
Spectral theory of differential operators
Exercise set 1

Exercise 1 (Unbounded+continuous). In this exercise, by the sum A+B of a
linear operator A with a continuous operator B (both acting in a Hilbert space H),
we mean the operator defined by A+B : u 7→ Au+Bu on the domain D(A+B) =
D(A).

1. Assume that A is closable. Show that A+B is closable with A+B = A+B.

2. Assume, in addition, that A is densely defined. Show that (A+B)∗ = A∗+B∗.

Exercise 2 (Maximality). Let A and B be self-adjoint operators in a Hilbert
space H such that D(A) ⊂ D(B) and Au = Bu for all u ∈ D(A). Show that
D(A) = D(B). (This property is called the maximality of self-adjoint operators.)

Exercise 3 (Unitary equivalence).

1. Let H1 and H2 be Hilbert spaces. Recall that a linear operator U : H1 → H2

is called unitary if it is bijective and ∥Uf∥ = ∥f∥ for all f ∈ H1 (which is
equivalent to U∗ = U−1).

Let A be a linear operator in H1, B be a linear operator in H2. Assume that
there exists a unitary operator U : H1 → H2 such that UD(A) = D(B) and
UAU−1f = Bf for all f ∈ D(B): such A and B are called unitary equivalent,
one uses the writing B = UAU−1.

Let A and B be as above. Show:

(a) if A is closable then B is closable too, and in that case B = UAU−1.

(b) if A is closable and densely defined, then also B is closable and densely
defined and B∗ = UA∗U−1.

(c) If A is closed/symmetric/self-adjoint, then also B has the respective prop-
erty.

(Remark that in all questions the roles of A and B can be interchanged.)

2. Let (λn) be an arbitrary sequence of complex numbers, n ∈ N. In the Hilbert
space ℓ2(N) consider the following linear operator S:

D(S) =
{
(xn) : there exists N such that xn = 0 for all n > N

}
,

S(xn) = (λnxn).

Describe S and S∗
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3. Let H be a separable Hilbert space and (en) be an orthonormal basis in H.
Consider the linear operator T with

D(T ) := the set of the finite linear combinations of en

and assume that there exist λn ∈ C such that Ten = λnen for all n.

(a) Describe T and T ∗.

(b) Let all λn be real. Show that T is essentially self-adjoint.

Exercise 4 (Harmonic oscillator in 1D). Consider the following differential
expressions on R:

L+ := − d

dx
+ x, L− :=

d

dx
+ x, H := − d2

dx2
+ x2.

For the moment we consider them as linear maps on C∞(R),

(L+f)(x) = −f ′(x) + xf(x) etc.

1. Show the identities H = L+L− + I and L+(H + 2I) = HL+, with I being the
identity map.

2. Consider the function ϕ1 : x 7→ e−x2/2. Show that ϕ1 is an eigenfunction of H
and find the corresponding eigenvalue λ1.

3. For n ≥ 2 define recursively ϕn := L+ϕn−1. Show that all ϕn are eigenfunctions
of H and find the corresponding eigenvalues λn.

Now consider H := L2(R) and the linear operator S:

S : f 7→ Hf, D(S) := C∞
c (R).

4. Is S closable? symmetric?

5. Let f be a finite linear combination of ϕn. Show that f ∈ D(S).

Hint: Let χ ∈ C∞
c (R) with χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2.

Consider the functions χN : x 7→ χ
(

x
N

)
and fN := χNf with large N .

6. Show that (ϕn) are mutually orthogonal in H.

7. Let f ∈ H with f ⊥ ϕn for all n.

(a) Show that f is orthogonal to all functions of the form xne−x2/2 with
n ∈ N0.

(b) Show that the function

F : C ∋ z 7→
∫
R
f(x)e−x2/2e−izx dx ∈ C

is holomorph and compute F (n)(0) for all n ∈ N0.
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(c) Deduce that f = 0.

(d) Deduce that there exists an orthonormal basis of H consisting of eigen-
functions of S.

8. Show that S is essentially self-adjoint.

Exercise 5. Consider the operator Mf from the lecture: Ω ⊂ Rd is an open set,
H := L2(Ω), pick f ∈ C0(Ω), then

Mf : u 7→ fu for u ∈ D(Mf ) =
{
u ∈ L2(Ω) : fu ∈ L2(Ω)

}
.

Give a detailed proof for M∗
f =Mf .

Exercise 6. Let H := L2(0, 1). For λ ∈ C consider the linear operator

T : f 7→ if ′, D(T ) :=
{
f ∈ C∞([0, 1]) : f(1) = λf(0)

}
.

1. For which λ is T symmetric?

2. For which λ is T closable?

Exercise 7. Consider

Ω =
{
(x1, x2) : x2 > 0

}
⊂ R2, P = ∆.

Choose χ ∈ C∞
c (R2) with χ(x) = 1 for |x| < 1 and consider the function

u : Ω ∋ x 7→ χ(x) log |x| ∈ C.

Show that u ∈ D(Pmax) but u /∈ H2(Ω).

Exercise 8.

1. Let f ∈ L1
loc(Rd) and φ ∈ C∞

c (Rd). Recall why the convolution f ∗ φ is
well-defined and belongs to C∞(Rd).

2. Let k ∈ N and f ∈ Hk(Rn).

(a) Let φ ∈ C∞
c (Rn). Show that f ∗ φ ∈ Hk(Rn).

(b) Let ρδ be as in the lectures. Show that f ∗ ρδ converges to f in Hk(Rn)
for δ → 0+.

(c) Let χ ∈ C∞
c (Rn) such that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2.

For N > 0 define χN : x 7→ χ
(

x
N

)
. Show that χNf converges to f in

Hk(Rn) for ε→ 0+.

3. Show that C∞
c (Rn) is dense in Hk(Rn) for any k ∈ N.
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Exercise 9 (Sobolev embedding theorem). Let k, d ∈ N and m ∈ N0 with
k > m+ d

2
.

1. Show: there exists c > 0 such that ∥∂αφ∥∞ ≤ c∥φ∥Hk(Rd) for all α ∈ Nd
0 with

|α| ≤ m and all φ ∈ C∞
c (Rd).

Hint: Write the Fourier inversion formula for ∂αφ, multiply the subintegral
function by 1 ≡ ⟨ξ⟩−k⟨ξ⟩k and use the Cauchy-Schwarz inequality.

2. Equip

Cm
L∞(Rd) :=

{
u ∈ C∞(Rd) : ∂αu ∈ L∞(Rd) for all α ∈ Nd

0 with |α| ≤ m}

with the norm ∥u∥m,∞ :=
∑

|α|≤m ∥∂αu∥∞.

Show that Hk(Rd) ⊂ Cm
L∞(Rd) and that the embedding is continuous.

Exercise 10 (Sobolev spaces Hk
0 ). For a non-empty open set Ω ⊂ Rn and k ∈ N

define
Hk

0 (Ω) := the closure of C∞
c (Ω) in Hk(Ω).

Let Ω ⊂ Ω̃ ⊂ Rn be non-empty open sets. For a function u defined on Ω we denote
by ũ its extension by zero to Ω̃.

Show: if u ∈ Hk
0 (Ω), then ũ ∈ Hk(Ω̃) with ∥ũ∥Hk(Ω̃) = ∥u∥Hk(Ω).
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Spectral theory of differential operators
Exercise set 2

Exercise 11 (Sesquilinear forms and bounded operators). Let t be a closed
sesquilinear form in H and T be the operator generated by t. Furthermore, let
B = B∗ ∈ B(H). Show:

1. the sesquilinear form

tB : (u, v) 7→ t(u, v) + ⟨u,Bv⟩H, D(tB) = D(t),

is closed,

2. the operator TB generated by tB is

TB : u 7→ Tu+Bu, D(TB) = D(T ).

Exercise 12 (Direct sums of forms and operators). Let tj be closed sesquilin-
ear forms in Hilbert spaces Hj and Tj be the associated operators in Hj, j ∈ {1, 2}.
Recall that H := H1 ×H2 is a Hilbert space for the scalar product〈

(u1, u2), (v1, v2)
〉
H1×H2

:= ⟨u1, v1⟩H1 + ⟨u2, v2⟩H2 .

1. Show that the sesquilinear form t in H,

D(t) = D(t1)×D(t2), t
(
(u1, u2), (v1, v2)

)
= t1(u1, v1) + t2(u2, v2)

is closed. We write t = t1 ⊕ t2 and say that t is the direct sum of t1 and t2.

2. Show that the operator T generated by t is the direct sum, T = T1⊕T2, which
is defined by

D(T ) = D(T1)×D(T2), T (u1, u2) = (T1u1, T2u2).

Exercise 13 (Sesquilinear forms and unitary equivalence).

1. Let Θ : H′ → H be a unitary operator between Hilbert spaces H′ and H. Let
t be a closed sesquilinear form in H and T be the operator in H generated by
t. Define a sesquilinear form t′ in H′ by

D(t′) = Θ−1D(t), t′(u, v) = t(Θu,Θv).

Show that t′ is closed and that the operator T ′ inH′ generated by t′ is unitarily
equivalent to T .

2. Let Ω,Ω′ ⊂ Rd be open subsets and Φ : Ω → Ω′ be a C∞-diffeomorphism.
Show that the weak derivatives on Ω and Ω′ satisfy the usual composition rule

∇(u ◦ Φ) =
(
(∇u) ◦ Φ

)
DΦ

(if one writes ∇u as a line).
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3. Let Ω,Ω′ ⊂ Rd be open subsets such that Ω′ = Φ(Ω) for some isometry
Φ : Rd → Rd. Show that the Dirichlet/Neumann Laplacian in Ω′ is unitarily
equivalent to the Dirichlet/Neumann Laplacian in Ω.

Hint: Any isometry Φ acts as Φ : x 7→ Ax + b with a unitary matrix A and
b ∈ Rd. Consider the map

Θ : L2(Ω′) → L2(Ω), Θu = u ◦ Φ,

and use the first two parts of this exercise.

4. Is there any link between the Dirichlet/Neumann Laplacians in Ω and λΩ with
arbitrary λ > 0?

Exercise 14 (Lower semiboundedness in one dimension).

1. Check if the operator T ,

D(T ) = C∞
c (0,∞), T f = −if ′,

is semibounded from below in H = L2(0,∞).

Hint: consider f : x 7→ χ(x)eikx with suitable k ∈ R and χ ∈ C∞
c (0,∞).

2. Show the inequality

∥f∥2∞ ≤ ε

∫
R
|f ′|2 dx+ 1

ε

∫
R
|f |2 dx for all f ∈ H1(R) and ε > 0.

Hint: One can start with |f(x)|2 =
∫ x

−∞
(|f |2)′ for f ∈ C∞

c (R).

3. Let V ∈ L2(R) be real-valued. Show that the operator

T : f 7→ −f ′′ + V f, D(T ) = C∞
c (R),

is semibounded from below in H = L2(R).

4. Show that for any f ∈ C∞
c (0,∞) one has the Hardy inequality∫ ∞

0

|f ′(x)|2 dx ≥
∫ ∞

0

|f(x)|2

4x2
dx.

Hint: represent f(x) =
√
x g(x).

5. Let V ∈ L2(0,∞) be real-valued and α ∈ R. Show that the operator T ,

D(T ) = C∞
c (0,∞),

(
Tf
)
(x) = −f ′′(x) +

(α
x
+ V (x)

)
f(x)

is semibounded from below in H = L2(0,∞).
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Exercise 15 (Lower semiboundedness in higher dimensions). We will use the
following assertion without proof: If X ⊂ Rd is closed and f : X → R is a bounded
continuous function, then f can be extended to a bounded continuous function on
the whole of Rd. (The assertion holds in a much more general setting of topological
spaces and is known as Tietze extension theorem.)

Let Ω ⊂ Rd be a bounded open set with C1 boundary and n : ∂Ω → Rd be the
outer unit normal on ∂Ω. Show:

1. n can be extended to a bounded continuous function N : Rd → Rd.

2. there exists a bounded C∞ function Ñ : Rd → Rd with ∥Ñ −N∥∞ < 1
2
.

3. there holds Ñ · n ≥ 1
2
on ∂Ω.

4. for any u ∈ C∞(Ω) there holds∫
∂Ω

|u|2Ñ · n ds =
∫
Ω

[
(u∇u+ u∇u) · Ñ + |u|2 div Ñ

]
dx.

5. for any ε > 0 there exists Cε > 0 such that for any u ∈ C∞(Ω) there holds∫
∂Ω

|u|2 ds ≤ ε

∫
Ω

|∇u|2 dx+ Cε

∫
Ω

|u|2 dx.

6. for any bounded measurable function α : ∂Ω → R the operator T

T : u 7→ −∆u, D(T ) =
{
u ∈ C∞(Ω) : ∂nu = αu on ∂Ω}

is semibounded from below in H = L2(Ω).

Remark: the boundary condition ∂nu = αu is called Robin boundary condition.

There exists an alternative terminology (sometimes considered as obsolete but
still in use): the Dirichlet/Neumann/Robin boundary conditions are referred
to as the first/second/third type boundary conditions.
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Spectral theory of differential operators
Exercise set 3

Exercise 16 (Spectrum, direct sums, matrix operators).

1. Let Tj be linear operators in Hilbert spaces Hj, j ∈ {1, 2}. Show:

spec(T1 ⊕ T2) = specT1 ∪ specT2, specp(T1 ⊕ T2) = specp T1 ∪ specp T2.

2. Let Ω ⊂ Rd be a non-empty open set and let L : Ω →M2(C) be a continuous
2×2 matrix function such that L(x)∗ = L(x) for all x ∈ Ω. Define an operator
A in H = L2(Ω,C2) (L2-functions with values in C2) by

Af(x) = L(x)f(x), D(A) =
{
f ∈ H :

∫
Ω

∥L(x)f(x)∥2C2 dx < +∞
}
.

(a) Show that A is self-adjoint.

(b) Let λ1(x) ≤ λ2(x) be the eigenvalues of L(x). Show:

specA = ranλ1 ∪ ranλ2

and find a similar representation for specpA.

Hint: For each x ∈ Ω, let ξ1(x) and ξ2(x) be suitably chosen eigenvectors
of L(x). Consider the map

U : H → H, Uf(x) :=

(〈
ξ1(x), f(x)

〉
C2〈

ξ2(x), f(x)
〉
C2

)

and the operator B = UAU−1.

3. Consider the operator T in H = l2(Z) given by

Tf(n) = f(n− 1) + f(n+ 1) + V (n)f(n), V (n) =

{
4, if n is even,

−2, if n is odd.

Compute the spectrum of T .

Hint: Consider the operators

U : l2(Z) → l2(Z,C2), Uf(n) :=

(
f(2n)

f(2n+ 1)

)
, n ∈ Z,

F : ℓ2(Z,C2) → L2
(
(0, 2π),C2

)
, (Fg)(θ) =

1√
2π

∑
n∈Z

g(n)einθ,

S := UTU−1, Ŝ := FSF−1.
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Exercise 17 (Sufficient condition for [0,∞) ⊂ specT ).

1. Let Ω ⊂ Rd be an open set and T be a linear operator in H := L2(Ω). Assume
that there exists an open subset Ω′ ⊂ Ω with the following properties:

� C∞
c (Ω′) ⊂ D(T ),

� for any u ∈ C∞
c (Ω′) one has Tu = −∆u,

� for any R > 0 there is a ball of radius R contained in Ω′ (open sets with
this property are sometimes called quasiconical).

For any n ∈ N let rn ∈ Ω′ such that Bn(rn) ⊂ Ω′. Pick χ ∈ C∞
c (Rd) with

suppχ ⊂ B1(0) and χ = 1 in B 1
2
(0).

Let k ∈ R. Define un ∈ C∞
c (Ω′) by

un(x) = χ
(x− rn

n

)
eikx1 .

(a) Show that ∥un∥2 ≥ cnd for some c > 0 independent of n,

(b) Show that ∥(T −k2)un∥2 = O(nd−1) as n→ ∞. Remark: one can control
L2-norms by controlling the ∥ · ∥∞-norm and the size of the support.

(c) Show that [0,∞) ⊂ specT .

2. Compute the spectra of the Dirichlet and Neumann Laplacians on (0,∞).

Exercise 18 (Dirichlet/Neumann Laplacians on intervals/rectangles).
Let ℓ ∈ (0,∞).

1. Show that the eigenvalues of the Dirichlet Laplacian on (0, ℓ) are simple and
given by π2n2/ℓ2, n ∈ N,

2. Show that for any φ ∈ C∞
c (0, ℓ) one has∫ ℓ

0

∣∣φ′(x)
∣∣2 dx ≥ π2

ℓ2

∫ ℓ

0

∣∣φ(x)∣∣2 dx.
3. Show that the eigenvalues of the Neumann Laplacian on (0, ℓ) are simple and

given by π2n2/ℓ2, n ∈ N0 := N ∪ {0}.

4. Let ℓ1, ℓ2 ∈ (0,∞). Compute the spectra of the Dirichlet and Neumann Lapla-
cians on (0, ℓ1)× (0, ℓ2).

Exercise 19 (Application of the trace formula for Hilbert-Schmidt oper-
ators). Let us recall some constructions from the theory of ordinary differential
equations (Green functions for boundary value problems).

Let a0, a1 : [a, b] → C be continuous functions and Ly := y′′ + a1y + a0y. Let
α1, α2, β1, β2 ∈ C and R1y := α1y(a) + α2y

′(a), R2y := β1y(b) + β2y
′(b). Assume

that the only solution to Ly = 0 with R1y = R2y = 0 is the zero function.
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Let y1 be a non-zero solution of Ly = 0 with R1y = 0 and y2 be a non-zero
solution to Ly = 0 with R2y = 0. ConsiderW := y1y

′
2−y′1y2 (Wronski determinant)

and

G(x, s) =


y1(x)y2(s)

W (s)
, x < s,

y1(s)y2(x)

W (s)
, x > s,

then for any f ∈ C0([a, b]) the function

y(x) :=

∫ b

a

G(x, s)f(s) ds

is the unique solution to Ly = f with R1y = R2y = 0.

Now let T be the Dirichlet Laplacian on the interval (0, 1).

1. Show that T−1 is a Hilbert-Schmidt operator, deduce that it is an integral
operator and compute its integral kernel.

2. Compute the sum of the series

∞∑
n=1

1

n4
.

Exercise 20 (Perturbations of operators with compact resolvents).
Let U ∈ L2

loc(R) be real-valued, lower semibounded, lim|x|→+∞ U(x) = +∞. In
addition, let W ∈ L2

loc(R) ∩ L1(R) be real-valued and V := U +W . Show that the
operator

T = − d2

dx2
+ V

(defined through the Friedrichs extension) has compact resolvent.

Hint: Exercise 14 may be useful.

Exercise 21 (−∆ + V with compact resolvent but V (x) ̸−→ +∞ for
|x| → +∞).

1. Let V,W ∈ L2
loc(Rd) be real-valued, lower semibounded, with V ≤ W . Show:

if H1
V (Rd) is compactly embedded in L2(Rd), then also H1

W (Rd) is compactly
embedded in L2(Rd).

2. Let a > 0.

(a) Compute the spectrum of the operator

Ta := − d2

dx2
+ a2x2

defined through the Friedrichs extension in L2(R).
Hint: The case a = 1 is already known (harmonic oscillator). Consider
the unitary transform Ua : L2(R) → L2(R), (Uaf)(x) = 4

√
af(

√
ax), and

the operators U−1
a TaUa.
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(b) Deduce that for any φ ∈ C∞
c (R) there holds∫

R

(
|φ′(x)|2 + a2x2|φ(x)|2

)
dx ≥ a

∫
R
|φ(x)|2 dx.

3. Deduce that for any φ ∈ C∞
c (R2) there holds∫

R2

(∣∣∇φ(x, y)∣∣2 + x2y2
∣∣φ(x, y)∣∣2) dx dy

≥ 1

2

∫
R2

(∣∣∇φ(x, y)∣∣2 + (|x|+ |y|
)∣∣φ(x, y)∣∣2) dx dy.

Hint: if y is fixed, then the function x 7→ φ(x, y) belongs to C∞
c (R)

4. Deduce that the two-dimensional Schrödinger operator T = −∆ + x2y2 has
compact resolvent.

Exercise 22 (Dirichlet Laplacians with compact resolvents in unbounded
domains).

1. Write the points x ∈ Rd as x = (x′, xd) with x
′ ∈ Rd−1 and xd ∈ R.

Let Ω ⊂ Rd be an open set which is bounded in the x′-direction, i.e. for some
r > 0 one has Ω ⊂

{
(x′, xd) : |x′| < r

}
(i.e. Ω

Let v : R → (0,∞) be continuous with lim|t|→∞ v(t) = +∞. Equip

H̃1
v (Ω) := {u ∈ H1

0 (Ω) :

∫
Ω

v(xd)|u(x)|2 dx <∞}

with the norm

∥u∥2v := ∥u∥2H1(Ω) +

∫
Ω

v(xd)|u(x)|2 dx.

Show that H̃1
v (Ω) is compactly embedded into L2(Ω).

2. Let f : R → (0,∞) be a continuous function with lim|x|→∞ f(x) = 0. Consider
the two-dimensional domain

Ω :=
{
(x, y) : 0 < y < f(x)

}
⊂ R2.

(a kind of strip whose width tends to zero at infinity).

(a) Show that for any φ ∈ C∞
c (Ω) there holds∫

Ω

|∇φ(x, y)|2 dx ≥ 1

2

∫
Ω

(∣∣∇φ(x, y)∣∣2 + π2

f(x)2
∣∣φ(x, y)∣∣2) dx dx.

Hint: for each fixed x the function y 7→ φ(x, y) is in C∞
c

(
0, f(x)

)
.

(b) Deduce that the Dirichlet Laplacian in Ω has compact resolvent.
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Spectral theory of differential operators
Exercise set 4

Exercise 23 (Abstract Schrödinger equation). Let A be a self-adjoint operator
in a separable Hilbert space H. Given t ∈ R we define e−itA to be ft(A) for the
function ft : R ∋ x 7→ e−itx ∈ C. Show:

1. for each t ∈ R the operator e−itA is unitary,

2. e−i(t+s)A = e−itAe−isA for all t, s ∈ R,

3. for any v ∈ H and t ∈ R there holds e−itAv = lims→t e
−isAv,

4. eitAD(A) ⊂ D(A) and Ae−itA = e−itAA on D(A) for any t ∈ R.

For v ∈ D(A) consider the initial value problem

iu′(t) = Au(t) for all t ∈ R, u(0) = v, (1)

to be satisfied by a differentiable function u : R ∋ t 7→ u(t) ∈ H such that u(t) ∈
D(A) for any t ∈ R. Show:

5. if u is a solution of (1), then ∥u∥ is constant.

6. the function u : R ∋ t 7→ e−itAv ∈ H is a solution of (1).

7. this solution is unique.

Exercise 24 (Domains). Let T be a self-adjoint operator in a separable Hilbert
space H and let X,µ, h be as in the spectral theorem.

1. For n ∈ N with n ≥ 2 define Dn(T ) := {x ∈ D(T ) : Tx ∈ Dn−1(T )
}
, where

we set D1(T ) := D(T ).

(a) Show that Dn(T ) is dense in H.

(b) Let Tn be the restriction of T on Dn(T ). Show that Tn is essentially
self-adjoint.

2. For any Borel function f : R → C define f(T ) := ΘMf◦hΘ
−1. Show: if T is

semibounded from below, then Q(T ) = D(
√
|T |). Recall that the form domain

Q(T ) was defined in the chapter dealing with the Friedrichs extension.

Exercise 25 (Abstract wave equation). Let A be a self-adjoint operator in a
separable Hilbert space H such that A ≥ 0 and kerA = {0}. We say that a function
u : R → H is a solution of the wave equation

u′′(t) + Au(t) = 0, (2)
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if u ∈ C2(R,H) and the inclusion u(t) ∈ D(A) and the equality (2) hold for any
t ∈ R.

For t ∈ R we define Ct, St : R → R by

Ct(x) = cos(t
√
x) and St(x) =

sin(t
√
x)√

x
for x > 0, Ct(x) = St(x) = 0 for x ≤ 0.

Let u0 ∈ D(A) and u1 ∈ D(
√
A) and define φ, ψ : R → H by

φ(t) = Ct(A)u0, ψ(t) = St(A)u1.

1. Show that φ(t) and ψ(t) belong to D(A) for any t ∈ R.

2. Show that φ ∈ C1(R,H) and that φ′(t) = −ASt(A)u0 for any t ∈ R.

3. Show that ψ ∈ C1(R,H) and that ψ′(t) = Ct(A)u1 for any t ∈ R.

4. Show that both φ and ψ are solutions of (2).

Now we would like to show that u(t) = φ(t) + ψ(t) is the unique solution to (2)
satisfying the initial conditions u(0) = u0 and u′(0) = u1. Let w be any solution
satisfying the same initial conditions. Set v(t) := u(t)− w(t), t ∈ R.

5. Show the equality

d

dt

〈
v(t), Av(t)

〉
=
〈
v′(t), Av(t)

〉
+
〈
Av(t), v′(t)

〉
.

Hint: use the classical definition of the derivative.

6. Show that the value E(t) =
〈
v′(t), v′(t)

〉
+
〈
v(t), Av(t)

〉
is independent of t.

7. Show that v(t) = 0 for all t ∈ R.

Let A :=the free Laplacian in H := L2(R).

8. Show that for f ∈ C∞
c (R) one has

Ct(A)f(x) =
f(x+ t) + f(x− t)

2
, St(A)f(x) =

1

2

∫ x+t

x−t

f(s) ds, x ∈ R.

Exercise 26 (Essential self-adjointness for semibounded operators). Let T
be a densely defined symmetric operator in a Hilbert space H with T ≥ 0. Let
a > 0.

1. Show that for any x ∈ D(T ) there holds

∥Tx∥2 + a2∥x∥2 ≤ ∥(T + a)x∥2 ≤ 2
(
∥Tx∥2 + a2∥x∥2

)
.
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2. Show that ran(T + a) = ran(T + a).

3. Show that the following three assertions are equivalent:

(a) T is essentially self-adjoint,

(b) ker(T ∗ + a) = {0},
(c) ran(T + a) is dense in H.

Exercise 27 (Kato-Rellich theorem). We are going to complete the proof of the
Kato-Rellich theorem.

Let A be a self-adjoint operator in a separable Hilbert space H and B be a
symmetric operator in H which is A-bounded with relative bound < 1.

1. Let D ⊂ D(A) be a subspace on which A is essentially self-adjoint. Show that
A+B is also essentially self-adjoint on D.

2. Now assume additionally that A is semibounded from below.

(a) Show that ∥B(A+ λ)−1∥ < 1 for all sufficiently large λ > 0.

(b) Deduce that A+B is semibounded from below.

Exercise 28. Let V ∈ L∞
loc(Rd) be real-valued and consider the associated multipli-

cation operator MV in H = L2(Rd).

1. Show that the spectrum of MV is purely essential.

2. Show that MV is essentially self-adjoint on C∞
c (Rd).

Exercise 29.

1. Let T be the free Laplacian in H := L2(Rd).

(a) Show that ∂j is infinitesimally small with respect to T .

(b) Show that ∂j is not T -compact.

Hint: compute the spectrum of T + i∂j.

(c) Let a ∈ C∞
c (Rd). Show that a∂j is T -compact.

Hint: Use compact embeddings of H1
0 in L2 on bounded domains.

(d) Let a ∈ C∞(Rd) such that lim|x|→∞ a(x) = 0. Show that a∂j is T -
compact.

2. Let A ∈ C∞(Rd,Rd) such that A and ∇A are bounded. Consider the operator
TA := (i∇+ A)2 on D(TA) = C∞

c (Rd),

TA : u 7→
d∑

j=1

(i∂j + Aj)
2u, (i∂j + Aj)u := i∂ju+ Aju.

Such operators are usually called magnetic Schrödinger operators.

14



(a) Show that TA is essentially self-adjoint and determine the domain of its
closure. We denote the closure again by TA.

(b) Assume that lim|x|→∞ |∇A(x)|+ |A(x)| = 0. Compute the essential spec-
trum of TA, then the whole spectrum of TA.

Exercise 30 (Existence of several eigenvalues).

1. Let T be a lower semibounded self-adjoint operator in a Hilbert space H.
Assume that the essential spectrum of T is non-empty and denote

Σ := inf specess T.

Furthermore, assume that there exist N linearly independent vectors
f1, . . . , fN in D(T ) such that all eigenvalues of the N ×N matrix(〈

fj, (T − Σ)fk
〉)N

j,k=1

are strictly negative. Show that T has at least N eigenvalues in (−∞,Σ).

2. Consider the following operator T in H = L2(R):

T =
d4

dx4
+ 2

d2

dx2
+ 1, D(T ) = H4(R).

(a) Show that T is self-adjoint and compute its spectrum. Hint: Use the
Fourier transform.

(b) Let V ∈ L∞(R)∩L1(R) be real-valued. Show that the operator

S := T + V, D(S) = H4(R),

is self-adjoint and compute its essential spectrum.

(c) Let F be the Fourier transform in L2(R) and V̂ := FV . Give an explicit

expression for the operator Ŝ := FSF−1 and describe its domain.

(d) Let φ ∈ C∞
c (R) with φ ≥ 0 and ∥φ∥L1(R) = 1. For ε > 0 and q ∈ R

consider the following functions:

φq,ε : R ∋ ξ 7→ 1

ε
φ
(ξ − q

ε

)
.

Show that these functions belong to D(Ŝ) and that

lim
ε→0+

〈
φq,ε, Ŝφr,ε

〉
= V̂ (q − r) for q, r = ±1.

(e) Assume that V̂ (0) < 0 and
∣∣V̂ (2)

∣∣ < ∣∣V̂ (0)
∣∣. Show that the operator S

has at least two negative eigenvalues.
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Spectral theory of differential operators
Exercise set 5

Exercise 31. Let α ∈ R. Consider the following sesquilinear form t in L2(R):

t(u, u) =

∫
R

∣∣u′(x)∣∣2 dx+ α
∣∣u(0)∣∣2, D(t) = H1(R).

1. Show that t is closed. (Hint: Exercise 14.)

Denote

� T := the self-adjoint operator generated by t,

� S := the restriction of T on C∞
c (R \ {0}),

� T0 := the free Laplacian on R,

� S0 := the restriction of T0 on C∞
c (R \ {0}),

2. Show that S = S0.

3. Let λ ∈ C. Show that ker(S∗ − λ) is contained in C∞((−∞, 0]
)
∩C∞([0,∞)

)
and is finite-dimensional.

4. Deduce that (T + i)−1 − (T0 + i)−1 is a compact operator.

5. Compute the essential spectrum of T .

6. Compute the discrete spectrum of T .

Exercise 32 (Bottom of the spectrum). Let T be a lower semibounded self-
adjoint operator and t be its closed sesquilinear form.

1. Show that the following two conditions are equivalent:

(a) u ∈ ker
(
T − Λ1(T )

)
,

(b) u ∈ D(t) and t(u, u) = Λ1(T )∥u∥2.

2. Let T be the Dirichlet Laplacian on an open set Ω. Show: if inf specT is an
eigenvalue, then it is strictly positive.

Exercise 33 (Poincaré-Wirthinger inequality).

1. Let T be a lower sembounded self-adjoint operator and t be its closed sesquilin-
ear form. Assume that Λ1(T ) is an isolated point of specT and denote by P
the orthogonal projector on ker

(
T −Λ1(T )

)
. Show that for any u ∈ D(t) one

has the inequality

t(u, u) ≥ Λ1(T )∥Pu∥2 + Λ2(T )
∥∥(I − P )u

∥∥2.
16



2. Let Ω ⊂ Rd be a bounded connected open set with Lipschitz boundary and T
be the Neumann Laplacian in Ω. Show that for any u ∈ H1(Ω) one has∫

Ω

|∇u(x)|2 dx ≥ E2(T )

∫
Ω

∣∣∣u(x)− 1

|Ω|

∫
Ω

u(y) dy
∣∣∣2 dx.

Exercise 34 (0 is always in the Neumann spectrum).
Let Ω ⊂ Rd be an arbitrary open set and T be the Neumann Laplacian in Ω.

We want to show that 0 ∈ specT .
For n ∈ N denote Ωn := Ω ∩ {x ∈ Rd : |x| < n}.

1. Show that for some nk → +∞ one has

|Ωnk
| − |Ωnk−1|
|Ωnk−1|

k→∞−→ 0.

2. Let χ : R → R be a C∞-function with χ(t) = 1 for t < 0 and χ(t) = 0 for
t ≥ 1. Consider the functions

φn : Ω → R, φn(x) = χ
(
|x| − (n− 1)

)
, n ∈ N.

Show that there exist K > 0 and N ∈ N such that∫
Ω

|∇φn|2 dx∫
Ω

|φn|2 dx
≤ K

|Ωn| − |Ωn−1|
|Ωn−1|

for any n ≥ N.

3. Deduce that 0 ∈ specT .

Exercise 35 (Neumann Laplacians: rooms and passages). Let Ω ⊂ R2 be
an open set that can be decomposed in infinitely many rectangles as shown on the
picture:

17



Namely let aj, bj, cj, dj > 0. Define

Ak := c0 +
k−1∑
j=1

(aj + cj), k ∈ N, A′
k := Ak+1 − ck, k ∈ N0, L := lim

k→∞
Ak.

Consider the function h : (0, L) → (0,∞),

h(x) :=

{
dj, A′

j < x ≤ Aj+1 for some j ∈ N0,

bj, Aj < x ≤ A′
j for some j ∈ N,

and the open set

Ω :=
{
(x, y) : 0 < x < L, 0 < y < h(x)

}
.

Pick any C∞ function χ : R → R with χ(t) = 0 for t < −1
2
and χ(t) = 1 for t ≥ 0

and consider the functions φn on Ω defined by

φn(x, y) = χ
(x− An

cn−1

)
χ
(A′

n − x

cn

)
, n ∈ N.

1. Show that φn have disjoint supports.

2. Show: there exists a constant K > 0 such that∫
Ω

∣∣∇φn(x, y)
∣∣2 dx dy∫

Ω

∣∣φn(x, y)
∣∣2 dx dy ≤ K

dn−1

cn−1

+
dn
cn

anbn
for any n ∈ N.

3. Use this computation to construct a bounded open set Ω such that the em-
bedding H1(Ω) ↪→ L2(Ω) is not compact and the Neumann Laplacian in Ω has
non-empty essential spectrum..

Exercise 36 (Continuity of Dirichlet eigenvalues with respect to do-
main).

1. Let d ≥ 2 and Ω ⊂ Rd be a bounded open set. For λ > 0 define

Ωλ :=
{
(λx1, x2, . . . , xd) : (x1, . . . , xd) ∈ Ω

}
.

Let n ∈ N be fixed. Show that the n-th eigenvalue of the Dirichlet Laplacian
in Ωλ is continuous with respect to λ.

2. Let Ωj,Ω ⊂ Rd be bounded open sets such that

Ωj ⊂ Ωj+1 for all j ∈ N, Ω =
∞⋃
j=1

Ωj.

Let n ∈ N be fixed. Show that the n-th Dirichlet eigenvalue of Ωj converges
to the n-th Dirichlet eigenvalue of Ω as j → ∞.
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Exercise 37 (Weyl asymptotics for Schrödinger operators). For any func-
tion F : R2 → R we define its negative part F− := max{0,−F}.

Let V : R2 → R be real-valued, continuous, such that V ≥ 0 outside a compact
set. Consider the parameter-dependent Schrödinger operator

T = −∆+ λV in L2(R2), λ > 0.

and denote
N (λ) := the number of negative eigenvalues of T

(which is finite as shown in the lectures). We are going to show that

lim
λ→+∞

N (λ)

λ
=

1

4π

∫
R2

V−(x) dx. (3)

Choose R > 0 such that V (x) ≥ 0 for all x /∈ (−R,R) × (−R,R). Let n ∈ N.
For m = (m1,m2) ∈ (1, . . . , n)× (1, . . . , n) consider the open squares

Sn,m =
(
−R + 2R

m1 − 1

n
,−R + 2R

m1

n

)
×
(
−R + 2R

m2 − 1

n
,−R + 2R

m2

n

)
,

and denote Sn :=
n⋃

m1,m2=1

Sn,m, S̃n := R2 \ Sn.

Introduce U±
n : R2 → R by:

U−
n (x) =

{
U−
n,m := infx∈Sn,m V, x ∈ Sn,m with some m,

0, x /∈ Sn,

U+
n (x) =

{
U+
n,m := supSn,m

V, x ∈ Sn,m with some m,

0, x /∈ Sn,

and denote by

� T+
n := the self-adjoint operator in L2(Sn) given by the sesquilinear form

t+n (u, u) =

∫
Sn

∣∣∇u(x)∣∣2 dx+ λ

∫
Sn

U+
n

∣∣u(x)∣∣2 dx, D(t+n ) = H1
0 (Sn)

� T−
n := the self-adjoint operator in L2(R2) given by the sesquilinear form

t−n (u, u) =

∫
Sn∪S̃n

∣∣∇u(x)∣∣2 dx+ λ

∫
R2

U−
n

∣∣u(x)∣∣2 dx, D(t−n ) = H1(Sn ∪ S̃n).

1. Show that T±
n can be represented as direct sums of operators A±

n,m in L2(Sn,m)

and Ãn in L2(S̃n) whose spectra can be computed explicitly.

2. Let N±
n (λ) be the number of negative eigenvalues of T±

n . Show that both
numbers are finite and that

N+
n (λ) ≤ N (λ) ≤ N−

n (λ) for all n ∈ N and λ > 0
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3. Show that

lim
λ→+∞

N±
n (λ)

λ
=

1

4π

∫
R2

(
U±
n

)
−(x) dx.

4. Let ε > 0. Show: one can find nε ∈ N such that∣∣∣∣ ∫
R2

(
U±
n

)
−(x) dx−

∫
R2

V−(x) dx

∣∣∣∣ < ε for all n ≥ nε..

5. Show the relation (3).

Exercise 38 (Rapidly decaying potentials produce finitely many eigenval-
ues). Let d ≥ 3 and V ∈ L∞(Rd) real-valued with

V (x) = o
( 1

|x|2
)
for |x| → ∞.

Consider the Schrödinger operator T = −∆+ V in L2(Rd).

1. Compute the essential spectrum of T .

Let H be the Hardy potential,

H : Rd ∋ x 7→ (d− 2)2

4|x|2
∈ R.

2. Show: for some a ∈ (0, 1) one has V ≥ −aH +W , where W is a bounded
real-valued potential vanishing outside a compact set.

3. Show that T ≥ −(1− a)∆ +W .

4. Deduce that T has at most finitely many negative eigenvalues.

Exercise 39 (Dirichlet Laplacians in infinite cylinders).
Let ω ⊂ Rd be a bounded open set and

Ω := ω × R ⊂ Rd+1.

We denote the points of x ∈ Rd+1 as x = (x′, y) with x′ ∈ Rd and y ∈ R. Denote by
Tω and TΩ the Dirichlet Laplacians in ω and Ω respectively and denote

Λ := E1(Tω).

1. Show that TΩ ≥ Λ.

2. Show: if u ∈ D(Tω) and φ ∈ C∞
c (R), then the function v : (x′, y) 7→ u(x′)φ(y)

belongs to D(TΩ), and compute TΩv.
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3. Let u be an eigenfunction of Tω for the first eigenvalue. Furthermore, let
χ ∈ C∞

c (R) with χ(t) = 1 for |t| ≤ 1 and χ(t) = 0 for |t| ≥ 2. Let k ≥ 0.
Show that the functions

vn : (x′, y) 7→ u(x′)eikyχ
(y
n

)
form a Weyl sequence for TΩ and Λ + k2.

4. Show that specTΩ = [Λ,∞).

Let V ∈ C0(Ω) be real-valued with V (x) → 0 as |x| → ∞.

5. Recall why TΩ + V is a well-defined self-adjoint operator, and show that its
essential spectrum is [Λ,∞).

Hint: Take the above functions vn and consider wn : (x, y) 7→ vn(x, y − 3n).
One may also use Persson’s theorem.

6. Assume in addition that

� there exists W ∈ L1(R) with
∣∣V (x′, y)

∣∣ ≤ W (y) for all (x′, y) ∈ Ω,

� V ≤ 0,

� there exists a non-empty interval (a, b) ⊂ R such that V (x′, y) < 0 for all
(x′, y) ∈ ω × (a, b).

Show that TΩ + V has at least one eigenvalue in (−∞,Λ).

Exercise 40 (Dirichlet Laplacians in half-infinite cylinders and perturba-
tions). Let ω ⊂ Rd be a bounded open set and

Ω := ω × (0,∞) ⊂ Rd+1.

We denote the points of x ∈ Rd+1 as x = (x′, y) with x′ ∈ Rd and y ∈ R. Denote

Λ := E1(Tω)

and let T be the Dirichlet Laplacian in Ω. Let V ∈ C0(Ω) be real-valued with
V (x) → 0 as |x| → ∞.

1. Show that specT = [Λ,∞).

2. Show that specess(T + V ) = [Λ,∞).

Hint: one may proceed very similarly to Exercise 39.

3. Assume that V (x) = o(|x|−2) as |x| → ∞. Show: there exists λ0 > 0 such
that one has spec(T + λV ) = [Λ,∞) for all λ ∈ (−λ0, λ0).
Hint: one may use the one-dimensional Hardy inequality (Exercise 14).
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Now let Ω̃ ⊂ Rd+1 be an open set such that:

� Ω+ := Ω̃ ∩
{
(x′, y) : y > 0

}
= Ω,

� Ω− := Ω̃ ∩
{
(x′, y) : y < 0

}
is bounded,

in other words, Ω̃ is obtained by attaching a bounded open set to the left end of Ω.
Denote by T̃ the Dirichlet Laplacian in Ω̃.

4. Show that specess T̃ = [Λ,∞).

For open U ⊂ Ω̃ denote

C̃∞
c (U) =

{
u : U → C : u can be extended to a function in C∞

c (Ω̃)
}

and consider the sesquilinear forms t± in L2(Ω±) given by

t±(u, u) =

∫
Ω±

|∇u|2 dx, D(t±) = C̃∞
c (Ω±).

5. Show that both t± are closable.

We denote their closures again by t± and the associated self-adjoint operators in
L2(Ω±) by T±.

6. Show that T− has compact resolvent.

Hint: Let R > 0 such that Ω− ⊂ (−R,R)d × (−R, 0) =: BR. Show that the
embedding D(t−) ↪→ H1(BR) is continuous.

7. Show that specT+ = [Λ,∞).

8. Show that T̃ has at most finitely many eigenvalues in (−∞,Λ).

Hint: Compare T̃ with T− ⊕ T+.

9. Propose an explicit example of Ω̃ of the above type such that T̃ actually has
at least one eigenvalue in (−∞,Λ).
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