g [ utmay [ ao

Exercise 34 (0 is always in the Neumann spectrum).

Let Q C R? be an arbitrary open set and 7' be the Neumann Laplacian in €.
We want to show that 0 € specT'.

For n € N denote €, := QN {x € R?: |z| < n}.

1. Show that for some n; — 400 one has

|an| B ‘an—1| k—)_o>o 0.
|an—1|

2. Let x : R = R be a C*™-function with x(¢) = 1 for t < 0 and x(t) = 0 for
t > 1. Consider the functions

en Q= R, pu(z) =x(Jz| = (n—1)), neN.

Show that there exist K > 0 and N € N such that

/ |Vn|* do

Q

/ oul? da
Q

3. Deduce that 0 € specT'.

|Qn| — |Qn—1|

<K
N |Qn—1’

for any n > N.

Exercise 35 (Neumann Laplacians: rooms and passages). Let Q C R? be
an open set that can be decomposed in infinitely many rectangles as shown on the
picture:

by b,
dﬁ °l1 i'l: ]\J_g

Ao A Al . A A Al

17



Namely let a;, b;,cj,d; > 0. Define

k—1
Ak = CO+Zl<aj+Cj)7 k GN, A;C = Ak+1 — Ck, k €N07 L:= kh—>IgoAk
j=

Consider the function A : (0, L) — (0, 00),

hx) dj, A <wx < Ajyy for some j € N,
x) =
b; Aj<x§A;forsomej€N,
and the open set
Q:={(z,y):0<z <L, 0<y<h(x)}.

Pick any C* function x : R — R with x(f) = 0 for t < —1 and x(¢) = 1 for ¢ > 0
and consider the functions ¢, on €2 defined by

on(z,y) = x(m _A">X(A;1 _x>, neN.

n—1 Cn

1. Show that ¢,, have disjoint supports.

2. Show: there exists a constant K > 0 such that

2 dy— d,,
/\Vson(%y)\ dz dy - 1+C
Q < K="= for any n € N.

/Q |on(, y)|” da dy @nbn

3. Use this computation to construct a bounded open set €2 such that the em-
bedding H'(Q) < L?(Q) is not compact and the Neumann Laplacian in €2 has
non-empty essential spectrum..

Exercise 36 (Continuity of Dirichlet eigenvalues with respect to do-
main).

1. Let d > 2 and © C R? be a bounded open set. For A\ > 0 define
Q) = {()\xl,xg,...,a:d) C (., xg) € Q}

Let n € N be fixed. Show that the n-th eigenvalue of the Dirichlet Laplacian
in 2, is continuous with respect to A.

2. Let Q;,Q C R? be bounded open sets such that
Q CQuforalljeN, Q=[]0
j=1

Let n € N be fixed. Show that the n-th Dirichlet eigenvalue of {2; converges
to the n-th Dirichlet eigenvalue of {2 as j — oo.

18



Exercise 37 (Weyl asymptotics for Schrédinger operators). For any func-
tion F : R? — R we define its negative part F_ := max{0, —F'}.

Let V : R? — R be real-valued, continuous, such that V' > 0 outside a compact
set. Consider the parameter-dependent Schrodinger operator

T=-A+\Vin L*(R?), X\>0.

and denote
N (A) := the number of negative eigenvalues of T

(which is finite as shown in the lectures). We are going to show that

. N 1
Jm T T / V-(z)de. )
Choose R > 0 such that V(z) > 0 for all ¢ (—R,R) x (—R, R). Let n € N.
For m = (my,ms) € (1,...,n) x (1,...,n) consider the open squares

m1—1 mo

Sn,m:(—R+2R ,—R+2R%>x<—R+2R n_l,—R+2R%>,

and denote S,, ;= U Shms §n =R?\ S,.

mi,ma=1
Introduce U : R? — R by:
U~ () U, ., =infzes, ..V, x€S,,, with some m,
x) = ’ ’
" 0, x & Sy,

() Uf, =supg V, x€S,, with some m,
x) = b n,m )
0, r ¢Sy,

and denote by

e T := the self-adjoint operator in L?(.S,) given by the sesquilinear form

£ (u,u) = |vu(m)\2dx+A/ Ut |u(e) | dz,  D(t]) = HE(S,)
Sn S
e T := the self-adjoint operator in L?(IR?) given by the sesquilinear form

tn(u,u):/s ) ‘Vu(x)‘de—l—)\/RQ Uy |u(z)|*de, D(t;) = H'(S, U S,).

nUSh

1. Show that T/ can be represented as direct sums of operators AF  in L?(Sy,m)

and A, in L2(§n) whose spectra can be computed explicitly.

2. Let N7E(X\) be the number of negative eigenvalues of T=. Show that both
numbers are finite and that

NI SN <N, (N forallm € Nand A > 0
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3. Show that NEOL .
lim x () —/ (U7)_(z)dz.
R2

A——+00 A - 47

4. Let € > 0. Show: one can find n. € N such that

‘/gz(Uf)_(x)dx——/QZVl(x)dx

5. Show the relation (3).

< e forall n > n,..

Exercise 38 (Rapidly decaying potentials produce finitely many eigenval-
ues). Let d > 3 and V € L®(R?) real-valued with

1
V(z) = O(W> for |x| — oo.
Consider the Schrodinger operator T = —A + V in L?(R?).

1. Compute the essential spectrum of 7.

Let H be the Hardy potential,

d— 2)2
H:WB%H( )GR
4|z[?

2. Show: for some a € (0,1) one has V' > —aH + W, where W is a bounded
real-valued potential vanishing outside a compact set.

3. Show that "> —(1 —a)A + W.

4. Deduce that T has at most finitely many negative eigenvalues.

Exercise 39 (Dirichlet Laplacians in infinite cylinders).
Let w C R? be a bounded open set and

0:=wxRc R,

We denote the points of z € R¥*! as z = (2/,y) with 2/ € R? and y € R. Denote by
T, and T, the Dirichlet Laplacians in w and €2 respectively and denote

A= El(Tw)
1. Show that T > A.

2. Show: if u € D(T,,) and ¢ € C°(R), then the function v : (z/,y) — u(x’)p(y)
belongs to D(Tg), and compute Tqu.
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3. Let u be an eigenfunction of T, for the first eigenvalue. Furthermore, let
X € CX(R) with x(t) = 1 for |t| < 1 and x(t) = 0 for |t| > 2. Let £k > 0.
Show that the functions

vt (@' y) = U(x’)e““yx@)
n
form a Weyl sequence for T and A + k2.

4. Show that specTq = [A, 00).

Let V € C°(Q) be real-valued with V(z) — 0 as |2| — co.

5. Recall why T 4+ V is a well-defined self-adjoint operator, and show that its
essential spectrum is [A, 0o).

Hint: Take the above functions v, and consider w, : (z,y) — v,(z,y — 3n).
One may also use Persson’s theorem.

6. Assume in addition that

e there exists W € L'(R) with ‘V(!E’,yﬂ < W(y) for all (2',y) € Q,
o IV <0,

e there exists a non-empty interval (a,b) C R such that V' (2',y) < 0 for all
(2',y) € w x (a,b).

Show that T + V has at least one eigenvalue in (—oo, A).

Exercise 40 (Dirichlet Laplacians in half-infinite cylinders and perturba-
tions). Let w C R? be a bounded open set and

Q= w x (0,00) C R
We denote the points of x € R¥*! as z = (2/,y) with 2/ € R? and y € R. Denote
A= El (Tw)

and let T' be the Dirichlet Laplacian in Q. Let V € C°Q) be real-valued with
V(z) = 0 as |z| — oc.

1. Show that specT = [A, 00).

2. Show that spec (T + V) = [A, 00).

Hint: one may proceed very similarly to Exercise 39.

ess (

3. Assume that V(z) = o(|z|™?) as |z| — oo. Show: there exists \g > 0 such
that one has spec(T 4+ AV) = [A, 00) for all A € (=g, Ag).

Hint: one may use the one-dimensional Hardy inequality (Exercise 14).
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Now let € C R4+! be an open set such that:
o O :zﬁﬂ{(&:’,y) ty >0} =Q,
e O_:=Qn {(z',y) : y <0} is bounded,

in other words, Q is obtained by attaching a bounded open set to the left end of 2.
Denote by T' the Dirichlet Laplacian in Q.

BR g
Nz
T e

4. Show that spec, T = [A, 00).
For open U C Q denote

Ce(U) = {u : U — C: u can be extended to a function in Cé’o(ﬁ)}

and consider the sesquilinear forms ¢4 in L*(2y) given by
) = [ VuPds, D(t) = C2(0).
Qt

5. Show that both ¢4 are closable.

We denote their closures again by ¢. and the associated self-adjoint operators in
L2<Qi> by Ti-

6. Show that T_ has compact resolvent.

Hint: Let R > 0 such that Q_ C (=R, R)? x (—R,0) =: Bg. Show that the
embedding D(t_) — H'(Bg) is continuous.

7. Show that spec Ty = [A, 00).

8. Show that 7 has at most finitely many eigenvalues in (—oo, A).

Hint: Compare T with T_ & T,.

9. Propose an explicit example of Q of the above type such that T actually has
at least one eigenvalue in (—oo, A).
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