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Abstract

The paper introduces a Poisson-type problem on a mixed-dimensional structure

combining a Euclidean domain and a lower-dimensional self-similar component

touching a compact surface (interface). The lower-dimensional piece is a so-called

infinite metric tree (one-dimensional branching structure), and the key ingredient of

the study is a rigorous definition of the gluing conditions between the two components.

These constructions are based on the recent concept of embedded trace maps and some

abstract machineries derived from a suitable Green-type formula. The problem is then

reduced to the study of Fredholm properties of a linear combination of Dirichlet-to-

Neumann maps for the tree and the Euclidean domain, which yields desired existence

and uniqueness results. One also shows that finite sections of tree can be used for an

efficient approximation of the solutions.
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1 Introduction

The aim of the present work is to develop an abstract framework to study the solvability

and approximations for a Poisson-type problem on a mixed-dimensional structure

combining a Euclidean component and a lower-dimensional self-similar component

touching along a surface. The Euclidean component is a so-called exterior domain Ω ⊂ Rm

(with m ≥ 2), i.e. Ω is the complement of a compact set. We additionally assume that Ω

has smooth boundary, hence,

Γ := ∂Ω,

is a compact hypersurface in Rm (without boundary), and that both Ω and Γ are

connected. The lower-dimensional component is an infinite metric tree constructed as

follows. Fix some branching number p ≥ 2 and consider some bounded interval (root edge),

with one of its endpoints being declared as a root vetrex o. In the first step we attach to

the non-root endpoint of this interval p further bounded intervals (1st generation edges). If

all n-th generation edges are constructed, one attaches p new bounded intervals to the free

end of each of them to obtain the (n+ 1)-th generation edges, and this process continues

infinitely and creates a so-called rooted p-adic metric tree, denoted as T , which is a kind

of a branched one-dimensional structure (see Fig. 1 for an illustration and Subsection 2.1

below for a detailed description).

o (root vertex)

root edge

1st generation edges

2nd generation edges

(and so on)

Figure 1: An illustration of the structure of the tree T with p = 3.

Using the usual differentiation along each edge one then defines Sobolev-type spaces

on T and the Laplace operator on T (which is just the second derivative on each edge with

transmission conditions at the branching point, see below for a detailed explanation). The

key ingredient of our analysis is the possibility to interpret the above Γ as the boundary

of T , which allows one to define a trace operator γT0 associating to each Sobolev-regular

function u on the tree a function γT0 u in L2(Γ) to be considered at its boundary trace.

The abstract idea of such a map originates from the paper [12] considering discrete graphs

with Euclidean boundaries, which was extended and generalized to the case of metric trees

and manifolds by the authors and their collaborators in [4, 9]. Intuitively, the definition

of the trace map in the context of the present work prescribes the way how the metric T
is “glued” to Γ in order to create a hybrid structure consisting of Ω and T (see Fig. 2).
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o

Γ = ∂Ω

Ω

T

Figure 2: Gluing between the tree T and the exterior domain Ω.

Once the trace has been defined, the normal derivatives γT1 u of suitably regular functions

u on T can be defined by duality, via a suitable Green’s formula. We additionally note

that these constructions are very close to the abstract approach proposed in [15] and are

in the spirit of the general approaches to transmission and boundary value problems with

“bad” boundaries, see e.g. [1, 11].

The introduction of the above objects provides necessary ingredients to define

the following Poisson-type problem with transmission conditions: Given source terms

(functions) fT : T → C and fΩ : Ω → C, transmission coefficients α0 : Γ → C, α1 ∈ C\{0},
and a constant c ∈ C, find functions uT : T → C, uΩ : Ω → C satisfying

∆T uT = fT on T ,
∆uΩ = fΩ on Ω,

γΩ0 uΩ = γT0 uT on Γ,

γΩ1 uΩ − α1γ
T
1 uT = α0γ

Ω
0 uΩ on Γ,

uΩ(x) = O(|x|2−m) for |x| → ∞,

uT (o) = c,

(1.1)

where as usual by γΩ0 uΩ and γΩ1 uΩ we denote the boundary trace and the (inner) normal

derivative of uΩ on Γ. The main objective of our analysis is to define a suitable functional

framework (in particular, suitable function spaces for the sources fT , fΩ and the solutions

uT , uΩ) guaranteeing the (unique) solvability of the above problem. This is done via

restating it as an equivalent boundary integral equation on Γ, which involves the exterior

and interior Dirichlet-to-Neumann maps; we refer to [2] for a similar approach in the purely

Euclidean setting exploiting the boundary integral equation formalism. Our analysis

relies on studying the mapping and positivity properties of the Dirichlet-to-Neumann

operators, and allows to conclude about the well-posedness of the problem (1.1) under

minor restrictions on the transmission coefficients.

In addition to purely theoretical questions, we address some problems related to the

numerical analysis. In particular, we study the effect of replacing the tree T by its

counterpart with finitely many generations and study the effect of truncations on the

solution of (1.1). Let us remark that this is different from [7, 8, 9], where the Dirichlet-

to-Neumann operator was associated to the root of the tree, and similarity properties of

the tree could be used to recover its various explicit representations. While the primary
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motivation of this work is purely theoretical, its results can be used, for example, in the

context of modeling fractal tree antennas [14] approximated by one-dimensional structures,

see [10] for the related analysis.

This paper is organized as follows. In Section 2 we describe results related to the

boundary-value problems on the metric tree. In particular, we recall associated function

spaces, define the Laplace operator and trace spaces (Sections 2.1–2.3). Section 2.4 is

devoted to the definition of the normal derivative and the Dirichlet-to-Neumann operator

on the tree. Finally, Sections 2.5 and 2.6 deal with approximation of the Dirichlet-to-

Neumann map by finite-dimensional operators. Section 3 is dedicated to the boundary-

value problems on exterior domains. We note that the properties of the Dirichlet-to-

Neumann map on exterior domains seem less known that they should be, so we decided

to review a part of the theory in Section 3 in order to establish all necessary properties.

The concluding Section 4 establishes the well-posedness of (1.1) through the analysis of

an equivalent problem posed on the interface Γ and of its approximated counterpart.

2 Boundary value problems on the metric tree

This section is dedicated to the definition and well-posedness of the boundary value

problems on the metric tree. In Section 2.1, we provide a detailed definition of the

metric tree T and related geometrical assumptions; we state the function spaces and their

properties. Section 2.2 is dedicated to the definition of the associated Laplace operator.

In Section 2.3 we review the construction of the trace map. This allows to define the

conormal trace (normal derivative) and associated Dirichlet-to-Neumann map in Section

2.4. Finally, in Sections 2.5 and 2.6 we show how this map can be efficiently approximated

by finite-dimensional maps.

2.1 Function spaces

Let p ∈ N with p ≥ 2 and a root o be given. We glue to o an edge e0,0 represented by an

interval of length ℓ0,0, the second vertex of e0,0 will be called X0,0. If all en,k and Xn,k

with n ∈ N0 := N∪{0} and k ∈ {0, . . . , pn−1} are already constructed, then to each Xn,k

we attach p new edges en+1,pk+j , with j ∈ {0, . . . , p−1}, having lengths ℓn+1,pk+j , and the

pendant vertices of en+1,pk+j , to be denoted by Xn+1,pk+j , will be viewed as children of

Xn,k. This process continues infinitely, which creates a infinite rooted metric tree T (see

Figure 3 for an illustration).

The subtree of T starting at Xn,k, i.e. the subtree spanned by the offsping of Xn,k

(the children, the children of the children etc.), will be denoted by Tn,k. If j ∈ {0, . . . , p−
1}, denote by T j

n,k the subtree en+1,pk+j ∪ Tn+1,pk+j , which has the same combinatorial

structure as T with Xn,k considered as a root (see Fig. 4). Note that Tn,k represents the

union of T j
n,k with j ∈ {0, . . . , p− 1}.

For subsequent constructions it will be useful to introduce coordinates on T . Denote

by Ln,k the distance between the root o and Xn,k, i.e. the length of the unique path

between o and Xn,k obtained by summing the lengths of all edges in the path. Then by

(n, k, t) with t ∈ [Ln,k − ℓn,k, Ln,k] we denote the point of en,k which is at the distance
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o

e0,0

X0,0

X1,0 X1,p−1

e1,0 e1,p−1

X2,0 X2,p2−1X2,p−1 X2,p(p−1)

e2,0 e2,p−1 e2,p(p−1) e2,p2−1

Figure 3: The tree T

Xn,k

Xn+1,pk Xn+1,pk+p−1

Tn,k

Xn,k

Xn+1,pk+j

T j
n,k

Figure 4: The subtrees Tn,k and T j
n,k.

Ln,k − t from Xn,k. In this notation,

Xn,k = (n, k, Ln,k) = (n+ 1, pk + j, Ln,k) for any j ∈ {0, . . . , p− 1}.

Let w : T → (0,∞) be a locally bounded measurable function, which will be used as an

integration weight: for f : T → C one defines∫
T
fdµ :=

∞∑
n=0

pn−1∑
k=0

∫ Ln,k

Ln,k−ℓn,k

f(n, k, t)w(n, k, t)dt,

then

L2(T ) :=
{
f : T → C : ∥f∥2L2(T ) :=

∫
T
|f |2dµ <∞

}
.

Due to the above definition the set of vertices has zero measure. Therefore, each

measurable function f : T → C can be identified with a family of functions (fn,k),

fn,k := f(n, k, ·) : (Ln,k − ℓn,k, Ln,k) → C, n ∈ N0, k ∈ {0, . . . , pn − 1}.

Then f = (fn,k) belongs to L
2(T ) if and only if

∥f∥2L2(T ) :=

∞∑
n=0

pn−1∑
k=0

∫ Ln,k

Ln,k−ℓn,k

∣∣fn,k(t)∣∣2wn,k(t)dt <∞.

A function f : T → C is called continuous if t 7→ fn,k(t) is continuous for all n, k and,

additionally, f is continuous in the vertices. In other words, fn,k(L
−
n,k) = fn+1,pk+j(L

+
n,k)

for all n, k, j. If f = (fn,k) is such that all fn,k have locally integrable distributional

derivatives f ′n,k, we denote f ′ := (f ′n,k).
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The first Sobolev space H1(T ) on T is then introduced as

H1(T ) := {f ∈ L2(T ) : f is continuous with f ′ ∈ L2(T )},
∥f∥2H1(T ) := ∥f∥2L2(T ) + ∥f ′∥2L2(T ).

Moreover, we denote

H1
c (T ) := {f ∈ H1(T ) : there exists N ∈ N such that fn,k ≡ 0

for all (n, k) with n > N},
H1

0 (T ) := the closure of H1
c (T ) in H1(T ),

H̃1(T ) :=
{
f ∈ H1(T ) : f(o) = 0

}
,

H̃1
0 (T ) :=

{
f ∈ H1

0 (T ) : f(o) = 0
}
,

H̃1
c (T ) :=

{
f ∈ H1

c (T ) : f(o) = 0
}
,

and remark that H̃1
c (T ) is a dense subset of H̃1

0 (T ).

While the above definitions make sense for any choice of lengths ℓn,k and weights w,

we introduce additional conditions in order to have a more controllable global structure of

T and nice properties of the associated Sobolev spaces. First, we assume that the weight

function w is constant on each edge, which induces the edge weigths

ωn,k := w|en,k
∈ (0,∞).

The above p-adic metric tree T equipped with edge lengths ℓn,k and edge weights ωn,k will

be sometimes denoted as

T p
(
(ℓn,k), (ωn,k)

)
.

In what follows we will always assume that there are some ω > 0 and ℓ ∈ (0, 1) with

ℓ < ωp <
1

ℓ
(2.1)

and C ≥ 1 such that for every (n, k) there holds

1

C
ℓn ≤ ℓn,k ≤ Cℓn and

1

C
ωn ≤ ωn,k ≤ Cωn. (2.2)

The above assumption on the edge lengths guarantees, in particular, that the height of the

tree is finite (which means that the distance to the root is bounded). On the other hand,

the assumption on the weights combined with the upper bound in (2.1) is a necessary and

sufficient condition for constant functions to belong to L2(T ), cf. [9, proof of Theorem

3.10]. The role of the remaining assumptions will be discussed further in the paper.

Moreover, if the stronger condition

ℓn,k = L0ℓ
n, ωn,k = ω0ω

n for all (n, k)

is fulfilled (with some fixed L0 > 0 and ω0 > 0), then the tree will be called geometric and

denoted as

Tp
(
L0, ℓ, ω0, ω

)
. (2.3)

The following two results will show that the spaces H1(T ), H1
0 (T ), L2(T ) behave similarly

to their counterparts on finite intervals of R. First of all, due to the assumption (2.2) on

ℓ and ω, the following important result holds true:
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Lemma 2.1. The embedding H1(T ) ↪→ L2(T ) is compact, and there is a constant C0 > 0

such that

∥f∥L2(T ) ≤ C0∥f ′∥L2(T ) for all f ∈ H̃1(T ), (2.4)

and

⟨f, g⟩
H̃1(T )

:= ⟨f ′, g′⟩L2(T ) ≡
∫
T
f ′g′dµ (2.5)

is a scalar product on H̃1(T ) which is equivalent to the induced scalar product inherited

from H1(T ).

Proof. For the case T = Tp(1, ℓ, 1, ω) =: T the compactness of the embedding is shown

in [9, Sec. 3.5] and the assertions on the ineqality (2.4) and the scalar product are shown

in [4, Sec. 2.3]. Now we consider the dilation operator

φ : T → T , φ(n, k, t) =
(
n, k, Ln,k − ℓn,k +

t− tn−1

ℓn
ℓn,k

)
,

t−1 := 0, tn :=

n∑
k=0

ℓk for n ∈ N0,

and note that due to the assumptions (2.2) the map f 7→ f ◦ φ defines isomorphisms

L2(T ) → L2(T), H1(T ) → H1(T) and H̃1(T ) → H̃1(T), see [4, Sec. 4.3], which extends

the both results to T .

The next result will be elaborated later, cf. Theorem 2.8, however, we state it here to

facilitate the understanding of the function spaces.

Lemma 2.2. H1
0 (T ) ⊊ H1(T ) and H̃1

0 (T ) ⊊ H̃1(T ).

2.2 Laplacian

We will use the dual space

H−1(T ) :=
(
H̃1

0 (T )
)′
.

Definition 2.3. For f ∈ H1(T ) define the Laplacian ∆T f ∈ H−1(T ) of f by

(
∆T f, g

)
H−1(T ),H̃1

0 (T )
:= −

∫
T
f ′g′dµ ≡ −⟨f, g⟩

H̃1(T )
for all g ∈ H̃1

0 (T ). (2.6)

We also define

H1
∆(T ) :=

{
f ∈ H1(T ) : ∆T f ∈ L2(T )

}
,

which will be equipped with the scalar product

⟨f, g⟩H1
∆(T ) := ⟨f, g⟩H1(T ) + ⟨∆T f,∆T g⟩L2(T ).

Remark that Definition 2.3 defines a weighted Laplace operator, i.e. it is a counterpart

of an operator µ−1∂x(µ∂x.) on the real line, rather than ∂2x. This is explained in the

following coordinate reformulation:

Proposition 2.4. For any f = (fn,k) ∈ H1(T ) and h ∈ L2(T ) the following two con-

ditions are equivalent:

7



(a) ∆T f = h,

(b) f ′′ ∈ L2(T ), and f satisfies the Kirchhoff transmissition conditions

f ′n,k(L
−
n,k)ωn,k =

p−1∑
j=0

f ′n+1,pk+j(L
+
n,k)ωn+1,pk+j (2.7)

at each node Xn,k, and h = f ′′.

Proof. Let f ∈ H1
∆(T ). Let g ∈ H̃1

c (T ) with supp g ⊂ en,k, then

(
∆T f, g

)
H−1(T ),H̃1

0 (T )
=

∫
T
(∆T f)n,kgn,kdµ ≡

∫ Ln,k

Ln,k−ℓn,k

(∆T f)n,k(t)gn,k(t)ωn,k dt

= −
∫ Ln,k

Ln,k−ℓn,k

f ′(t)g′(t)ωn,k dt.

Due to gn,k ∈ H1
0 (en,k) this implies (∆T f)|n,k = f ′′n,k and, hence, ∆T f = f ′′. Now let

g ∈ H̃1
c (T ) be only supported on the edges incident to Xn,k, then the integration by parts

yields

(
∆T f,g

)
H−1(T ),H̃1

0 (T )
≡
∫ Ln,k

Ln,k−ℓn,k

f ′′n,k(t)gn,k(t)ωn,kdt

+

p−1∑
j=0

∫ Ln+1,pk+j

Ln+1,pk+j−ℓn+1,pk+j

f ′′n+1,pk+j(t)gn+1,pk+j(t)ωn+1,pk+jdt

= −
∫ Ln,k

Ln,k−ℓn,k

f ′n,k(t)g
′
n,k(t)ωn,kdt

−
p−1∑
j=0

∫ Ln+1,pk+j

Ln+1,pk+j−ℓn+1,pk+j

f ′n+1,pk+j(t)g
′
n+1,pk+j(t)ωn+1,pk+jdt

+
(
f ′n,k(L

−
n,k)ωn,k −

p−1∑
j=0

f ′n+1,pk+j(L
+
n,k)ωn+1,pk+j

)
g(Xn,k)

= −
∫
T
f ′g′dµ+

(
f ′n,k(L

−
n,k)ωn,k −

p−1∑
j=0

f ′n+1,pk+j(L
+
n,k)ωn+1,pk+j

)
g(Xn,k),

and due to the arbitrariness of g(Xn,k) we arrive at the condition (2.7). This shows that

(a) implies (b), and the reciprocate implication follows directly using the integration by

parts.

Using the scalar product ⟨·, ·⟩
H̃1(T )

from (2.5) we arrive at the orthogonal direct sum

decomposition

H̃1(T ) = H̃1
0 (T )⊕

(
H̃1(T ) ∩ ker∆T

)
. (2.8)

By Lemma 2.2, this decomposition is non-trivial. Furthermore, one has the following

result:

8



Lemma 2.5. For any h ∈ L2(T ) there is a unique u ∈ H̃1
0 (T ) with ∆T u = h, and

L2(T ) ∋ h 7→ u ∈ H̃1
0 (T )

is a bounded linear map.

Proof. By definition, a function u ∈ H̃1
0 (T ) satisfies ∆T u = h if and only if

⟨h, g⟩L2(T ) ≡
(
h, g
)
H−1(T ),H̃1

0 (T )
= −⟨u, g⟩

H̃1(T )
for all g ∈ H̃1

0 (T ). (2.9)

Due to Lemma 2.1 the left-hand side defines a continuous anti-linear functional on

H̃1(T ) with respect to g, and the existence and the uniqueness of u follow by the Riesz

representation theorem. Choosing in (2.9) g = u yields the upper bound

∥u∥2
H̃1(T )

= −⟨h, u⟩L2(T ) ≤ ∥h∥L2(T )∥u∥L2(T ) ≤ C0∥h∥L2(T )∥u∥H̃1(T )
,

where the constant C0 is from (2.4). This implies the boundedness of the map h 7→ u.

2.3 Multi-scale boundary decomposition and trace map

This section is devoted to the introduction of the notion of a trace on functions from T .

As discussed in the introduction, we will define a trace operator with values in L2(Γ), and

provide tools necessary to analyze its properties. It will be convenient to denote

d := m− 1

then Γ is a compact d-dimensional Riemannian manifold (see the introduction). We will

need a special decomposition of Γ. To define it, we start with its counterpart in the

Euclidean case; for a Lebesgue-measurable set U ⊂ Rd we denote by |U | its d−dimensional

Lebesgue measure.

Definition 2.6 (Multiscale decomposition, Euclidean case). Let U ⊂ Rd be a bounded

open set. A regular strongly balanced p-multiscale decomposition of U is a collection

(Un,k)n∈N0, k∈{0,...,pn−1}

of non-empty subsets Un,k of U such that

1. U0,0 = U :

2. For any n ∈ N0 the sets Un,0, . . . , Un,pn−1 are disjoint-

3. For any n ∈ N0 and k ∈ {0, . . . , pn − 1} one has

Un+1,pk+j ⊂ Un,k for any j ∈ {0, . . . , p− 1},
∣∣∣Un,k \

p−1⋃
j=0

Un+1,pk+j

∣∣∣ = 0.

4. |Un,k| =
|U |
pn

for all n ∈ N0 and k ∈ {0, . . . , pn − 1}.
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5. There is c1 > 0 such that for all n ∈ N0 and k ∈ {0, . . . , pn − 1} one has

diamUn,k ≤ c1p
−n

d .

6. There is c2 > 0 such that for all h ∈ Rd, n ∈ N0, k ∈ {0, . . . , pn − 1} one has∣∣Un,k \ (Un,k + h)
∣∣ ≤ c2|h|p−

n(d−1)
d .

The above conditions can be viewed as an hierarchical decomposition procedure: One

sets U0,0 := U , and if for some n all Un,k are already constructed, then one decomposes

each Un,k (up to zero measure sets) into p disjoint pieces Un+1,pk+j , j ∈ {0, . . . , p − 1}.
The last three conditions control, in a sense, the size and the shape of Un,k.

By using a cover of Γ by local charts, we can define a multiscale decomposition on Γ.

Here, given a subset Γ′ ⊂ Γ, we denote by |Γ′| its hypersurface measure.

Definition 2.7 (Multiscale decomposition, manifold case). A collection

(Γn,k)n∈N0, k=0,...,pn−1

of subsets Γn,k ⊂ Γ is called a regular strongly balanced regular p-multiscale decomposition

of Γ, if the following conditions hold:

1. Γ0,0 = Γ.

2. For any n ∈ N0 the sets Γn,0, . . . ,Γn,pn−1 are mutually disjoint.

3. For any n ∈ N0 and k ∈ {0, . . . , pn − 1} one has

Γn+1,pk+j ⊂ Γn,k for any j ∈ {0, . . . , p− 1},
∣∣∣Γn,k \

p−1⋃
j=0

Γn+1,pk+j

∣∣∣ = 0.

4. There is N0 ∈ N0 such that for all K0 ∈ {0, . . . , pN0 − 1} the following conditions

are satisfied:

(a) |ΓN0,K0 | = p−N0 |Γ|.

(b) The closure ΓN0,K is covered by a local chart ΦN0,K0 on Γ such that the sets

Γ̃N0,K0 := Φ−1
N0,K0

(ΓN0,K0)

are bounded open sets with Lipschitz boundaries in Rd.

(c) The sets

Γ̃N0,K0

n,k := Γ̃N0+n,pnK0+k := ΦN0,K0(ΓN0+n,pnK0+k), n ∈ N0, k ∈ {0, . . . , pn−1},

form a regular strongly balanced p-multiscale decomposition of Γ̃N0,K0 .
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For the rest of the paper we pick a collection (Γn,k) as in Definition 2.7. Note the

existence of such collections is proved in [4, Example 5.4].

Let us define the parameter

σ ≡ σ(T ) :=
1

2

(
1− log(ℓ)− log(ω)

log(p)

)
, (2.10)

which is strictly positive due to (2.1). For what follows we additionally assume

σd <
1

2
. (2.11)

The following theorem was the main result of the paper [4]:

Theorem 2.8 (Dirichlet trace map on T ). The linear map

γT0 : H1(T ) −→ Hσd(Γ),

f 7→ lim
N→∞

pN−1∑
K=0

f(XN,K)1ΓN,K
,

with the limit being taken in Hσd(Γ), is a well-defined bounded surjective linear operator,

and

ker γT0 = H1
0 (T ).

As a corollary one easily obtains

H̃1(T ) ∩ ker γT0 = H̃1
0 (T ). (2.12)

For what follows it will be useful to have an explicit right inverse of γT0 and to revise

some constructions related to fractional Sobolev spaces. To do so, let us introduce some

preliminary notation. First of all, given N ∈ N0 denote

VN (Γ) := span
{
1ΓN,K

: K ∈ {0, . . . , pN − 1}
}
,

PN := the orthogonal projector L2(Γ) → VN (Γ).
(2.13)

As VN (Γ) ⊂ VN+1(Γ) for any N , it follows that

PNPn = Pmin{N,n} for any N,n ∈ N0, which implies that PNPn = PnPN . (2.14)

Recall that for any r ∈ (0, 12) one has the equality

Hr(Γ) =
{
f ∈ L2(Γ) : (p

nr
d ∥f − Pnf∥L2(Γ)) ∈ ℓ2

}
with an equivalent norm given by

∥f∥2Ar(Γ) := ∥P0f∥2L2(Γ) +
∞∑
n=0

p
2nr
d ∥f − Pnf∥2L2(Γ), (2.15)

see [4, Sec. 3]. In particular, for any N → ∞ one has PN

(
Hr(Γ)

)
⊂ Hr(Γ), and we also

recall that

∥f − PNf∥L2(Γ)
N→∞−−−−→ 0 for any f ∈ L2(Γ). (2.16)
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Let us now argue that the above holds true with L2(Γ) replaced by Hr(Γ). Indeed,

provided f ∈ Hr(Γ), by (2.15) it holds that

∥f − PNf∥2Ar(Γ) = ∥P0(f − PNf)∥2L2(Γ) +
∞∑
n=0

p
2nr
d

∥∥(I − Pn)(f − PNf)
∥∥2
L2(Γ)

.

Remark that each summand on the right-hand side converges to 0 for N → ∞, as the

operators P0 and I−Pn are bounded and (2.16) holds. Moreover, for each n one has, with

(2.14), ∥∥(I − Pn)(I − PN )f
∥∥2
L2(Γ)

=
∥∥(I − PN )(I − Pn)f

∥∥2
L2(Γ)

≤ ∥f − Pnf∥2L2(Γ).

Hence, the dominated convergence theorem shows

PNf
N→∞−−−−→ f in Hr(Γ) for any f ∈ Hr(Γ). (2.17)

Now we have all the necessary prerequisites to state the following result, which constructs

an explicit H̃1(T ) lifting of an element of Hσd(Γ).

Lemma 2.9. Let g ∈ Hσd(Γ) and denote

gn,k :=
1

|Γn,k|

∫
Γn,k

g dx.

Let v : T → C be linear on each edge en,k with

v(o) = 0, v(Xn,k) = gn,k for all (n, k),

then v ∈ H̃1(T ) with γT0 v = g. Moreover, the linear mapping Hσd(Γ) ∋ g 7→ v ∈ H̃1(T )

is bounded.

Proof. To prove the above lemma, we need to verify that v as defined in the statement

of the lemma belongs to the space H̃1(T ), and that its trace is given by g.

Step 1: Estimating ∥v′∥L2(T ). We have

v0,0(t) = g0,0
t

ℓ0,0
, v′0,0(·) =

g0,0
ℓ0,0

,

vn+1,pk+j(t) = gn,k + (gn+1,pk+j − gn,k)
t− Ln,k

ℓn+1,pk+j
,

v′n+1,pk+j(·) =
gn+1,pk+j − gn,k

ℓn+1,pk+j
,

(2.18)

hence,

∥v′∥2L2(T ) =
ω0,0

ℓ0,0
|g0,0|2 +

∞∑
n=0

pn−1∑
k=0

p−1∑
j=0

ωn+1,pk+j

ℓn+1,pk+j
|gn+1,pk+j − gn,k|2.

Using the assumption (2.2) we have

ωn,k

ℓn,k
≤ C2

(ω
ℓ

)n
for all (n, k),
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which results in

∥v′∥2L2(T ) ≤ C2

[
|g0,0|2 +

∞∑
n=0

pn−1∑
k=0

p−1∑
j=0

(ω
ℓ

)n+1
|gn+1,pk+j − gn,k|2

]
. (2.19)

To estimate the left-hand side via g, we use an equivalent norm ∥ · ∥∗ in Hσd(Γ):

∥h∥2∗ := ∥P0h∥2L2(Γ) +
∞∑
n=0

p2(n+1)σ∥Png − Pn+1g∥2L2(Γ), (2.20)

see [4, Sec. 3.2 and 3.4]. Also, due to the choice of σ in (2.10) we have

p2σ =
ωp

ℓ
.

For the function g we have, using properties of the multiscale decomposition of Γ:

Png =

pn−1∑
k=0

gn,k1Γn,k
,

∥Png∥2L2(Γ) =

pn−1∑
k=0

|gn,k|2|Γn,k|, (2.21)

Png − Pn+1g =

pn−1∑
k=0

gn,k1Γn,k
−

pn−1∑
k=0

p−1∑
j=0

gn+1,pk+j1Γn+1,pk+1
,

=

pn−1∑
k=0

p−1∑
j=0

(gn,k − gn+1,pk+j)1Γn+1,pk+j
,

∥Png − Pn+1g∥2L2(Γ) =

pn−1∑
k=0

p−1∑
j=0

|gn,k − gn+1,pk+j |2|Γn+1,pk+1|. (2.22)

Due to the assumptions on (Γn,k) we can find a constant c0 > 0 such that |Γn,k| ≥ c0p
−n

for all (n, k). From (2.21) and (2.22) it follows that

pn−1∑
k=0

|gn,k|2 ≤ c−1
0 pn∥Png∥2L2(Γ), (2.23)

pn−1∑
k=0

p−1∑
j=0

|gn,k − gn+1,pk+j |2 ≤ c−1
0 pn+1∥Png − Pn+1g∥2L2(Γ). (2.24)

Plugging in the above two bounds into (2.19) yields

∥v′∥2L2(T ) ≤ C2c−1
0

(
∥P0g∥2 +

∞∑
n=0

(ωp
ℓ

)n+1
∥Png − Pn+1g∥2L2(Γ)

)
≤ C2c−1

0 ∥g∥2∗,

by definition (2.20).

Step 2: Estimating ∥v∥L2(T ). From the explicit expressions (2.18) for v we see that

∥v0,0∥2L2(0,ℓ0,0)
≤ |g0,0|2ℓ0,0,

∥vn+1,pk+j∥2L2(Ln,k,Ln+1,pk+j)
≤ 2
(
|gn,k|2 + |gn+1,pk+j − gn,k|2

)
ℓn+1,pk+j .
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Hence

∥v∥2L2(T ) ≤ |g0,0|2ℓ0,0ω0,0

+ 2

∞∑
n=0

pn−1∑
k=0

p−1∑
j=0

(
|gn,k|2 + |gn+1,pk+j − gn,k|2

)
ℓn+1,pk+jωn+1,pk+j .

With the help of (2.1) and (2.2) we estimate ℓn,kωn,k ≤ C2(ℓω)n for all (n, k), and the

above further rewrites

∥v∥2L2(T ) ≤ C2
(
|g0,0|2 + 2p

∞∑
n=0

pn−1∑
k=0

(ℓω)n+1|gn,k|2

+ 2
∞∑
n=0

(ℓω)n+1
pn−1∑
k=0

p−1∑
j=0

|gn+1,pk+j − gn,k|2
)
.

We combine (2.23) and (2.24) to obtain

∥v∥2L2(T ) ≤ C2c−1
0

(
∥P0g∥2 + 2

∞∑
n=0

(ℓωp)n+1∥Png∥2L2(Γ)

+ 2

∞∑
n=0

(ℓωp)n+1∥Png − Pn+1g∥2L2(Γ)

)
.

The assumption (2.1) ℓωp < 1 and the inequality ∥Png∥L2(Γ) ≤ ∥g∥L2(Γ) allow to bound

the first sum in the right-hand side by ∥g∥L2(Γ). As for the second sum, since ℓωp < p2σ,

we bound it by the norm (2.20). This yields the desired bound:

∥v∥2L2(T ) ≤ C2c−1
0 (2∥g∥2L2(Γ) + 2∥g∥2∗).

The results of the steps 1 and 2 show that ∥v∥H1(T ) ≤ C̃∥g∥Hσd(Γ) with some C̃ > 0

independent of g.

Step 3: Computing the trace of v. By construction for each n ∈ N it holds that

pn−1∑
k=0

v(Xn,k)1Γn,k
=

pn−1∑
k=0

gn,k1Γn,k
= Png.

For n → ∞ the left-hand side converges in Hσd(Γ) to γT0 v (see Theorem 2.8), while

the right-hand side converges to g as shown in (2.17), which gives the sought property

γT0 v = g.

2.4 Normal derivative and Dirichlet-to-Neumann map

We will start with a simple boundary value problem for the Laplacian ∆T .

Lemma 2.10. For any g ∈ Hσd(Γ) there is a unique solution u = ug of the Dirichlet

problem

∆T u = 0, γT0 u = g, u ∈ H̃1(T ), (2.25)

and the map

PT : Hσd(Γ) ∋ g 7→ ug ∈ H̃1(T ) (2.26)

is a bounded linear operator with ∆T PT = 0 and γT0 PT = Id.
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Proof. In view of the decomposition (2.8) and the identity (2.12) the map

γT0 : H̃1(T ) ∩ ker∆T → Hσd(Γ)

is a bounded bijective linear operator, hence, an isomorpshism by the closed graph

theorem, and its inverse is exactly the map PT .

Definition 2.11. For u ∈ H1
∆(T ), its normal derivative γT1 u ∈ H−σd(Γ) on Γ is defined

by the duality product:(
γT1 u, γ

T
0 v
)
H−σd(Γ),Hσd(Γ)

:=

∫
T
(∆T u)v dµ+

∫
T
u′v′ dµ for all v ∈ H̃1(T ). (2.27)

Remark that with the above choice of the duality product, for g ∈ H−σd(Γ), Hσd(Γ) ∋
φ 7→ (g, φ)H−σd(Γ),Hσd(Γ) is a linear, rather than antilinear, form.

Lemma 2.12. The map

H1
∆(T ) ∋ u 7→ γT1 u ∈ H−σd(Γ)

is a well-defined bounded linear operator.

Proof. For γT0 v = 0 in (2.27) one has v ∈ H̃1
0 (T ), and the right-hand side is zero due

to the definition of ∆T , so γ
T
1 u is well-defined, and its linearity is clear. It remains to

show the continuity properties of γT1 . With the help of the map PT from (2.26), for any

g ∈ Hσd(T ) one has∣∣∣(γT1 u, g)H−σd(Γ),Hσd(Γ)

∣∣∣ ≡ ∣∣∣(γT1 u, γT0 PT g
)
H−σd(Γ),Hσd(Γ)

∣∣∣
=
∣∣∣ ∫

T
(∆T u)PT g dµ+

∫
T
u′(PT g)

′ dµ
∣∣∣

≤ ∥∆T u∥L2(T )∥PT g∥L2(T ) + ∥u′∥L2(T )∥(PT g)
′∥L2(T )

≤ 2∥u∥H1
∆(T )∥PT g∥H1(T )

≤ 2∥u∥H1
∆(T )∥PT ∥Hσd(Γ)→H1(T )∥g∥Hσd(Γ),

and by taking the supremum over all g with ∥g∥Hσd(Γ) ≤ 1 we arrive at the conclusion.

Definition 2.13. The Dirichlet-to-Neumann operator D for T is defined by

D := γT1 PT : Hσd(Γ) → H−σd(Γ).

By Lemmas 2.10 and 2.12 it is a bounded linear operator.

For the following we make the trivial observation that the maps γT0 , γT1 , ∆T and PT
are real, e.g. commute with the pointwise complex conjugation. The following property

of the Dirichlet-to-Neumann map will be important:

Theorem 2.14. The operator D is positive and coercive, i.e. for some c > 0 one has,(
Dg, g

)
H−σd(Γ),Hσd(Γ)

≥ c∥g∥2Hσd(Γ) for any g ∈ Hσd(Γ).
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Proof. Let g ∈ Hσd(Γ). The substitution u := PT g and v := PT g in (2.27) yields(
Dg, g

)
H−σd(Γ),Hσd(Γ)

=

∫
T

∣∣(PT g)
′∣∣2dµ = ∥PT g∥2H̃1(T )

,

and with ∥g∥Hσd(Γ) = ∥γT0 PT g∥Hσd(Γ) ≤ ∥γT0 ∥
H̃1(T )→Hσd(Γ)

∥PT g∥H̃1(T )
we arrive at

(
Dg, g

)
H−σd(Γ),Hσd(Γ)

≥
∥g∥2

Hσd(Γ)

∥γT0 ∥2
H̃1(T )→Hσd(Γ)

.

2.5 Boundary values on finite sections

The question that we study in two next sections is the following. Assume that the infinite

tree T is replaced by a tree T̃N which only contains a finite number of generations, and

instead of solving the boundary-value problem for the Laplace equation with the Cauchy

data γT0 u = g, we solve the boundary-value problem on T̃N , by imposing on its truncated

boundary γT̃N0 uN = PNg. Is it possible to choose T̃N so that the associated Dirichlet-to-

Neumann map is suitably close to DPN? In these two sections we give a positive answer

to this question (Theorem 2.23), provided some auxiliary assumptions on T . We start by

formalizing the problem.

For N ∈ N denote by TN ≡ T p
N

(
(ℓn,k), (ωn,k)

)
the finite portion of the tree T obtained

by keeping the edges en,k with n ≤ N only, with the same edge lengths ℓn,k and edge

weights ωn,k, i.e.

TN :=
{
(n, k, t) ∈ T : n ≤ N

}
,

and for f : TN → C one defines∫
TN
fdµ :=

N∑
n=0

pn−1∑
k=0

∫ Ln,k

Ln,k−ℓn,k

fn,k(t)ωn,kdt, fn,k := f(n, k, ·).

This induces the spaces

L2(TN ) :=
{
f : TN → C : ∥f∥2L2(TN ) :=

∫
TN

|f |2dµ <∞
}
,

⟨f, g⟩L2(TN ) :=

∫
TN
fg dµ,

and

H1(TN ) :=
{
f ∈ L2(TN ) : f is continuous with f ′ ∈ L2(TN )

}
,

⟨f, g⟩H1(TN ) := ⟨f, g⟩L2(TN ) + ⟨f ′, g′⟩L2(TN )

as well as

H̃1(TN ) :=
{
f ∈ H1(TN ) : f(o) = 0

}
.

As the embedding H̃1(T ) ↪→ L2(T ) is compact, there is fN ∈ H̃1(T ) with fN ̸≡ 0 such

that for all f ∈ H̃1(TN ) with f ̸≡ 0 it holds

aN :=
∥f ′N∥2L2(TN )

∥fN∥2
L2(TN )

≤
∥f ′∥2L2(TN )

∥f∥2
L2(TN )

,
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and aN > 0 as fN cannot be constant. Hence, we have the Poincaré inequality

∥f ′∥2L2(TN ) ≥ aN∥f∥2L2(TN ) for all f ∈ H̃1(TN ),

which shows that

⟨f, g⟩
H̃1(TN )

:= ⟨f ′, g′⟩L2(TN )

is a scalar product on H̃1(TN ) which is equivalent to the scalar product inherited from

H1(TN ).

Recall that the subspaces VN (Γ) ⊂ L2(Γ) were defined in (2.13). The set of the pending

nodes XN,K with K ∈ {0, . . . , pN−1
}
represents the natural boundary of TN , and by using

the same multiscale decomposition (Γn,k) of Γ one defines the bounded surjective Dirichlet

trace operator

γTN0 : H̃1(TN ) ∋ f 7→
pN−1∑
K=0

f(XN,K)1ΓN,K
∈ VN (Γ)

and the spaces

H1
0 (TN ) :=

{
f ∈ H1(TN ) : γTN0 f = 0

}
, H̃1

0 (TN ) :=
{
f ∈ H̃1(TN ) : γTN0 f = 0

}
.

Any function in H1
0 (TN ), respectively H̃1

0 (TN ), can be extended by zero to a function in

H1
0 (T ), respectively H̃1

0 (T ), and this extension preserves the respective norms.

Definition 2.15. For f ∈ H1(TN ) define its Laplacian

∆TN f ∈ H−1(TN ) :=
(
H̃1

0 (TN )
)′

by (
∆TN f, g

)
H−1(TN ),H̃1

0 (TN )
:= −

∫
TN
f ′g′dµ ≡ −⟨f, g⟩

H̃1(TN )
for all g ∈ H̃1

0 (TN ). (2.28)

We also define

H1
∆(TN ) :=

{
f ∈ H1(TN ) : ∆TN f ∈ L2(TN )

}
,

which will be equipped with the scalar product

⟨f, g⟩H1
∆(TN ) := ⟨f, g⟩H1(TN ) + ⟨∆TN f,∆TN g⟩L2(TN ).

Remark that for any f ∈ H1
∆(T ) one also has f ∈ H1

∆(TN ) with ∆TN f = ∆T f on TN .

Similarly to Proposition 2.4 one shows:

Lemma 2.16. For any f = (fn,k) ∈ H1(TN ) and h ∈ L2(TN ) the following two conditions

are equivalent:

(a) ∆TN f = h,

(b) f ′′ ∈ L2(TN ), and f satisfies the Kirchhoff transmission conditions

f ′n,k(L
−
n,k)ωn,k =

p−1∑
j=0

f ′n+1,pk+j(L
+
n,k)ωn+1,pk+j (2.29)

at each node Xn,k ∈ TN with n ≤ N − 1, and f ′′ = h.
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The assertion (b) in Lemma 2.16 does not contain any condition at the pending nodes

XN,K , which is used in the following definition:

Definition 2.17. For u ∈ H1
∆(TN ) define its normal derivative

γTN1 u ∈ VN (Γ) ⊂ L2(Γ)

by ∫
Γ
(γTN1 u)γTN0 v ds :=

∫
TN

(∆TNu)v dµ+

∫
TN
u′v′ dµ,

for all v ∈ H̃1(TN ). Using Lemma 2.16 one directly shows

γTN1 u =

pN−1∑
K=0

ωN,K

|ΓN,K |
u′N,K(L−

N,K)1ΓN,K
. (2.30)

The following result can be proven literally as Lemma 2.12.

Lemma 2.18. The map

H1
∆(TN ) ∋ u 7→ γTN1 u ∈ H−σd(Γ)

is a well-defined bounded linear operator.

Remark that γTN0 u
N→∞−−−−→ γT u in Hσd(Γ) for any u ∈ H1(T ), see Theorem 2.8. Let

us establish a related approximation result for γT1 u.

Lemma 2.19. For any u ∈ H1
∆(T ) one has γTN1 u

N→∞−−−−→ γT1 u weakly in H−σd(Γ).

Proof. Let u ∈ H1
∆(T ) and g ∈ Hσd(Γ). In virtue of Lemma 2.9 there is a function

v ∈ H̃1(T ) such that

γT0 v = g, v(Xn,k) =
1

|Γn,k|

∫
Γn,k

g ds for all (n, k).

Then

(γT1 u, g)H−σd(Γ),Hσd(Γ) =

∫
T
(∆T u)v dµ+

∫
T
u′v′ dµ

= lim
N→∞

(∫
TN

(∆TNu)v dµ+

∫
TN
u′v′ dµ

)
= lim

N→∞

∫
Γ
(γTN1 u)(γTN0 v) ds

= lim
N→∞

∫
Γ

( pN−1∑
K=0

ωN,K

|ΓN,K |
u′N,K(L−

N,K)1ΓN,K

)( pN−1∑
K=0

1

|ΓN,K |

∫
ΓN,K

g ds1ΓN,K

)
ds

= lim
N→∞

pN−1∑
K=0

ωN,K

|ΓN,K |
u′N,K(L−

N,K)

∫
ΓN,K

g ds

= lim
N→∞

∫
Γ

( pN−1∑
K=0

ωN,K

|ΓN,K |
u′N,K(L−

N,K)1ΓN,K

)
g ds

= lim
N→∞

(γTN1 u, g)H−σd(Γ),Hσd(Γ).
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Using the scalar product ⟨·, ·⟩
H̃1(TN )

we obtain the orthogonal direct sum decomposition

H̃1(TN ) = H̃1
0 (TN )⊕

(
H̃1(TN ) ∩ ker∆TN

)
. (2.31)

As H̃1
0 (TN ) is exactly the kernel of the map

γTN0 : H̃1(TN ) → VN (Γ),

it follows that for any g ∈ VN (Γ) there is a unique solution u = ug of the Dirichlet problem

∆TNu = 0, γTN0 u = g, u ∈ H̃1(TN ), (2.32)

and the Dirichlet-to-Neumann map DTN for TN is defined by

DTN : VN (Γ) ∋ g 7→ γTN1 ug ∈ VN (Γ).

2.6 Approximations of the Dirichlet-to-Neumann map

The purpose of this subsection is to construct a good approximation for the Dirichlet-

to-Neumann map D using finite-dimensional operators. These constructions are mainly

adaptations of the ideas used in [12] for discrete dyadic trees to the case of metric trees.

In Subsection 2.3 we have seen that PNg
N→∞−−−−→ g inHσd(Γ) for any g ∈ Hσd(Γ). Let us

show that the convergence rate can be estimated under additional regularity assumptions.

Recall that the norms ∥ · ∥Ar(Γ) are defined in (2.15).

Lemma 2.20. Let σ′ be such that

0 < σd < σ′d <
1

2
,

then for any N ∈ N0 and any g ∈ Hσ′d(Γ) one has

∥PNg − g∥Aσd(Γ) ≤
p2σ

p2σ − 1
p−N(σ′−σ)∥g∥Aσ′d(Γ). (2.33)

Proof. With the definition of the norm ∥ · ∥Aσ′d(Γ), the right-hand side of (2.33) rewrites

as

p−2N(σ′−σ)∥g∥2
Aσ′d(Γ)

= p−2N(σ′−σ)∥P0g∥2L2(Γ) +

∞∑
n=0

p2nσ
′−2Nσ′+2Nσ∥g − Png∥2L2(Γ)

≥ p2Nσ∥g − PNg∥2L2(Γ) + p2Nσ
∞∑
n=1

p2nσ
′∥g − Pn+Ng∥2L2(Γ) =: I.

To study the left-hand side of (2.33) we note first that

P0(PNg − g) = P0PNg − P0g

= Pmin{N,0} − P0g = P0g − P0g = 0,

(PNg − g)− Pn(PNg − g) = PNg − g − PnPNg + Png

= PNg − g − Pmin{n,N} + Png = Pmax{N,n}g − g,
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which yields

∥PNg − g∥2Aσd(Γ) =

N∑
n=0

p2nσ∥PNg − g∥2 +
∞∑

n=N+1

p2nσ∥Png − g∥2L2(Γ)

=
p2σ(N+1) − 1

p2σ − 1
∥PNg − g∥2L2(Γ) + p2Nσ

∞∑
n=1

p2nσ∥Pn+Ng − g∥2L2(Γ).

By estimating

p2σ(N+1) − 1

p2σ − 1
=

p2σ − 1

p2σN

p2σ − 1
p2Nσ ≤ p2σ

p2σ − 1
p2Nσ, p2nσ ≤ p2σ

p2σ − 1
p2nσ

′

we arrive at

∥PNg − g∥2Aσd(Γ) ≤
p2σ

p2σ − 1
p2Nσ∥PNg − g∥2L2(Γ) +

p2σ

p2σ − 1
p2Nσ

∞∑
n=1

p2nσ
′∥Pn+Ng − g∥2L2(Γ)

≤ p2σ

p2σ − 1
I ≤ p2σ

p2σ − 1
p−2N(σ′−σ)∥g∥2

Aσ′d(Γ)
.

As a corollary we obtain:

Corollary 2.21. Let σ′ be such that

σd < σ′d <
1

2
,

then there is a constant c > 0 such that for any N ∈ N0 it holds

∥D ◦ PN −D∥Hσ′d(Γ)→H−σd(Γ) ≤ cp−N(σ′−σ).

Proof. Let us use the norm ∥·∥Hr := ∥·∥Ar , then Lemma 2.20 yields for any g ∈ Hσ′d(Γ):

∥D ◦ PNg −Dg∥H−σd = ∥D(PNg − g)∥H−σd ≤ ∥D∥Hσd→H−σd∥PNg − g∥Hσd

≤ p2σ

p2σ − 1
∥D∥Hσd→H−σdp−N(σ′−σ)∥g∥Hσ′d .

In order to work efficiently with the “truncated map” D ◦ PN we have to make an

additional assumption on the structure of the tree T . Recall that the subtrees T j
N,k and

trees Tp were defined in Subsection 2.1.

Definition 2.22. The metric tree T is called geometric from the generation N1 (with

some N1 ∈ N0) if for any k ∈ {0, . . . , pN1 − 1} and any j ∈ {0, . . . , p− 1} it holds

T j
N1,k

= Tp(ℓN1+1,pk+j , ℓ, ωN1+1,pk+j , ω).

In this case for any N ≥ N1 we denote by T̃N+1 the finite metric tree which is obtained

from the truncated tree TN+1 in the following way:

� the combinatorial structure remains unchanged,
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� the lengths of the pending (leaf) edges eN+1,pk+j becomes

ℓ̃N+1,pk+j :=
ℓN+1,pk+j

1− ℓ

ωp

,

and these new edges will be denoted by ẽN+1,pk+j ,

� the lengths of all other edges and the weights of all edges remain unchanged.

The tree T̃N+1 will be called the (N + 1)-condensation of T .

Recall that Definition 2.7 contains a parameter N0 ∈ N0 related to the chosen decom-

position (Γn,k) of Γ, as well as associated local charts ΦN0,K0 covering ΓN0,K0 and the

induced open sets Γ̃N0,K0 := Φ−1
N0,K0

(ΓN0,K0) ⊂ Rd for K0 ∈ {0, . . . , pN0 − 1}. We consider

the respective Jacobians

JN0,K0 : Γ̃N0,K0 → R, JN0,K0(y) :=

√
det
((
DΦN0,K0(y)

)T
DΦN0,K0(y)

)
,

which are smooth functions, bounded and separated from zero due to the above

assumptions, and their push-forwards

HN0,K0 := JN0,K0 ◦ Φ−1
N0,K0

: ΓN0,K0 → R.

Theorem 2.23. Let the metric tree T be geometric from some generation N1, and for

any N ≥ N1 let

D̃N+1 : VN+1(Γ) → VN+1(Γ)

be the Dirichlet-to-Neumann map for its (N + 1)-condensation T̃N+1 constructed as in

Definition 2.22. Then

DPN+1 = HN0D̃N+1PN+1 for any N ≥ max{N0, N1}

with HN0 :=
1

pN0−N−1

pN0−1∑
K0=0

1ΓN0,K0

|Γ̃N0,K0 |HN0,K0

. (2.34)

Remark 2.24. Before delving into the proof of the above result, let us discuss why we work

with condensed trees rather than truncated trees. This is particularly easy to understand

for the case when T is a geometric tree for p = 1, ω = 1, L0 = ω0 = 1. In that case the tree

T can be seen as the interval (0, L) with L = (1− ℓ)−1. The traces and normal derivatives

reduce to scalars, and the Dirichlet-to-Neumann map is the simple multiplication operator:

D = L−1. The truncated tree TN is then identified with the interval
(
0, (1 − ℓN )L

)
, and

the associated Dirichlet-to-Neumann map is then DN = (1 − ℓN )−1L−1. However, the

condensed tree T̃N+1 again becomes the interval (0, L), and this ensures whose Dirichlet-

to-Neumann map D̃N coincides with D. It is a generalization of this observation that

allows to express DPN+1 via D̃N+1 exactly as stated in the above result.

Proof of Theorem 2.23. We first derive an explicit expression of D̃N+1, and next

compute explicitly DPN+1.
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Step 1: Computing D̃N+1. Let f ∈ VN+1(Γ), then it is given by

f =

pN+1−1∑
K=0

fN+1,K1ΓN+1,K
, fN+1,K =

1

|ΓN+1,K |

∫
ΓN+1,K

fN+1 dx.

Denote by u ∈ H̃1(T̃N+1) the uniquely defined solution of

∆T̃N+1
u = 0, γ

T̃N+1

0 u = f.

For K ∈ {0, . . . , pN − 1} and j ∈ {0, . . . , p− 1} denote

bN,K := u(XN,K), cN+1,pK+j := u′N+1,pK+j(L
+
N,K).

The harmonicity of u on the modified edges ẽN+1,pK+j implies its linearity,

uN+1,pK+j(t) = uN+1,pK+j(LN,k) + cN+1,pK+j(t− LN,K)

≡ bN,K + cN+1,pK+j(t− LN,K) for all t ∈ (LN,K , LN,K + ℓ̃N+1,pK+j),

hence,

γ
T̃N+1

0 u =

pN−1∑
K=0

p−1∑
j=0

uN+1,pK+j(LN,K + ℓ̃N+1,pK+j)1ΓN+1,pK+j

=

pN−1∑
K=0

p−1∑
j=0

(
bN,K + cN+1,pK+j ℓ̃N+1,pK+j

)
1ΓN+1,pK+j

. (2.35)

The boundary condition for u shows that

bN,K +

p−1∑
j=0

cN+1,pK+j ℓ̃N+1,pK+j = fN+1,pK+j , K ∈ {0, . . . , pN − 1}, j ∈ {0, . . . , p− 1},

(2.36)

and in addition we have, with the use of the explicit expression (2.30) for γTN1 ,

D̃N+1f ≡ γ
T̃N+1

1 u =

pN−1∑
K=0

p−1∑
j=0

ωN+1,pK+jcN+1,pK+j

|ΓN+1,pK+j |
1ΓN+1,pK+j

. (2.37)

Step 2: Computing DPN+1. To compute the desired expression, we will construct an

appropriate ansatz to the solution of the Dirichlet boundary problem on T .

Step 2.1: Ansatz for the solution. Let v : T → C be defined as follows: we set v := u

on TN . Next, on eN+1,pK+j , we define

vN+1,pK+j(t) := bN,K + cN+1,pK+j(t− LN,K) for all j ∈ {0, . . . , p− 1},

which ensures that the transmission condition (2.7) is fulfilled at each XN,K , and then

extend it to a continuous function on the whole of T such that v is radial along each

subtree T j
N,K (which means that for all x ∈ T j

N,K the value of v(x) only depends on the

distance between XN,K and x), linear on each edge en,k ∈ T j
N,K and the transmission
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conditions (2.7) are satisfied at all nodes Xn,k ∈ T j
N,K . Note that such an extension is

unique and is given by the following expressions:

v = u0 + uf , where u0n,k = bN,Kr
n−N−1

(
1 + (r − 1)

t− Ln,k + ℓn,k
ℓn,k

)
,

and ufn,k = αN,K,j

(
n−N−2∑
s=0

rs + rn−N−1 t− Ln,k + ℓn,k
ℓn,k

)
,

with r =
ℓ

pω
, αN,K,j = cN+1,pK+jℓN+1,pK+j − bN,K(r − 1).

By [9, Theorem 4.4], it follows that u0 is a harmonic function with γT0 u
0 = 0 which equals

to bN,K in XN,K . At the same time, uf is a harmonic function with γT0 u
f = f that

vanishes in XN,K (and hence the notation). Let us prove that indeed this decomposition

defines a function in H1(T j
N,K).

Step 2.2: Let us show that v ∈ H̃1(T ). As r = ℓ
pω < 1 by assumption (2.1), we

conclude that

∥u0n,k∥L∞(T j
N,K)

≤ |bN,K |(1 + (r − 1)),

∥ufn,k∥L∞(T j
N,K)

≤ |αN,K,j |
(
(1− r)−1 + 1

)
.

(2.38)

Using the assumptions (2.1) and (2.2) we see that constant functions are in L2(T ):

∫
T
dµ =

∞∑
n=0

pn−1∑
k=0

ℓn,kωn,k ≤ C2
∞∑
n=0

pn−1∑
k=0

ℓnωn ≤
∞∑
n=0

C2(ℓωp)n <∞.

Therefore, the above together with (2.38) yields that v ∈ L2(T ). Next, let us remark that

for en,k ∈ T j
N,k,

v′n,k = (bN,K(r − 1) + αN,K,j)r
n−N−1ℓ−1

n,k

= (bN,K(r − 1) + αN,K,j)ℓ
−1
N+1,pK+jr

n−N−1ℓN−n+1

= cN+1,pk+jr
n−N−1ℓN−n+1 = cN+1,pk+j(pω)

−n+N+1. (2.39)

A direct computation yields∫
T j
N,K

|v′|2dµ = |cN+1,pk+j |2
∞∑

n=N+1

pn−1∑
k=0

ℓn,kωn,k(pω)
2(N+1−n)

= |cN+1,pk+j |2ℓN+1,pK+jωN+1,pK+j

∞∑
n=N+1

pnℓn−N−1ωn−N−1(pω)2(N+1−n)

≤ CN,K,j

∞∑
n=N+1

ℓn(pω)−n = CN,K,j

∞∑
n=N+1

rn <∞ (due to |r| < 1).

Recall that ∆T v = 0 by construction, and it follows that v ∈ H̃1
∆(T ).
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Step 2.3: Let us show that γT0 v = f . First of all, we remark that for all n ≥ N + 1

with en,k ∈ T j
N,K we have

v(Xn,k) = vn,k(Ln,k) = bN,Kr
n−N−1 + αN,K,j

n−N−2∑
s=0

rs

= rn
(
bN,Kr

−N−1 − r−N−1(1− r)−1αN,K,j

)
+ αN,K,j(1− r)−1,

(2.40)

and the right-hand part does not depend on k due to the radiality of v on T j
N,K . Therefore,

for n ≥ N + 1,

γTn0 v =

pn−1∑
k=0

v(Xn,k)1Γn,k
=

pn−1∑
k=0

φn,N,K,j1Γn,k
=

pN−1∑
K=0

p−1∑
j=0

φn,N,K,j1ΓN+1,pK+j
.

Next, we take lim
n→+∞

of the above; with (2.40) and r < 1, as well as using the definition of

αN,K,j we conclude that

γT0 v =

pN−1∑
K=0

p−1∑
j=0

(
bN,K + cN+1,pK+j

ℓN+1,pK+j

1− r

)
1ΓN+1,pK+j

=

pN−1∑
K=0

p−1∑
j=0

(
bN,K + cN+1,pK+j ℓ̃N+1,pK+j

)
1ΓN+1,pK+j

= γ
T̃N+1

0 u = f.

as per (2.35) and (2.36).

Step 2.4: Relating γT1 v to γ
T̃N+1

1 v. We will compute γT1 v using Lemma 2.19 and an

explicit expression of the co-normal derivative (2.30). Let g ∈ Hσd(Γ), then

(γT1 v, g)H−σd(Γ),Hσd(Γ) = lim
n→∞

∫
Γ

pn−1∑
k=0

ωn,k

|Γn,k|
v′n,k(L

−
n,k)1Γn,k

g ds

= lim
n→∞

pN−1∑
K=0

p−1∑
j=0

∫
Γ
Fn(N,K, j)g ds, (2.41)

Fn(K, j) :=
∑

k: Tn,k⊂T j
N,K

ωn,k

|Γn,k|
v′n,k(L

−
n,k)1Γn,k

for n ≥ N + 1.

By (2.39) and the assumption on T j
N,K we have

Fn(K, j) =
∑

k: Tn,k⊂T j
N,K

ωN+1,pK+jω
n−N−1

|Γn,k|
cN+1,pK+j

(pω)n−N−1
1Γn,k

= ωN+1,pK+jcN+1,pK+j

∑
k: Tn,k⊂T j

N,K

1

pn−N−1|Γn,k|
1Γn,k

,

and the substitution into (2.41) gives

(γT1 v, g)H−σd(Γ),Hσd(Γ) =

pN−1∑
K=0

p−1∑
j=0

ωN+1,pK+jcN+1,pK+j lim
n→∞

Gn(K, j),

Gn(K, j) : =
∑

k: Tn,k⊂T j
N,K

∫
Γ

1

pn−N−1|Γn,k|
1Γn,k

g ds.

(2.42)
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For the computation of the limits we are going to use the local charts ΦN0,K0 . Let

K0 ∈ {0, . . . , pN0 − 1} be such that T j
N,K ⊂ TN0,K0 , then for Tn,k ⊂ T j

N,K one has∫
Γ

1

pn−N−1|Γn,k|
1Γn,k

g ds =

∫
Γn,k

1

pn−N−1|Γn,k|
g ds

=

∫
Γ̃n,k

1

pn−N−1|Γn,k|
g
(
ΦN0,K0(y)

)
JN0,K0(y) dy.

(2.43)

Choose arbitrary points an,k ∈ Γ̃n,k and denote jn,k := JN0,K0(an,k). As JN0,K0 is smooth,

one has |JN0,K0(y) − jn,k| ≤ b|y − an,k| with some fixed b > 0 uniformly in (y, n, k).

Remark that by assumption the diameter of Γ̃n,k is O(p−
n
d ) for large n, which shows that

JN0,K0(y) = jn,k +O(p−
n
d ) uniformly for y ∈ Γ̃n,k as n becomes large. Similarly,

|Γn,k| =
∫
Γ̃n,k

JN0,K0(y) dy =

∫
Γ̃n,k

jn,k dy +

∫
Γ̃n,k

(
JN0,K0(y)− jn,k

)
dy

=
(
jn,k +O(p−

n
d )
)
|Γ̃n,k| =

jn,k|Γ̃n,k|
1 +O(p−

n
d )
.

The substitution of these asymptotic estimates into (2.43) yields∫
Γ

1

pn−N−1|Γn,k|
1Γn,k

g ds =

∫
Γ̃n,k

1

pn−N−1|Γ̃n,k|
g
(
ΦN0,K0(y)

) (
1 +O(p−

n
d
))
dy

=
1

pN0−N−1|Γ̃N0,K0 |

∫
Γ̃n,k

g
(
ΦN0,K0(y)

) (
1 +O(p−

n
d
))
dy

where the O-term is uniform in y ∈ ΓN0,K0 and we have used |Γ̃n,k| = pN0−n|Γ̃N0,K0 |. One

has then

lim
n→∞

Gn(K, j) = lim
n→∞

∑
k: Tn,k⊂T j

N,K

1

pN0−N−1|Γ̃N0,K0 |

∫
Γ̃n,k

g
(
ΦN0,K0(y)

) (
1 +O(p−

n
d
))
dy

= lim
n→∞

1

pN0−N−1|Γ̃N0,K0 |

∫
Γ̃N+1,pK+j

g
(
ΦN0,K0(y)

) (
1 +O(p−

n
d
))
dy

=
1

pN0−N−1|Γ̃N0,K0 |

∫
Γ̃N+1,pK+j

g
(
ΦN0,K0(y)

)
dy

=
1

pN0−N−1|Γ̃N0,K0 |

∫
ΓN+1,pK+j

g

HN0,K0

ds.

Recall that this result was obtained under the assumption TN,K ⊂ TN0,K0 .
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We now regroup the summands in (2.42):

(γT1 v,g)H−σd(Γ),Hσd(Γ) =

pN0−1∑
K0=0

∑
(K,j): T j

N,K⊂TN0,K0

ωN+1,pk+jcN+1,pK+j lim
n→∞

Gn(K, j)

=

pN0−1∑
K0=0

∑
(K,j): T j

N,K⊂TN0,K0

ωN+1,pk+jcN+1,pK+j

pN0−N−1|Γ̃N0,K0 |

∫
ΓN+1,pK+j

g

HN0,K0

ds

=

∫
Γ

(
1

pN0−N−1

pN0−1∑
K0=0

1ΓN0,K0

|Γ̃N0,K0 |HN0,K0

)

×
( pN−1∑

K=0

p−1∑
j=0

ωN+1,pK+jcN+1,pK+j

|ΓN+1,pK+j |
1ΓN+1,pK+j

)
g ds

=

∫
Γ
HN0γ

T̃N+1

1 u g ds,

where (2.34) and (2.37) were used in the last step, and we arrive at

Df = γT1 v = HN0γ
T̃N+1

1 u = HN0D̃N+1f.

3 Boundary value problems on the exterior domain

Recall that in the context of boundary value problems for an open set U ⊂ Rm one usually

denotes by H1
loc(U) the set of the functions f on U such that φf ∈ H1(Ω) for any cut-off

function φ ∈ C∞
c (Rm). In particular, H1

loc(U) = H1(U) for all bounded U .

For the rest of the section it will be convenient to denote

Ω+ := Ω, Ω− := Rm \ Ω,

and let ν be the unit normal on Γ pointing to Ω+. We then have the respective Dirichlet

trace maps

γ+0 ≡ γΩ0 : H1
loc(Ω+) → H

1
2 (Γ), γ−0 : H1(Ω−) → H

1
2 (Γ),

so that for the functions u smooth up to a boundary one has γ±0 u := u|Γ, and the Neumann

trace maps

γ+1 ≡ γΩ1 :
{
u ∈ H1

loc(Ω+) : ∆u ∈ L2
loc(Ω+)

}
→ H− 1

2 (Γ),

γ−1 :
{
u ∈ H1(Ω−) : ∆u ∈ L2(Ω−)

}
→ H− 1

2 (Γ),

such that for the functions u smooth up to the boundary one has

γ±1 u := ∂νu|Γ,

where ν is the unit normal on Γ pointing to Ω ≡ Ω+. Remark that with this sign

convention, one has u ∈ H1(Rm) if and only if u ∈ H1(Rm \ Γ) with (γ+0 − γ−0 )u = 0.

In addition, u ∈ H1(Rm) with ∆u ∈ L2(Rm) if and only if u ∈ H1(Rm \ Γ) with

∆u ∈ L2(Rm \ Γ) (in the sense of distributions on Rm \ Γ) with (γ+0 − γ−0 )u = 0 and

(γ+1 − γ−1 )u = 0.

The aim of the present section is to give detailed proofs of the following results:
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Theorem 3.1 (Exterior Dirichlet problem). For any f ∈ L2
comp(Ω) and g ∈ H

1
2 (Γ) there

is a unique solution u ∈ H1
loc(Ω) of

−∆u = f in Ω,

γΩ0 u = g on Γ,

u(x) = O(|x|2−m) for |x| → ∞,

(3.1)

and the solution u depends continuously on the right-hand sides f and g in the following

sense: for any φ ∈ C∞
c (Rm) there is a constant c > 0 such that for any (f, g) one has

∥φu∥H1(Ω) ≤ c
(
∥f∥L2(Ω) + ∥g∥

H
1
2 (Γ)

)
.

Theorem 3.2 (Dirichlet-to-Neumann map for the exterior domain). For g ∈ H
1
2 (Γ) let

ug denote the solution of (3.1) with f = 0. Define the Dirichlet-to-Neumann operator

C : H
1
2 (Γ) ∋ g 7→ γΩ1 ug ∈ H− 1

2 (Γ),

then C is bounded, Fredholm of index zero, and non-positive, i.e.

−
(
C g, g

)
H− 1

2 (Γ),H
1
2 (Γ)

≥ 0 for any g ∈ H
1
2 (Γ).

Moreover,

(i) if m ≥ 3, then C is coercive, i.e. one can find a constant c > 0 such that

−
(
C g, g

)
H− 1

2 (Γ),H
1
2 (Γ)

≥ c∥g∥2
H

1
2 (Γ)

(3.2)

holds for all g ∈ H
1
2 (Γ), in particular, C is bijective,

(iii) if m = 2, then ker C = C1Γ, and C is coercive on

H
1
2
0 (Γ) :=

{
g ∈ H

1
2 (Γ) : (1Γ, g)

H− 1
2 (Γ),H

1
2 (Γ)

= 0
}
,

i.e. there is a constant c > 0 such that (3.2) is fulfilled for all g ∈ H
1
2
0 (Γ).

While both results are indeed folkloric, we did not manage to find a suitable reference

containing all necessary details for the required H1-setting. McLean’s book [13] provides

all important tools but lacks a precise formulation of final results for the problems in

exterior domains, so we decided to complete the respective part of the argument.

In the next subsection we recall some constructions related to boundary integral

operators. These machineries are then used to prove Theorems 3.1 and 3.2, first for

m ≥ 3 in Subsection 3.2 and then for m = 2 in Subsection 3.3.

3.1 Surface potentials

We begin by citing some of the important statements from [13]. Let G be the standard

fundamental solution for the Laplace equation in Rm,
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G(x) =


1

2π
log

r

|x|
, m = 2,

1

(m− 2)Υm

1

|x|m−2
, m ≥ 3,

(3.3)

where Υm is the hypersurface area of the unit sphere in Rm and r > 0 is arbitrary (to be

chosen later), and consider the convolution operator

G : E ′(Rm) ∋ f 7→ G ⋆ f ∈ S ′(Rm),

which satisfies −∆ ◦ G = −G ◦∆ = Id. For g ∈ H− 1
2 (Γ) define γ∗0g ∈ S ′(Rm) by

(γ∗0g, ϕ) = (g, γ+0 ϕ)H− 1
2 (Γ),H

1
2 (Γ)

for all ϕ ∈ S(Rm).

Analogously, for g ∈ H
1
2 (Γ) we define the distribution γ∗1g ∈ S ′(Rm) by

(γ∗1g, ϕ) = (g, γ+1 ϕ)H
1
2 (Γ),H− 1

2 (Γ)
for all ϕ ∈ S(Rm).

By construction both γ∗0g and γ∗1g are supported by Γ for all admissible g, and in fact,

γ∗0 : H− 1
2 (Γ) → H−1

comp(Rm), γ∗1 : H
1
2 (Γ) → H−2

comp(Rm).

The single-layer potential SL and the double-layer potential DL associated with Γ are

defined by

SL := G ◦ γ∗0 , DL := G ◦ γ∗1 .

By construction, the functions SL g and DL g are harmonic in Ω± for all admissible g. For

every cutoff function χ ∈ C∞
c (Rm), the operators

H− 1
2 (Γ) ∋ g 7→ χSL g ∈ H1(Ω±), H

1
2 (Γ) ∋ g 7→ χDL g ∈ H1(Ω±)

are bounded, and the jump relations

(γ+0 − γ−0 )SL g = 0, (γ+1 − γ−1 ) SL g = −g for all g ∈ H− 1
2 (Γ),

(γ+0 − γ−0 )DL g = g, (γ+1 − γ−1 )DL g = 0 for all g ∈ H
1
2 (Γ),

(3.4)

are fulfilled. We will frequently use the identity

(γ±1 SLϕ, ψ)
H− 1

2 (Γ),H
1
2 (Γ)

= (ϕ, γ∓0 DLψ)
H− 1

2 (Γ),H
1
2 (Γ)

for any ϕ ∈ H− 1
2 (Γ), ψ ∈ H

1
2 (Γ),

(3.5)

see [13, Thm. 6.17 and Sec. 7].

The above considerations give rise to four important boundary operators:

S := γ+0 SL : H− 1
2 (Γ) → H

1
2 (Γ),

R := −γ+1 DL : H
1
2 (Γ) → H− 1

2 (Γ),

T := (γ+0 + γ−0 )DL : H
1
2 (Γ) → H

1
2 (Γ),
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and remark that the adjoint of T is given by

T ∗ := (γ+1 + γ−1 ) SL : H− 1
2 (Γ) → H− 1

2 (Γ).

By [13, Theorem 6.11] these operators are bounded in respective spaces, and the jump

relation (3.4) yield the identities

γ±1 SL g =
1

2
(∓g + T ∗g), γ±0 DL g =

1

2
(±g + Tg) (3.6)

valid for all g in respective domains. By general results for elliptic problems of [13,

Thm. 7.6, 7.8] and their refinement for the Laplacian (namely, [13, Theorem 8.16] for the

single-layer boundary integral operator in m = 2, [13, Corollary 8.13] for the single-layer

boundary integral operator in m = 3 and [13, Theorem 8.21] for the hypersingular integral

operator), we have:

Lemma 3.3. The operator S is a self-adjoint Fredholm operator of index 0, and for

a suitable choice of r > 0 in (3.3) one has kerS = {0}, in particular, S has a bounded

inverse. Furthermore, the operator R is self-adjoint Fredholm of index 0 with kerR = C1Γ.

From now we assume that r in (3.3) is chosen in such a way that the assertions of

Lemma 3.3 hold.

Remark that for any g ∈ H
1
2 (Γ) and x ∈ Rm \ Γ one has

DL g(x) =

∫
Γ
∂νyG(x− y)g(y) ds(y) =

1

Υm

∫
Γ

⟨νy, x− y⟩Rm

|x− y|m
g(y)ds(y).

Using a standard computation with an integration by parts we arrive at the following

identities:

DL1Γ = 0 in Ω+, DL1Γ = −1 in Ω−, γ+0 DL1Γ = 0, γ−0 DL1Γ = −1Γ. (3.7)

The following two theorems are crucial for the subsequent considerations. First, [13,

Thm 7.15 + 8.9] yield:

Theorem 3.4. Let f ∈ L2
comp(Ω+).

(A) Let g ∈ H
1
2 (Γ). If u ∈ H1

loc(Ω+) solves the exterior Dirichlet problem

−∆u = f in Ω+,

γ+0 u = g on Γ,

u(x) =

{
O(|x|2−m) for m ≥ 3,

b log |x|+O(|x|−1) with some b ∈ C for m = 2,
as |x| → ∞,

(3.8)

then the function

h := γ+1 u ∈ H− 1
2 (Γ)

satisfies the equation

Sh = γ+0 Gf − 1

2
(g − Tg), (3.9)
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and u can be represented as

u = Gf + DL g − SLh. (3.10)

Conversely, if h ∈ H− 1
2 (Γ) is a solution of (3.9), then the equation (3.10) defines a

solution of (3.8).

(B) Let h ∈ H− 1
2 (Γ). If u ∈ H1

loc(Ω+) is a solution of the exterior Neumann problem

−∆u = f in Ω+,

γ+1 u = h on Γ,

u(x) =

{
O(|x|2−m) for m ≥ 3,

b log |x|+O(|x|−1) with some b ∈ C for m = 2,
as |x| → ∞,

(3.11)

then the function g := γ+0 u ∈ H
1
2 (Γ) is a solution of the equation

Rg = γ+1 Gf − 1

2
(h+ T ∗h) (3.12)

and u is of the form (3.10). Conversely, if g ∈ H
1
2 (Γ) is a solution of (3.12), then the

function u defined by (3.10) defines a solution of (3.11).

Remark 3.5. The required behavior of u at infinity in Theorem 3.4 is termed as Mu = 0

in most assertions in the book [13], see [13, Thm. 8.9] for more detail.

The above result states an equivalence between the solutions to the exterior boundary-

value problems and the representation (Kirchhoff) formula (3.10), coupled with associated

boundary integral equations for unknown traces. However, at this point it is unclear

whether the exterior boundary-value problems are well-posed. This will be clarified in

Theorem 3.8.

The following theorem combines the claims of [13, Thm. 8.10 and 8.18]:

Lemma 3.6. Let u ∈ H1
loc(Ω+) with ∆u = 0 on Ω+ satisfy the radiation condition

u(x) = O
(
|x|2−m

)
for |x| → ∞,

then:

(a) γ+0 u = 0 if and only if u = 0 on Ω+,

(b) γ+1 u = 0 if and only if

(i) u = 0 in Ω+ for m ≥ 3,

(ii) u is constant on Ω+ for m = 2.

The following computation will also be used at several places:

Lemma 3.7. Let u, v ∈ H1
loc(Ω+) with ∆u = ∆v = 0 on Ω+ satisfy the radiation condition

u(x) = O
(
|x|2−m

)
, v(x) = O

(
|x|2−m

)
for |x| → ∞,

then (
γ+1 u, γ

+
0 v
)
H− 1

2 (Γ),H
1
2 (Γ)

= −
∫
Ω+

⟨∇u,∇v⟩Cmdx.
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Proof. Remark first that by [3, Prop. 2.75] the radial derivative ∂ru of u satisfies

∂ru(x) =

{
O
(
|x|1−m

)
, m ≥ 3,

O
(
|x|−2

)
, m = 2,

for |x| → ∞

Let R > 0 such that Ω− ⊂ BR(0) and denote Ω+
R = BR(0) ∩ Ω+. We have then

0 =

∫
Ω+

R

(∆u)v dx = (∆u, v)H−1
comp(Ω+),H1

loc(Ω+)

= −
(
γ+1 u, γ

+
0 v
)
H− 1

2 (Γ),H
1
2 (Γ)

+

∫
|x|=R

(∂ru)v ds−
∫
Ω+

R

⟨∇u,∇v⟩Cmdx,

with ds being the hypersurface measure, which yields(
γ+1 u, γ

+
0 v
)
H− 1

2 (Γ),H
1
2 (Γ)

= −
∫
Ω+

R

⟨∇u,∇v⟩Cmdx+

∫
|x|=R

(∂ru)v ds. (3.13)

Using the above bounds for ∂ru and v, for large R we have (with some fixed C > 0)∣∣∣ ∫
|x|=R

(∂ru)v ds
∣∣∣ ≤ {C ·Rm−1 ·R1−m ·R2−m = O(R2−m) = o(1), m ≥ 3,

C ·R ·R−2 · 1 = O(R−1) = o(1), m = 2,

and sending R to ∞ in (3.13) gives(
γ+1 u, γ

+
0 v
)
H− 1

2 (Γ),H
1
2 (Γ)

= − lim
R→∞

∫
Ω+

R

⟨∇u,∇v⟩Cmdx. (3.14)

Using the last identity for u = v we conclude that |∇u|2 and |∇v|2 are integrable on Ω+,

so the limit on the right-hand side of (3.14) is exactly the Lebesgue integral over Ω+.

3.2 Dirichlet-to-Neumann map for m ≥ 3

Theorem 3.8. Let m ≥ 3 and f ∈ L2
comp(Ω+). Then

(a) For every g ∈ H
1
2 (Γ) there is a unique solution u ∈ H1

loc(Ω+) to the Dirichlet problem

with radiation condition 
−∆u = f in Ω+,

γ+0 u = g on Γ,

u(x) = O(|x|2−m) for |x| → ∞,

and for any cut-off function φ ∈ C∞
c (Rm) one can find a constant c > 0 such that

for any (f, g) as above and the respective solution u one has

∥φu∥H1(Ω+) ≤ c
(
∥f∥L2(Ω) + ∥g∥

H
1
2 (Γ)

)
. (3.15)

(b) For every h ∈ H− 1
2 (Γ) there is a unique u ∈ H1

loc(Ω+) fulfilling the Neumann problem

with radiation condition 
−∆u = f in Ω+,

γ+1 u = h on Γ,

u(x) = O(|x|2−m) for |x| → ∞.
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(c) For g ∈ H
1
2 (Γ) let ug be the solution of (a) for f = 0. Define the Dirichlet-to-

Neumann operator

C : H
1
2 (Γ) ∋ g 7→ γ+1 ug ∈ H− 1

2 (Γ),

then C is bounded, invertible and coercive, i.e. there is a constant c > 0 such that

for every g ∈ H
1
2 (Γ) one has

−
(
C g, g

)
H− 1

2 (Γ),H
1
2 (Γ)

≥ c∥g∥2
H

1
2 (Γ)

.

Proof. The uniqueness in (a) and (b) follows directly by Lemma (3.6)(a,b-i). For the

existence we note first that by Theorem 3.4 the solvability in (a) resp. (b) is equivalent

to the solvability of the boundary equations (3.9) resp. (3.12). Since S is a bijective

isomorphism, the problem 3.9 has a unique solution h ∈ H− 1
2 (Γ) for any choice of g, and

this solution continuously depends on g, which proves the existence in (a). The stability

estimate (3.15) follows from the representation (3.10) and the continuity properties of G,
SL and DL.

To complete the argument for (b) slightly more work is needed. First, by using (3.6)

we rewrite the condition (3.12) as Rg = γ+1 Gf − γ−1 SLh. As R is Fredholm and self-

adjoint with kerR = C1Γ, this last equation is solvable with respect to g if and only if the

right-hand side satisfies

I := (1Γ, γ
+
1 Gf − γ−1 SLh)

H
1
2 (Γ),H− 1

2 (Γ)
= 0. (3.16)

Using the definition of DL we obtain

(1Γ, γ
+
1 Gf)H 1

2 (Γ),H− 1
2 (Γ)

=
(
DL1Γ, f

)
H1

loc(Ω+),H−1
comp(Ω+)

(3.7)
=
(
0, f
)
H1

loc(Ω+),H−1
comp(Ω+)

= 0,

(1Γ, γ
−
1 SLh)

H
1
2 (Γ),H− 1

2 (Γ)
= (γ+0 DL1Γ, h)

H
1
2 (Γ),H− 1

2 (Γ)

(3.5)
= (0, h)

H
1
2 (Γ),H− 1

2 (Γ)
= 0,

therefore, I = 0 and the solvability condition (3.16) is fulfilled, which proves (b).

It remains to prove (c). Let g ∈ H
1
2 (Γ) with C g = 0, then ug is a solution of (b) for

f = 0 and h = 0, i.e. ug = 0 in Ω+, and g = γ+0 ug = 0. This proves the injectivity of C.
Let h ∈ H

1
2 (Γ) and let u be a solution of (b) for f = 0 and the chosen h, then h = C g for

g := γ+0 u, which shows the surjectivity of C.
We further remark that for any g ∈ H

1
2 (Γ), as shown by (3.9) with f = 0,

C g = −1

2
S−1(g − Tg),

which yields the boundedness of C, and the open mapping theorem implies that C−1 is

bounded as well.

It remains to show the coercivity. For h ∈ H− 1
2 (Γ) let vh be the solution of (b) with

f = 0. For any g ∈ H
1
2 (Γ) and any h ∈ H− 1

2 (Γ) we have then, due to Lemma 3.7:

−(h, g)
H− 1

2 (Γ),H
1
2 (Γ)

=

∫
Ω+

⟨∇vh,∇ug⟩CNdx.

In particular, noting that vh = ug for h = C g one arrives at

−(C g, g)
H− 1

2 (Γ),H
1
2 (Γ)

=

∫
Ω+

|∇ug|2dx (3.17)
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and, similarly,∫
Ω+

|∇vh|2dx = −
(
h, C−1 h

)
H− 1

2 (Γ),H
1
2 (Γ)

≤ ∥C−1 ∥
H− 1

2 (Γ)→H
1
2 (Γ)

∥h∥2
H− 1

2 (Γ)
.

Then for any g ∈ H
1
2 (Γ) we have

∥g∥2
H

1
2 (Γ)

= sup

h∈H− 1
2 (Γ), h ̸=0

∣∣(h, ḡ)
H− 1

2 (Γ),H
1
2 (Γ)

∣∣2
∥h∥2

H− 1
2 (Γ)

= sup

h∈H− 1
2 (Γ), h ̸=0

∣∣∣∣ ∫
Ω+

⟨∇vh,∇ug⟩Cmdx

∣∣∣∣2
∥h∥2

H− 1
2 (Γ)

≤ sup

h∈H− 1
2 (Γ), h ̸=0

∫
Ω+

|∇vh|2dx
∫
Ω+

|∇ug|2dx

∥h∥2
H− 1

2 (Γ)

≤ sup

h∈H− 1
2 (Γ), h ̸=0

∥ C−1 ∥
H− 1

2 (Γ)→H
1
2 (Γ)

∥h∥2
H− 1

2 (Γ)

∫
Ω+

|∇ug|2dx

∥h∥2
H− 1

2 (Γ)

≤ ∥C−1 ∥
H− 1

2 (Γ)→H
1
2 (Γ)

∫
Ω+

|∇ug|2dx,

i.e. ∫
Ω+

|∇ug|2dx ≥ ∥C−1 ∥−1

H− 1
2 (Γ)→H

1
2 (Γ)

∥g∥2
H

1
2 (Γ)

,

and the substitution into (3.17) gives the required result.

3.3 Dirichlet-to-Neumann map for m = 2

Compared to the case m ≥ 3 considered in the statement of Theorem 3.8, the two-

dimensional case presents additional difficulties. Recall the lemma from [13, Sec. 8.14]:

Lemma 3.9. Let m = 2, then for any (g, b) ∈ H
1
2 (Γ) × C there is a unique solution

(h, c) ∈ H− 1
2 (Γ)× C to the system Sh+ c = g,

⟨h,1Γ⟩
H− 1

2 (Γ),H
1
2 (Γ)

= b.

In addition, the solution (h, c) is continuously dependent on the right-hand side (g, b), i.e.

there is c0 > 0 such that

∥h∥2
H− 1

2 (Γ)
+ |c|2 ≤ c0

(
∥g∥2

H
1
2 (Γ)

+ |b|2
)

for all (g, b).
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Theorem 3.10. Let m = 2 and f ∈ L2
comp(Ω+), then for any g ∈ H

1
2 (Γ) there is a unique

u ∈ H1
loc(Ω+) solving the Dirichlet problem with the radiation condition

−∆u = f in Ω+,

γ+0 u = g on Γ,

u(x) = O(1) for |x| → ∞.

This solution has the form

u = Gf + SLh+ c, (3.18)

with h ∈ H− 1
2 (Γ) and c ∈ C satisfying

Sh+ c = g − γ+0 Gf, (h,1Γ)
H− 1

2 (Γ),H
1
2 (Γ)

= −
∫
supp f

f dx. (3.19)

In addition, for any cut-off function φ ∈ C∞
c (R2) there is a constant c > 0 such that for

all (f, g) as above and the respective solution u it holds that

∥φu∥H1(Ω+) ≤ c
(
∥f∥L2(Ω+) + ∥g∥

H
1
2 (Γ)

)
. (3.20)

Remark that the radiation condition at infinity in the above theorem differs from the

condition at infinity stated in Theorem 3.4. This explains appearance of an extra constant

term in the representation formula (3.18).

Proof. The uniqueness of u follows by Lemma 3.6(a). For the existence we will use the

ansatz (3.18) with (h, c) ∈ H− 1
2 (Γ)×C to be determined. Remark that −∆u = f for any

choice of (h, c). For any x ∈ Ω+ one has by construction

(Gf)(x) =
∫
supp f

G(x− y)f(y)dy = − 1

2π

∫
supp f

log
|x− y|
r

f(y)dy,

(
SLh

)
(x) =

(
h,G(x− ·)

)
H− 1

2 (Γ),H
1
2 (Γ)

= − 1

2π

(
h, γ+0 log

|x− ·|
r

)
H− 1

2 (Γ),H
1
2 (Γ)

.

Representing

− 1

2π
log

|x− y|
r

= − 1

2π
log

|x|
r

+ Fx(y)

with

Fx(y) := − 1

2π
log
∣∣∣ x|x| − y

|x|

∣∣∣ ≡ − 1

4π
log
(
1− 2

⟨x, y⟩R2

|x|2
+

|y|2

|x|2
)

we obtain

(Gf)(x) = − 1

2π
log

|x|
r

∫
supp f

f dx+

∫
supp f

Fx(y)f(y)dy,

(
SLh

)
(x) = − 1

2π
log

|x|
r
(h, 1)

H− 1
2 (Γ),H

1
2 (Γ)

+ (h, γ+0 Fx)
H− 1

2 (Γ),H
1
2 (Γ)

.

Using Taylor expansion of log(1 + ·) we immediately obtain

∥Fx∥L∞(B) = O
( 1

|x|

)
for |x| → ∞,
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for any bounded B ⊂ R2, and for B := supp f this results in

(Gf)(x) = − 1

2π
log

|x|
r

∫
supp f

f dx+O
( 1

|x|

)
for |x| → ∞. (3.21)

Now let B ⊂ R2 be a bounded open set containing Γ, then for each j ∈ {1, 2} we have

additionally

∥∂yjFx∥L∞(B) = O
( 1

|x|

)
for |x| → ∞,

showing

∥Fx∥H1(B) = O
( 1

|x|

)
for |x| → ∞,

and the boundedness of the trace map implies

∥γ+0 Fx∥
H

1
2 (Γ)

= O
( 1

|x|

)
for |x| → ∞,

and then(
SLh

)
(x) = − 1

2π
log

|x|
r
(h, 1)

H− 1
2 (Γ),H

1
2 (Γ)

+O
( 1

|x|

)
for |x| → ∞. (3.22)

We conclude that the function u given by (3.18) behaves as

u(x) = − 1

2π

[∫
supp f

f dx+ (h, 1)
H− 1

2 (Γ),H
1
2 (Γ)

]
log

|x|
r

+ c+O
( 1

|x|

)
for |x| → ∞,

and it satisfies the radiation condition u(x) = O(1) for large |x| if and only if the coefficient

in the square brackets vanishes. Furthermore,

γ+0 u = γ+0 Gf + Sh+ c.

Using Lemma 3.9 we can choose (h, c) such that (3.19) holds, then

u(x) = c+O
( 1

|x|

)
= O(1) for |x| → ∞, γ+0 u = g,

i.e. all requirements are satisfied. The norm control (3.20) follows from the continuity of

the map (g, f) 7→ (h, c) and the mapping properties of G and SL.

Again, unlike in the case m ≥ 3, the exterior Neumann problem for the Laplacian is

no longer well-posed for arbitrary initial data, but rather requires a certain compatibility

relation that ensures the existence of the solution.

Theorem 3.11. Let m = 2, then for any f ∈ L2
comp(Ω+) and h ∈ H− 1

2 (Γ) with∫
Ω+

fdx+
(
h,1Γ

)
H− 1

2 (Γ),H
1
2 (Γ)

= 0

there is a unique solution u ∈ H1
loc(Ω+) for the Neumann problem
−∆u = f in Ω+,

γ+1 u = h on Γ,

u(x) = o(1) for |x| → ∞.
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Proof. The uniqueness follows by Lemma 3.6(b-ii). Indeed, assume that u solves the

Neumann problem with f = 0 and h = 0. From the radiation condition u(x) = o(1) for

|x| → +∞ it follows that u(x) = O(1) for |x| → +∞ and by Lemma 3.6, u = const.

However, since u(x) = o(1) for |x| → +∞, necessarily, u = 0. To show the existence we

use the ansatz

u = Gf − DL g + SLh

with g ∈ H
1
2 (Γ) to be determined. Note that −∆u = f for any choice of g.

Let us show that u satisfies the required bound at infinity. By using the above

assumptions on f and h in the previously obtained estimates (3.21) and (3.22) we conclude

that

Gf(x) + SLh(x) = o(1) for |x| → ∞,

and it remains to study DL g(x) for large x. For x ∈ Ω+ one has∣∣DL g(x)∣∣ = ∣∣∣∣ ∫
Γ
∂νyG(x− y)g(y) ds(y)

∣∣∣∣ = 1

2π

∣∣∣∣ ∫
Γ

⟨νy, x− y⟩R2

|x− y|2
g(y)ds(y)

∣∣∣∣
≤ 1

2π

∫
Γ

∣∣∣∣⟨νy, x− y⟩R2

|x− y|2

∣∣∣∣ · ∣∣g(y)∣∣ds(y) ≤ ∫
Γ

∣∣g(y)∣∣
|x− y|

ds(y).

Let R > 0 with Γ ⊂ BR(0), then for |x| > R and y ∈ Γ one has |x− R| ≥ |x| − R, which

yields ∣∣DL g(x)∣∣ ≤ 1

2π
· 1

|x| −R
∥g∥L1(Γ) = o(1) for |x| → ∞. (3.23)

This shows u(x) = o(1) for |x| → ∞ for any choice of g.

It remains to check that g can be chosen such that u satisfies the required boundary

condition. Note that γ+1 u = γ+1 Gf + Rg + γ+1 SLh, and the boundary condition γ+1 u = h

is satisfied if and only if

h = γ+1 Gf +Rg + γ+1 SLh i.e. Rg = h− γ+1 Gf − γ+1 SLh.

As R is Fredholm and self-adjoint with kerR = C1Γ (see Lemma 3.3), this last equation

is solvable with respect to g if any only if

I := (1Γ, h− γ+1 Gf − γ+1 SLh)
H

1
2 (Γ),H− 1

2 (Γ)
= 0. (3.24)

We have I = I1 − (I2 + I3), where

I1 := (1Γ, γ
+
1 Gf)H 1

2 (Γ),H− 1
2 (Γ)

,

I2 := (1Γ, h)
H

1
2 (Γ),H− 1

2 (Γ)
,

I3 := (1Γ, γ
+
1 SLh)

H
1
2 (Γ),H− 1

2 (Γ)
,

For I1 we have, due to the definition of DL,

I1 = (DL1, f)H1
loc(Ω+),H−1

comp(Ω+) = 0,

as DL1Γ = 0 in Ω+, see (3.7). With the help of (3.5) we obtain

I3 = (γ−0 DL1Γ, h)
H

1
2 (Γ),H− 1

2 (Γ)
.
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By (3.7) one has γ−0 DL1Γ = −1Γ, hence,

I3 = −(1Γ, h)
H− 1

2 (Γ),H
1
2 (Γ)

= −I2.

This shows I = 0, i.e. the solvability condition (3.24) is satisfied, which gives a harmonic

function u of the above form with γ+1 u = h.

To prove the result that follows, it will be convenient to introduce the following

decomposition of the space H
1
2 (Γ):

H
1
2 (Γ) = C1Γ

.
+H

1
2
0 (Γ), (3.25)

H
1
2
0 (Γ) :=

{
g ∈ H

1
2 (Γ) : (1Γ, g)

H− 1
2 (Γ),H

1
2 (Γ)

= 0
}
.

This decomposition can be obtained by introducing the L2−orthogonal projector Π1 onto

the space C1Γ:

Π1 : H
1
2 (Γ) ∋ g 7→ g :=

(g,1Γ)L2(Γ)

∥1Γ∥2L2(Γ)

1Γ =
1

|Γ|

(∫
Γ
gdx

)
1Γ ∈ H

1
2 (Γ).

The projector on the subspace H
1
2
0 (Γ) with respect to the direct sum (3.25) is given by

Π0 = Id−Π1, and thus the corresponding direct sum becomes orthogonal with respect to

the L2(Γ)-scalar product. Remark that Π1 and Π0 are continuous in H
1
2 (Γ) and consider

their adjoints (which are also projectors):

Π∗
1, Π

∗
0 : H

− 1
2 (Γ) → H− 1

2 (Γ).

The usual computation for the adjoints, see e.g. [13, Theorem 2.13], gives

ranΠ∗
0 =

{
h ∈ H− 1

2 (Γ) :
(
h,1Γ

)
H− 1

2 (Γ),H
1
2 (Γ)

= 0
}
=: H

− 1
2

0 (Γ),

ranΠ∗
1 = C1Γ,

(3.26)

which gives the direct sum decomposition

H− 1
2 (Γ) = C1Γ

.
+H

− 1
2

0 (Γ)

with Π∗
1, respectively, Π∗

0 being the projector on the first, respectively, the second

component, and one obtains the following assertion:

Lemma 3.12. The map

φ 7→ |φ|
H− 1

2 (Γ)
:= ∥Π∗

0φ∥H− 1
2 (Γ)

+ ∥Π∗
1φ∥H− 1

2 (Γ)

defines an equivalent norm on H− 1
2 (Γ).

Proof. Both projectors Π∗
0 and Π∗

1 are continuous, thus |φ|
H− 1

2 (Γ)
≤ C∥φ∥

H− 1
2 (Γ)

. On

the other hand,

∥φ∥
H− 1

2 (Γ)
= sup

g∈H
1
2 (Γ): g ̸=0

(φ, g)
H− 1

2 (Γ),H
1
2 (Γ)

∥g∥
H

1
2 (Γ)

= sup

g∈H
1
2 (Γ): g ̸=0

(Π∗
1φ+Π∗

0φ, g)H− 1
2 (Γ),H

1
2 (Γ)

∥g∥
H

1
2 (Γ)

≤ sup

g∈H
1
2 (Γ): g ̸=0

(
∥Π∗

1φ∥H− 1
2 (Γ)

+ ∥Π∗
0φ∥H− 1

2 (Γ)

)
∥g∥

H
1
2 (Γ)

∥g∥
H

1
2 (Γ)

= |φ|
H− 1

2 (Γ)
.
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Corollary 3.13. Let m = 2. The Dirichlet-to-Neumann operator C : H
1
2 (Γ) → H− 1

2 (Γ)

defined by

C : g 7→ γ+1 ug,

where ug ∈ H1
loc(Ω+) is the unique solution of the Dirichlet problem

−∆u = 0 in Ω+,

γ+0 u = g on Γ,

u(x) = O(1) for |x| → ∞,

is bounded, non-positive and Fredholm of index 0, with ker C = C1Γ and ran C = H
− 1

2
0 (Γ).

In addition, it is coercive on H
1
2
0 (Γ), i.e. there is a constant c > 0 such that for any

g ∈ H
1
2 (Γ) it holds that

−(C g, g)
H− 1

2 (Γ),H
1
2 (Γ)

≥ c∥Π0g∥2
H

1
2 (Γ)

.

Proof. Step 1. The boundedness of C follows directly from Theorem 3.10.

Step 2: Let us show ker C = C1Γ. For g := 1Γ one clearly has ug = 1Ω+ and

C g = γ+1 ug = 0, i.e. 1Γ ⊂ ker C. On the other hand, let g ∈ ker C, then ug satisfies

∆ug = 0, γ+1 ug = 0, u(x) = O(1) for |x| → ∞,

so u is constant in Ω+ by Lemma 3.6(c-ii), and then g is a multiple of 1Γ.

Step 3: We show that C is a self-adjoint operator. Let g, h ∈ H
1
2 (Γ), and let ug, uh

resp. be the solutions of the Dirichlet problem of Theorem 3.10 with f = 0. Then, by

Lemma 3.7,

(Cg, h)
H− 1

2 (Γ),H
1
2 (Γ)

= −
∫
Ω+

⟨∇ug,∇uh⟩Cmdx = −
∫
Ω+

⟨∇uh,∇ug⟩Cmdx

= (Ch, g)
H− 1

2 (Γ),H
1
2 (Γ)

,

which gives the sought conclusion.

Step 4: We show that ran C = H
− 1

2
0 (Γ). Due to the self-adjointness of C the subspace

ran C is contained in the annihilator of ker C, see e.g. [13, Lemma 2.10 and p. 23]. The

annihilator of ker C ≡ C1Γ is exactly H
− 1

2
0 (Γ), which gives the inclusion ran C ⊂ H

− 1
2

0 (Γ).

On the other hand, by Theorem 3.11 for any h ∈ H
− 1

2
0 (Γ) there is a function v ∈ H1

loc(Ω+)

with

∆v = 0, γ+1 v = h, v(x) = o(1) = O(1) for |x| → ∞,

so v = ug for g := γ+0 v, and h = C g. This shows H
− 1

2
0 (Γ) ⊂ ran C. Finally we obtain the

sought equality, which then implies codim ran C = 1.

Step 5: Fredholm index. The above discussion shows that C is Fredholm with

codim ran C = 1 = dimker C, thus C has zero index.

Step 6: Coercivity on the space H
1
2
0 (Γ). For any g ∈ H

1
2 (Γ) one has, due to Lemma

3.7,

−(C g, g )
H− 1

2 (Γ),H
1
2 (Γ)

= −(γ+1 ug, γ
+
0 ug )H− 1

2 (Γ),H
1
2 (Γ)

=

∫
Ω+

|∇ug|2dx ≥ 0, (3.27)
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which shows the non-positivity of C. Further remark that by the above consideration the

restricted operator

C0 : H
1
2
0 (Γ) ∋ g0 7→ C g0 ∈ H

− 1
2

0 (Γ)

is bounded and bijective, therefore, it has a bounded inverse. In particular, for any

h0 ∈ H
− 1

2
0 (Γ) we have∫

Ω+

|∇uC−1
0 h0

|2dx = −
(
h, C−1

0 h0
)
H− 1

2 (Γ),H
1
2 (Γ)

≤ ∥C−1
0 ∥

H
− 1

2
0 (Γ)→H

1
2
0 (Γ)

∥h0∥2
H− 1

2 (Γ)
.

(3.28)

By Lemma 3.12 we can find some B > 0 such that |h|
H− 1

2 (Γ)
≤ B∥h∥

H− 1
2 (Γ)

for all

h ∈ H− 1
2 (Γ).

Let g0 ∈ H
1
2
0 (Γ), then

∥g0∥
H

1
2 (Γ)

= sup

h∈H− 1
2 (Γ), h ̸=0

∣∣(h, ḡ0)
H− 1

2 (Γ),H
1
2 (Γ)

∣∣
∥h∥

H− 1
2 (Γ)

≤ B sup

h∈H− 1
2 (Γ), h ̸=0

∣∣(h, ḡ)
H− 1

2 (Γ),H
1
2 (Γ)

∣∣
|h|

H− 1
2 (Γ)

= B sup

h∈H− 1
2 (Γ), h ̸=0

∣∣(Π∗
0h+Π∗

1h, ḡ0)H− 1
2 (Γ),H

1
2 (Γ)

∣∣
∥Π∗

0h∥H− 1
2 (Γ)

+ ∥Π∗
1h∥H− 1

2 (Γ)

= I

Remark that for any h ∈ H− 1
2 (Γ),

(Π∗
1h, ḡ0)H− 1

2 (Γ),H
1
2 (Γ)

= (h,Π1g0)
H− 1

2 (Γ),H
1
2 (Γ)

= 0,

since g0 ∈ H
− 1

2
0 (Γ) = KerΠ1, and the preceding computation can be continued as:

I = B sup

h∈H− 1
2 (Γ), h ̸=0

∣∣(Π∗
0h, ḡ0)H− 1

2 (Γ),H
1
2 (Γ)

∣∣
∥Π∗

0h∥H− 1
2 (Γ)

+ ∥Π∗
1h∥H− 1

2 (Γ)

= B sup

h∈H− 1
2 (Γ),Π∗

0h̸=0

∣∣(Π∗
0h, ḡ)H− 1

2 (Γ),H
1
2 (Γ)

∣∣
∥Π∗

0h∥H− 1
2 (Γ)

+ ∥Π∗
1h∥H− 1

2 (Γ)

≤ B sup

h∈H− 1
2 (Γ),Π∗

0h̸=0

∣∣(Π∗
0h, ḡ)H− 1

2 (Γ),H
1
2 (Γ)

∣∣
∥Π∗

0h∥H− 1
2 (Γ)

.

Since ranΠ∗
0 = H

− 1
2

0 (Γ), the reparametrization h0 := Π∗
0h yields

∥g0∥
H

1
2 (Γ)

≤ B sup

h0∈H
− 1

2
0 (Γ), h0 ̸=0

∣∣(h0, ḡ0)
H− 1

2 (Γ),H
1
2 (Γ)

∣∣
∥h0∥

H− 1
2 (Γ)

.

39



By applying Lemma 3.7 on the right-hand side we arrive at

∥g0∥2
H

1
2 (Γ)

≤ B sup

h0∈H
− 1

2
0 (Γ), h0 ̸=0

∣∣∣∣ ∫
Ω+

⟨∇uC−1
0 h0

,∇ug0⟩Cmdx

∣∣∣∣2
∥h∥2

H− 1
2 (Γ)

≤ B sup

h0∈H
− 1

2
0 (Γ), h0 ̸=0

∫
Ω+

|∇uC−1
0 h0

|2dx
∫
Ω+

|∇ug0 |2dx

∥h∥2
H− 1

2 (Γ)

use (3.28): ≤ B sup

h0∈H
− 1

2
0 (Γ), h0 ̸=0

∥ C−1
0 ∥

H
− 1

2
0 (Γ)→H

1
2
0 (Γ)

∥h0∥2
H− 1

2 (Γ)

∫
Ω+

|∇ug0 |2dx

∥h∥2
H− 1

2 (Γ)

≤ B∥ C−1
0 ∥

H
− 1

2
0 (Γ)→H

1
2
0 (Γ)

∫
Ω+

|∇ug0 |2dx,

i.e. ∫
Ω+

|∇ug0 |2dx ≥ c∥g0∥2
H

1
2 (Γ)

, c :=
1

B∥ C−1
0 ∥

H
− 1

2
0 (Γ)→H

1
2
0 (Γ)

.

The substitution into (3.27) gives

−(C g0, g0 )
H− 1

2 (Γ),H
1
2 (Γ)

≥ c∥g0∥2
H

1
2 (Γ)

for all g0 ∈ H
1
2
0 (Γ). (3.29)

Using the self-adjointness of C and the identity CΠ1 = 0, for any g ∈ H
1
2 (Γ) we obtain:

−(C g, g)
H− 1

2 (Γ),H
1
2 (Γ)

= −(C(Π0g +Π1g),Π0g +Π1g)
H− 1

2 (Γ),H
1
2 (Γ)

= −(C Π0g,Π0g)
(3.29)

≥ c∥Π0g∥2
H

1
2 (Γ)

.

4 Hybrid transmission problem

4.1 Well-posedness

Now we give a rigorous formulation of the transmission problem described in the

introduction.

Problem 4.1. Let α1 ∈ C\{0} and α0 ∈ L∞(Γ) be given. For fT ∈ L2(T ), fΩ ∈ L2
comp(Ω)

and c ∈ C, find the solutions (uT , uΩ) ∈ H1(T )×H1
loc(Ω) of the transmission problem

∆T uT = fT on T ,
∆uΩ = fΩ on Ω,

γΩ0 uΩ = γT0 uT on Γ,

γΩ1 uΩ − α1γ
T
1 uT = α0γ

Ω
0 uΩ on Γ,

uΩ(x) = O(|x|2−m) for |x| → ∞,

uT (o) = c.

(4.1)

Let us start with preliminary remarks on the associated homogeneous problem.
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Lemma 4.2. Let α1 ∈ C \ {0} and α0 ∈ L∞(Γ). Define the operator

M : H
1
2 (Γ) ∋ g 7→ −C g + α1Dg + α0g ∈ H− 1

2 (Γ), (4.2)

then dimkerM coincides with the dimension of the solution space of the homogeneous

problem 

∆T wT = 0 on T ,
∆wΩ = 0 on Ω,

γΩ0 wΩ = γT0 wT on Γ,

γΩ1 wΩ − α1γ
T
1 wT = α0γ

Ω
0 wΩ on Γ,

wΩ(x) = O(|x|2−m) for |x| → ∞,

wT (o) = 0.

(4.3)

Proof. Let (wT , wΩ) be a solution of (4.3) and g := γT0 wT ≡ γΩ0 wΩ, then wT and wΩ are

solutions of 
∆T wT = 0 on T ,
γT0 wT = g on Γ,

wT (o) = 0,


∆wΩ = 0 on Ω,

γΩ0 wΩ = g on Γ,

wΩ(x) = O(|x|2−m) for |x| → ∞,

(4.4)

therefore, γΩ1 wΩ = C g and γT1 wT = Dg. The fourth condition in (4.3) is satisfied if and

only if C g − α1Dg = α0g, i.e. g ∈ kerM . To arrive at the desired conclusion, it remains

to note that by Lemma 2.10 and Theorem 3.1 the map g 7→ (wT , wΩ) is one-to-one.

Our principal result is as follows:

Theorem 4.3. Let α1 ∈ C \ {0} and α0 ∈ L∞(Γ) be such that the homogeneous problem

(4.3) has the unique solution (wT , wΩ) = (0, 0).

Then the operator M in (4.2) is an isomorphism. Moreover, the non-homogeneous

problem (4.1) has a unique solution (uT , uΩ) ∈ H1(T ) ×H1
loc(Ω) for any choice of fT ∈

L2(T ), fΩ ∈ L2
comp(Ω) and c ∈ C, and the solution depends continuously on (fT , fΩ, c) as

follows: for any cut-off function φ ∈ C∞
c (Rm) there is a constant B > 0 such that

∥uT ∥H1(T ) + ∥φuΩ∥H1(Ω) ≤ B
(
∥fT ∥L2(T ) + ∥fΩ∥L2(Ω) + |c|

)
.

Proof. Step 1: We are going to show that the operator M defined by (4.2) is surjective.

The embeddings ι1 : H
1
2 (Γ) ↪→ Hσd(Γ) and ι2 : H−σd(Γ) ↪→ H− 1

2 (Γ), are compact,

which yields the compactness of ι2Dι1 : H
1
2 (Γ) → H− 1

2 (Γ). Similarly, the compactness of

the embeddings ι3 : H
1
2 (Γ) ↪→ L2(Γ), ι4 : L

2(Γ) ↪→ H− 1
2 (Γ), and the boundedness of the

multiplication operator

Tα0 : L2(Γ) ∋ g 7→ α0g ∈ L2(Γ)

imply that ι4Tα0ι3 : H
1
2 (Γ) → H− 1

2 (Γ) is compact. For the above operator M we have

the representation M = −C+α1ι2Dι1 + ι4Tα0ι3, so M is a compact perturbation of the

zero-index Fredholm operator −C (see Theorem 3.2), and it follows thatM is a zero-index

Fredholm operator too. The assumption (unique solvability of the homogeneous problem)

and Lemma 4.2 show that M is injective, so it is also surjective.
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Step 2: Uniqueness of solutions. Let (uT , uΩ) and (ũT , ũΩ) be two solutions of the

non-homogeneous problem (4.1), then the functions wT := ũT − uT and wΩ := ũΩ − uΩ
solve the homogeneous problem (4.3). By assumption (wT , wΩ) = (0, 0), which yields

(uT , uΩ) = (ũT , ũΩ).

Step 3: Existence of solutions. Use the ansatz uT = u+ cu1 + uf , uΩ = v + vf , where

� u1 ∈ H1
0 (T ) is an arbitrary function with u1(o) = 1 and ∆T u1 ∈ L2(T ),

� uf ∈ H̃1
0 (T ) satisfies ∆T uf = fT − c∆T u1, which exists by Lemma 2.5,

� u ∈ H̃1(T ) is to be determined,

� vf ∈ H1
loc(Ω) is the solution of

−∆vf = fΩ in Ω+,

γΩ0 vf = 0 on Γ,

vf (x) = O(|x|2−m) for |x| → ∞,

which exists by Theorem 3.1,

� v ∈ H1
loc(Ω) is to be determined.

Then (uT , uΩ) satisfy (4.1) if and only if the new unknown functions (u, v) satisfy

∆T u = 0 on T ,
∆v = 0 on Ω,

γΩ0 v = γT0 u on Γ,

γΩ1 v − α1γ
T
1 u = α0γ

Ω
0 v + h on Γ,

v(x) = O(|x|2−m) for |x| → ∞,

u(o) = 0,

(4.5)

with h := −γΩ1 vf +α1γ
T
1

(
cu1+uf

)
∈ H− 1

2 (Γ). Note that for any g ∈ H
1
2 (Γ) the solutions

(u, v) to 
∆T u = 0 on T ,
γT0 u = g on Γ,

u(o) = 0,


∆v = 0 on Ω,

γΩ0 v = g on Γ,

v(x) = O(|x|2−m) for |x| → ∞,

(4.6)

satisfy all conditions in (4.5) expect the fourth one for the normal derivatives. In order to

fulfill this remaining condition we note that for (u, v) in (4.6) we have

γΩ1 v = C g, γT1 u = Dg,

and the fourth condition in (4.5) holds if and only if

C g − α1Dg − α0g = h, (4.7)

which can be rewritten asMg = −h. AsM is surjective (as shown in Step 1), this equation

has a solution g ∈ H
1
2 (Γ). By solving (4.6) for this g we obtain a required solution for

(4.5).
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Step 4: Dependence on the initial data. The continuity of the solution on the initial

data easily follows by noting that the transitions

(fT , c) 7→ uf , fΩ 7→ vf , (fT , fΩ, c) 7→ h, h 7→ g, g 7→ v, g 7→ u

are continuous in respective norms (with an additional cut-off on Ω).

Specific cases for which Theorem 4.3 is applicable are easily obtained using the sign-

definiteness and coercivity of C and D:

Corollary 4.4. The assumptions of Theorem 4.3 are satisfied in the following cases:

(i) Reα1, Reα0 ≥ 0 with Reα1 +Reα0 > 0 a.e.

(ii) Imα1, Imα0 ≥ 0, with Imα1 + Imα0 > 0 a.e.

Hence, for each of these cases Problem 4.1 is uniquely solvable.

Proof. Let α1 ∈ C \ {0} and α0 ∈ L∞(Γ). Let g ∈ H
1
2 (Γ) with Mg = 0, then

0 = (Mg, ḡ)
H− 1

2 (Γ),H
1
2 (Γ)

= −(C g, ḡ)
H− 1

2 (Γ),H
1
2 (Γ)

+ α1(Dg, ḡ)H−σd(Γ),Hσd(Γ) +

∫
Γ
α0|g|2 ds. (4.8)

We start by arguing that (i) is sufficient. Taking the real part and using the coercivity of

D (Theorem 2.14) and the non-positivity of C (Corollary 3.13 for m = 2, Theorem 3.8 for

m ≥ 3), we obtain, with some c > 0,

0 = −(C g, ḡ)
H− 1

2 (Γ),H
1
2 (Γ)

+ (Reα1)(Dg, ḡ)H−σd(Γ),Hσd(Γ) +

∫
Γ
(Reα0)|g|2 ds

≥ (Reα1)(Dg, ḡ)H−σd(Γ),Hσd(Γ) +

∫
Γ
(Reα0)|g|2 ds,

≥ (Reα1)c∥g∥2Hσd(Γ) +

∫
Γ
(Reα0)|g|2 ds

≥ (Reα1)c∥g∥2L2(Γ) +

∫
Γ
(Reα0)|g|2 ds

≥ min{1, c}
∫
Γ
(Reα1 +Reα0)|g|2 ds,

and the assumptions (i) yields g = 0 a.e.

To argue that (ii) is sufficient, we take the imaginary part of (4.8) and use the coercivity

of D. This yields

0 = (Imα1)(Dg, ḡ)H−σd(Γ),Hσd(Γ) +

∫
Γ
(Imα0)|g|2 ds,

and we conclude by proceeding almost verbatim like in the previous case.
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4.2 Approximations by finite truncations

In this subsection we illustrate how the finite-dimensional approximations of D constructed

in Subsection 2.6 can be employed to approximate the solutions of the transmission

problem (4.1). For that we assume that the metric tree T is geometric from some

generation N1 (see Definition 2.22) and denote

DN := DPN , N ∈ N.

The result of Corollary 2.21 and the boundedness of the embeddings

H
1
2 (Γ) ↪→ Hσ′d(Γ), H−σd(Γ) ↪→ H− 1

2 (Γ)

imply that for large N one has

∥DN −D∥
H

1
2 (Γ)→H− 1

2 (Γ)
= O(p−ρN ) with any ρ ∈

(
0,

1− 2σ

2d

)
. (4.9)

Further recall that Theorem 2.23 provides an efficient way of computing DN for large N

using N -condensations of T .

In virtue of Theorem 4.3 and Corollary 4.4, for suitably chosen α1 ∈ C and α0 ∈ L∞(Γ)

and any f ∈ L2
comp(Ω) there is a unique solution (uT , uΩ) ∈ H1(T ) × H1

loc(Ω) of the

transmission problem 

∆T uT = 0 on T ,
∆uΩ = fΩ on Ω,

γΩ0 uΩ = γT0 uT on Γ,

γΩ1 uΩ − α1γ
T
1 uT = α0γ

Ω
0 uΩ on Γ,

uΩ(x) = O(|x|2−m) for |x| → ∞,

uT (o) = 0.

(4.10)

To construct this solution, we proceed like in the proof of Theorem 2.23 (Step 3).

Repeating the corresponding argument and using the same notation we conclude that

uΩ = v + vf , uT = u,

where u, v solve (4.6) with g being the unique solution to (4.7), i.e.

C g − α1Dg − α0g = −γΩ1 vf .

A natural approximation to the above problem consists in replacing D by DN (all the

related quantities will be marked by index N).

By combining (4.9) with Theorem 4.3 we conclude that for large N the operator

q 7→ −C q + α1DNq + α0q ≡
(
− C q + α1Dq + α0q) + α1(DN −D)q

is an isomorphism H
1
2 (Γ) → H− 1

2 (Γ), and applying the Neumann series for its inverse

yields that there is a unique solution gN ∈ H
1
2 (Γ) of

−C gN + α1DNgN + α0gN = h,
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and one has ∥gN − g∥
H

1
2 (Γ)

= O(p−ρN ).

By using the continuous dependence of the solutions of (4.6) on g we conclude that

the solutions vN and uN of
∆T u

N = 0 on T ,
γT0 u

N = gN on Γ,

uNT (o) = 0,


∆vN = 0 on Ω,

γΩ0 v
N = gN on Γ,

vN (x) = O(|x|2−m) for |x| → ∞,

(4.11)

satisfy

∥u− uN∥H1(T ) = O(p−ρN ), ∥φ(v − vN )∥H1(Ω) = O(p−ρN ),

for any cut-off function φ ∈ C∞
c (Rm). Hence, the functions uNT := uN and uNΩ := vf + vN

with large N provide a good approximation to the solution (uT , uΩ) in the sense that

∥uNT − uN∥H1(T ) = O(p−ρN ), ∥φ(uNΩ − uΩ)∥H1(Ω) = O(p−ρN )

for any cut-off function φ ∈ C∞
c (Rm).

Remark 4.5. Consider in greater details the case α0 ≡ 0. Then the unique solvability of

Problem 4.1 fails if and only if the homogeneous problem

∆T wT = 0 on T ,
∆wΩ = 0 on Ω,

γΩ0 wΩ = γT0 wT on Γ,

γΩ1 wΩ = α1γ
T
1 wT on Γ,

wΩ(x) = O(|x|2−m) for |x| → ∞,

wT (o) = 0.

(4.12)

has non-trivial solutions. Lemma 4.2 implies that the values α1 for which it happens are

exactly those with

ker(−C+α1D) ̸= {0}. (4.13)

Using the non-positivity of C one concludes that Id − C : H
1
2 (Γ) → H− 1

2 (Γ) is an

isomorphism. Then the factorization

−C+α1D =
(
Id + (α1D − Id)(Id− C)−1

)
(Id− C)

shows that (4.13) rewrites as

ker
(
Id + (α1D − Id)(Id− C)−1

)
̸= {0}.

Noting that (Id−C)−1 and D(Id−C)−1 can be viewed as compact operators in H− 1
2 (Γ) we

conclude (using the analytic Fredholm theorem) that the values of α1 for which (4.12) has

non-trivial solutions form a discrete subset of C (i.e. without finite accumulation points).

In fact, in view of Corollary 4.4 and using the complex conjugation one easily sees that

all these values belong to (−∞, 0).

The problem (4.12) and the respective critical values of α1 represent a natural mixed-

dimensional counterpart of the so-called plasmonic eigenvalue problem in Rm, see e.g. the

discussion in [5, 6], and it is known that the plasmonic eigenvalues in the Euclidean case

have a finite accumulation point, contrary to what was just observed for our problem.
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