Poisson-type problems with transmission
conditions at boundaries of infinite metric trees
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Abstract

The paper introduces a Poisson-type problem on a mixed-dimensional structure
combining a FEuclidean domain and a lower-dimensional self-similar component
touching a compact surface (interface). The lower-dimensional piece is a so-called
infinite metric tree (one-dimensional branching structure), and the key ingredient of
the study is a rigorous definition of the gluing conditions between the two components.
These constructions are based on the recent concept of embedded trace maps and some
abstract machineries derived from a suitable Green-type formula. The problem is then
reduced to the study of Fredholm properties of a linear combination of Dirichlet-to-
Neumann maps for the tree and the Euclidean domain, which yields desired existence
and uniqueness results. One also shows that finite sections of tree can be used for an
efficient approximation of the solutions.
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1 Introduction

The aim of the present work is to develop an abstract framework to study the solvability
and approximations for a Poisson-type problem on a mixed-dimensional structure
combining a Euclidean component and a lower-dimensional self-similar component
touching along a surface. The Euclidean component is a so-called exterior domain €2 C R™
(with m > 2), i.e. © is the complement of a compact set. We additionally assume that €2

has smooth boundary, hence,
I':= 04,

is a compact hypersurface in R™ (without boundary), and that both Q and ' are
connected. The lower-dimensional component is an infinite metric tree constructed as
follows. Fix some branching number p > 2 and consider some bounded interval (root edge),
with one of its endpoints being declared as a root vetrex o. In the first step we attach to
the non-root endpoint of this interval p further bounded intervals (1st generation edges). If
all n-th generation edges are constructed, one attaches p new bounded intervals to the free
end of each of them to obtain the (n + 1)-th generation edges, and this process continues
infinitely and creates a so-called rooted p-adic metric tree, denoted as 7, which is a kind
of a branched one-dimensional structure (see Fig. [1| for an illustration and Subsection
below for a detailed description).

o (root vertex)

root edge

1st generation edges

Figure 1: An illustration of the structure of the tree 7 with p = 3.

Using the usual differentiation along each edge one then defines Sobolev-type spaces
on 7 and the Laplace operator on 7 (which is just the second derivative on each edge with
transmission conditions at the branching point, see below for a detailed explanation). The
key ingredient of our analysis is the possibility to interpret the above I' as the boundary
of T, which allows one to define a trace operator ’yg’ associating to each Sobolev-regular
function u on the tree a function ’y(;r u in L?(T) to be considered at its boundary trace.
The abstract idea of such a map originates from the paper [12] considering discrete graphs
with Euclidean boundaries, which was extended and generalized to the case of metric trees
and manifolds by the authors and their collaborators in [4, 9]. Intuitively, the definition
of the trace map in the context of the present work prescribes the way how the metric 7
is “glued” to I' in order to create a hybrid structure consisting of 2 and T (see Fig. .



L

Figure 2: Gluing between the tree 7 and the exterior domain ).

Once the trace has been defined, the normal derivatives 7/ u of suitably regular functions
u on T can be defined by duality, via a suitable Green’s formula. We additionally note
that these constructions are very close to the abstract approach proposed in [15] and are
in the spirit of the general approaches to transmission and boundary value problems with
“bad” boundaries, see e.g. [1, [11].

The introduction of the above objects provides necessary ingredients to define
the following Poisson-type problem with transmission conditions: Given source terms
(functions) fr : T — Cand fq : Q — C, transmission coefficients ag : I' — C, a; € C\{0},
and a constant ¢ € C, find functions uy : T — C, ug : Q — C satisfying

( ATU’T = f'r on T,

AUQ = fQ on Q,
Q
Yo uq = 'yg—uT on I,
Q Q
g — a1v] ur = agyug on T,

(1.1)

uq(x) = O(|z|*™™) for |z| — oo,

\ ut(0) = c,

where as usual by 7§'uq and 75tuq we denote the boundary trace and the (inner) normal
derivative of ug on I'. The main objective of our analysis is to define a suitable functional
framework (in particular, suitable function spaces for the sources fr, fqo and the solutions
ur, ug) guaranteeing the (unique) solvability of the above problem. This is done via
restating it as an equivalent boundary integral equation on I', which involves the exterior
and interior Dirichlet-to-Neumann maps; we refer to [2] for a similar approach in the purely
Euclidean setting exploiting the boundary integral equation formalism. Our analysis
relies on studying the mapping and positivity properties of the Dirichlet-to-Neumann
operators, and allows to conclude about the well-posedness of the problem under
minor restrictions on the transmission coefficients.

In addition to purely theoretical questions, we address some problems related to the
numerical analysis. In particular, we study the effect of replacing the tree 7 by its
counterpart with finitely many generations and study the effect of truncations on the
solution of . Let us remark that this is different from [7], 8 9], where the Dirichlet-
to-Neumann operator was associated to the root of the tree, and similarity properties of
the tree could be used to recover its various explicit representations. While the primary



motivation of this work is purely theoretical, its results can be used, for example, in the
context of modeling fractal tree antennas [14] approximated by one-dimensional structures,
see [10] for the related analysis.

This paper is organized as follows. In Section [2] we describe results related to the
boundary-value problems on the metric tree. In particular, we recall associated function
spaces, define the Laplace operator and trace spaces (Sections . Section is
devoted to the definition of the normal derivative and the Dirichlet-to-Neumann operator
on the tree. Finally, Sections and deal with approximation of the Dirichlet-to-
Neumann map by finite-dimensional operators. Section [3|is dedicated to the boundary-
value problems on exterior domains. We note that the properties of the Dirichlet-to-
Neumann map on exterior domains seem less known that they should be, so we decided
to review a part of the theory in Section [3] in order to establish all necessary properties.
The concluding Section 4| establishes the well-posedness of through the analysis of
an equivalent problem posed on the interface I' and of its approximated counterpart.

2 Boundary value problems on the metric tree

This section is dedicated to the definition and well-posedness of the boundary value
problems on the metric tree. In Section [2.I] we provide a detailed definition of the
metric tree 7 and related geometrical assumptions; we state the function spaces and their
properties. Section is dedicated to the definition of the associated Laplace operator.
In Section [2.3| we review the construction of the trace map. This allows to define the
conormal trace (normal derivative) and associated Dirichlet-to-Neumann map in Section
Finally, in Sections and we show how this map can be efficiently approximated
by finite-dimensional maps.

2.1 Function spaces

Let p € N with p > 2 and a root o be given. We glue to o an edge e o represented by an
interval of length £y, the second vertex of epo will be called Xgg. If all e, and X, 1,
with n € Ny := NU{0} and k € {0,...,p" — 1} are already constructed, then to each X, s
we attach p new edges e, 1 pk+j, with j € {0,...,p—1}, having lengths £, 41 pr+;, and the
pendant vertices of e,41 pryj, to be denoted by X, 11 pr+j, will be viewed as children of
Xk This process continues infinitely, which creates a infinite rooted metric tree 7 (see
Figure [3| for an illustration).

The subtree of T starting at X, x, i.e. the subtree spanned by the offsping of X, j,
(the children, the children of the children etc.), will be denoted by T, . If j € {0,...,p —
1}, denote by 7;{k the subtree e,11 pk+; U Tnt1pk+j, which has the same combinatorial
structure as 7 with X, j, considered as a root (see Fig. . Note that 7, 5 represents the
union of 7;fk with j € {0,...,p—1}.

For subsequent constructions it will be useful to introduce coordinates on 7. Denote
by L, the distance between the root o and X, ;, i.e. the length of the unique path
between o and X, ; obtained by summing the lengths of all edges in the path. Then by
(n,k,t) with t € [Lyx — €p i, Ln k) we denote the point of e, j which is at the distance



X’rH»],pk ........... Xn+1,pk+p—1

Knt1,ph+j:

Figure 4: The subtrees 7, and 7;ljk

L, —t from X, ;.. In this notation,
Xngk = (n,k,Lpi) = (n+1,pk+j,Lyy) for any j € {0,...,p—1}.

Let w : T — (0,00) be a locally bounded measurable function, which will be used as an
integration weight: for f:7 — C one defines

oo pt—1 Lok
/deﬂ !:Z Z/ f(n,k, t)wn,k,t)dt,

n=0 k=0 Ln,kfgn,k

then
LX(T) = {f:T—C: HfH%Q(T) ::/T]f‘Qdu<oo}.

Due to the above definition the set of vertices has zero measure. Therefore, each
measurable function f:7 — C can be identified with a family of functions (f, 1),

fn,k = f(n, k, ) : (Ln,k — gn,k, Ln,k) —C, neNy, ke {0, S ,pn — 1}.

Then f = (f,x) belongs to L*(T) if and only if

) p"—l

Ln,k
”fH?LQ(T) = E E /L ) \fn,k(t)fwn,k(t)dt < 0.
n,k —tn,k

n=0 k=0

A function f : T — C is called continuous if ¢ — f, ;(¢) is continuous for all n, k and,
additionally, f is continuous in the vertices. In other words, f, k(L. ;) = fat1pk+i (L)
for all n,k,j. If f = (fnr) is such that all f, , have locally integrable distributional

derivatives f/ ,, we denote f':= (f] ).



The first Sobolev space H!(T) on T is then introduced as
HYT) :={f € L*(T) : f is continuous with f’ € L*(T)},
1A 17 ey = 1122y + 1122
Moreover, we denote

HYT):={f € HY(T): there exists N € N such that f, =0
for all (n, k) with n > N},

H3(T) := the closure of H}(T) in H'(T),

H(T) = {f € H'(T) s (o) =0},

Hy(T) = {f € Hy(T) : f(0) =0},

HXT) = {feHXT): f(o)=0},

and remark that H!(T) is a dense subset of HZ(T).

While the above definitions make sense for any choice of lengths ¢, ; and weights w,
we introduce additional conditions in order to have a more controllable global structure of
T and nice properties of the associated Sobolev spaces. First, we assume that the weight
function w is constant on each edge, which induces the edge weigths

Wnk = Wle, , € (0,00).

The above p-adic metric tree 7 equipped with edge lengths /,, ;, and edge weights w,, j, will
be sometimes denoted as

TP ((gn,k)a (wn,k)) .

In what follows we will always assume that there are some w > 0 and ¢ € (0,1) with
1
{<wp< 7 (2.1)
and C' > 1 such that for every (n, k) there holds
1 1
5%” <Ulnp<Cl" and aw” <wpp < Cw™. (2.2)
The above assumption on the edge lengths guarantees, in particular, that the height of the
tree is finite (which means that the distance to the root is bounded). On the other hand,
the assumption on the weights combined with the upper bound in (2.1)) is a necessary and
sufficient condition for constant functions to belong to L?(T), cf. [, proof of Theorem
3.10]. The role of the remaining assumptions will be discussed further in the paper.
Moreover, if the stronger condition

U = Lol", wp = wow" for all (n, k)

is fulfilled (with some fixed Ly > 0 and wy > 0), then the tree will be called geometric and
denoted as

'H‘p(Lo,E,wo,w). (23)

The following two results will show that the spaces H(T), H}(T), L*(T) behave similarly
to their counterparts on finite intervals of R. First of all, due to the assumption (2.2)) on
¢ and w, the following important result holds true:



Lemma 2.1. The embedding H'(T) < L*(T) is compact, and there is a constant Cy > 0
such that
1fll2¢ry < Collf'llc2emy for all f € H'(T), (2.4)

and

£ =9 ) e /fg’du (2.5)

is a scalar product on E[I(T) which is equivalent to the induced scalar product inherited

from HY(T).

Proof. For the case T = TP(1,¢,1,w) =: T the compactness of the embedding is shown
in [9, Sec. 3.5] and the assertions on the ineqality (2.4 and the scalar product are shown
in [4, Sec. 2.3]. Now we consider the dilation operator

t—1ty
p: T—T, cp(n, k, t) = (n, k, Ln,k gn kTt Tlgn,k)a

n
t_1:=0, t,:= Zﬂk for n € Ny,
k=0

and note that due to the assumptions (2.2) the map f — f o ¢ defines isomorphisms
L*(T) — L*(T), HY(T) — HY(T) and HY(T) — H'(T), see [4, Sec. 4.3], which extends
the both results to 7. O

The next result will be elaborated later, cf. Theorem however, we state it here to
facilitate the understanding of the function spaces.

Lemma 2.2. H\(T) C HY(T) and HY(T) S H'(T).

2.2 Laplacian

We will use the dual space

HNT) = (HNT)).

Definition 2.3. For f € H'(T) define the Laplacian Arf € H-(T) of f by

(Ava g)H_l(T)vﬁé(T) = /Tflgldﬂ - <f g>H1(T) for all g € HO (T) (26)
We also define
HA(T) = {f e H\T): Arfe AT},
which will be equipped with the scalar product

(fr 9 my = 9w + (AT S, A1) 127,

Remark that Definition 2.3 defines a weighted Laplace operator, i.e. it is a counterpart
of an operator p~10,(ud,;.) on the real line, rather than d2. This is explained in the
following coordinate reformulation:

Proposition 2.4. For any f = (fox) € HY(T) and h € L*(T) the following two con-
ditions are equivalent:



(a) Arf=h,
(b) f" € L*(T), and f satisfies the Kirchhoff transmissition conditions

p—1
folz,k(L;,k)wn,k = Z fé+1,pk+j (L;,tk)wnﬂ,pkﬂ (2.7)
§=0
at each node X, 1, and h = f”.

Proof. Let f € HA(T). Let g € ﬁg(T) with supp g C ey i, then

Ln,k

(A1) ysirygery = [ AT Dusguadi= [ (A7 Pus(Bg.p(teds

Ln,k_zn,k

Ln,k

__ / F(8)g (t)ewn g .
Ln,k_zn,k

Due to gnx € Hi(eny) this implies (A7 f)|nx = f/, and, hence, Arf = f”. Now let

ge€ H L(T) be only supported on the edges incident to Xk, then the integration by parts

yields

Ln,k
(ATf’g)H—l(T),fIOI(’T) = / frlzl,k(t)gn,k(t)wn,kdt

Ln,kf‘en,k

n+1,pk+j

+ Z / fq/1,/+1,pk+j(t)gn+1,pk+j (t)wn+1,pk+5dt

Lpt1,pk+j—tn+1,pk+j

Ln,k
- - / (00D

Lnk an

p—1 n+1,pk+j , ,
- Z/ fn+1,pk+j(t)9n+1,pk+j(t)wn+1,pk+jdt

L1 ,pk+j *ZnJrl pk+j
p—1
— +
+ (f;z,k(Ln,k)wn,k - Z f7/1+17pk+j(Ln,k)wn—i—l,pk—&-j)Q(Xn,k)
7=0
p—1

/ f'g'dp + fn k(Ln )Wnk — Z fn+1,pk+g (L:k)wnJrl pk+]>g(Xn,k)a
7=0

and due to the arbitrariness of g(X,, ;) we arrive at the condition (2.7)). This shows that
(a) implies (b), and the reciprocate implication follows directly using the integration by
parts. ]

Using the scalar product (-, -) A7) from (2.5 we arrive at the orthogonal direct sum
decomposition

HYT) = HY(T)® (H(T) Nker A7). (2.8)

By Lemma this decomposition is non-trivial. Furthermore, one has the following
result:



Lemma 2.5. For any h € L2(T) there is a unique u € H}(T) with Ayu = h, and
L*(T) 3 h—u e HY(T)
1s a bounded linear map.

Proof. By definition, a function u € H}(T) satisfies A7u = h if and only if

<h7.g>L2(‘T) = (h7§)H—1(7'),ﬁg(T) = _<u79>ﬁ1(7—) for all g € f_j(%(T) (2.9)

Due to Lemma [2.1] the left-hand side defines a continuous anti-linear functional on
H'(T) with respect to g, and the existence and the uniqueness of u follow by the Riesz
representation theorem. Choosing in (2.9) g = wu yields the upper bound

||U||i71(¢) = —(h w2y < Mz llullzery < Collbll L2 lull g1 oy

where the constant Cj is from ([2.4)). This implies the boundedness of the map h — u. [

2.3 Multi-scale boundary decomposition and trace map

This section is devoted to the introduction of the notion of a trace on functions from 7.
As discussed in the introduction, we will define a trace operator with values in L?(T"), and
provide tools necessary to analyze its properties. It will be convenient to denote

d:=m-—1

then I' is a compact d-dimensional Riemannian manifold (see the introduction). We will
need a special decomposition of I'. To define it, we start with its counterpart in the
Euclidean case; for a Lebesgue-measurable set U C R? we denote by |U] its d—dimensional
Lebesgue measure.

Definition 2.6 (Multiscale decomposition, Euclidean case). Let U C R? be a bounded
open set. A regular strongly balanced p-multiscale decomposition of U is a collection

(Un,k)neNo, kef0,....pn—1}
of non-empty subsets U, of U such that
1. Upgp =U:
2. For any n € Ny the sets Uy, ...,U,pn—1 are disjoint-

3. For any n € Ny and k € {0,...,p" — 1} one has

p—1
Un+1pk+j C Uy for any j € {0,...,p — 1}, ‘Un,k \ U Un—&—l,pk-&-j‘ = 0.
7=0
U
4. |Un,k‘ = % for all n € NQ and k € {0’-'-,]?” . 1}
p



5.

6.

There is ¢; > 0 such that for all n € Ny and k € {0,...,p" — 1} one has

diam U, < clp_%.

There is co > 0 such that for all h € R?, n € Ny, k € {0,...,p" — 1} one has

_n(d-1)

}Un,kz \ (Un,k + h)‘ < CQ|h‘p d

The above conditions can be viewed as an hierarchical decomposition procedure: One

sets Up,o := U, and if for some n all U, are already constructed, then one decomposes

each U, (up to zero measure sets) into p disjoint pieces Upt1pk+j, J € {0,...,p — 1}

The last three conditions control, in a sense, the size and the shape of U, x.

By using a cover of I' by local charts, we can define a multiscale decomposition on I'.

Here, given a subset IV C T', we denote by |I”| its hypersurface measure.

Definition 2.7 (Multiscale decomposition, manifold case). A collection

(Fn,k)neNo, k=0,...,p"—1

of subsets I'y, ;, C I is called a regular strongly balanced regular p-multiscale decomposition

of I, if the following conditions hold:

1.

2.

Ioo=T.
For any n € Ny the sets I'y, g, ..., 'y pn—1 are mutually disjoint.
. For any n € Ng and k € {0,...,p" — 1} one has

p—1

Lo\ U Fn+1,pk+j‘ = 0.
7=0

Fn-l—l,pk—l—j C Fn,k for any j € {0, SRERY 2 1}7

. There is Ny € Nq such that for all Kq € {0,...,p™ — 1} the following conditions

are satisfied:

(a) ‘PNO’KO’ = p_NO‘F"

(b) The closure I'y, x is covered by a local chart @y, g, on I' such that the sets

= -1
LNo,ko = (I)NO,KO (L' No, ko)

are bounded open sets with Lipschitz boundaries in R,

(¢) The sets
rNofo._ 1 =& r No, k € {0 n_1
nk = L NotnprKo+k = No, Ko (L' Notnpnko+k)s m € No, k€ {0,...,p b

form a regular strongly balanced p-multiscale decomposition of r No,Ko-

10



For the rest of the paper we pick a collection (I', ;) as in Definition Note the
existence of such collections is proved in [4, Example 5.4].
Let us define the parameter

1 log(¢) — 10g(w)>
c=o(T) == (1- 2L o) 2.10
7)=5 < log(p) (210
which is strictly positive due to (2.1]). For what follows we additionally assume
1
od < ;. (2.11)

The following theorem was the main result of the paper [4]:

Theorem 2.8 (Dirichlet trace map on 7). The linear map

v HY(T) — H(D),

with the limit being taken in H°Y(T), is a well-defined bounded surjective linear operator,
and

kervy] = H(T).
As a corollary one easily obtains
H'(T) Nker~] = H(T). (2.12)

For what follows it will be useful to have an explicit right inverse of 78— and to revise
some constructions related to fractional Sobolev spaces. To do so, let us introduce some
preliminary notation. First of all, given N € Ny denote

Vn (D) :=span{lr,, : K € {0,....p~" —1}},

) (2.13)
Py := the orthogonal projector L“(I") — Vi (T).

As VN(T') C Vy41(T) for any N, it follows that
Py Py, = Pyin{nny for any N,n € No, which implies that Py P, = P,,Py. (2.14)
Recall that for any r € (0, %) one has the equality
H'(T) = {f € IX(T) s (0 If = Pufllioq) € 2}

with an equivalent norm given by
s 2
ey = 1P f T2y + D0 @ 1 = Pafl72(r), (2.15)
n=0

see [4, Sec. 3]. In particular, for any N — oo one has Py (H"(I")) € H"(I'), and we also
recall that
1f = Py fllrey 225 0 for any f € LA(T). (2.16)

11



Let us now argue that the above holds true with L?(T") replaced by H"(I'). Indeed,
provided f € H"(T'), by (2.15)) it holds that

> 2nr
1f = Pu I = 1Po(f = Pup)lBae + 3 07| (

n=0

n)(f - PNf)Hiz(p)

Remark that each summand on the right-hand side converges to 0 for N — oo, as the
operators Py and I — P,, are bounded and (2.16|) holds. Moreover, for each n one has, with

1),
H(I - Pn)(I - PN)inQ(F) = H(I - PN)(I - Pn)in2(p) < Hf - Pan%Q(F)

Hence, the dominated convergence theorem shows

N—oo

Pyf —— fin H'(T) for any f € H"(T). (2.17)

Now we have all the necessary prerequisites to state the following result, which constructs
an explicit H'(T) lifting of an element, of H7%(T).

Lemma 2.9. Let g € H°YT) and denote

1
i i
’Fn,k| Fn,k

Let v : T — C be linear on each edge ey, j, with
v(0) =0, v(Xnk)= gng for all (n,k),

then v € HY(T) with v v = g. Moreover, the linear mapping H°(T') 3 g — v € HY(T)
s bounded.

Proof. To prove the above lemma, we need to verify that v as defined in the statement
of the lemma belongs to the space H'(T), and that its trace is given by g.
Step 1: Estimating ||v'||z2(7y. We have

t 90,0
vo,0(t) = 90,0~ voo(-) = loo’
t— Loy
Vnt1,pk+5 (1) = Ink + (Gn1,pk+j — gn,k)ﬁ’ (2.18)
n yPRT]

In+1,pk+5 — In,k
Cnt1,pk+

n+1,pk+j ( )

hence,
) pn_lp 1

woo WnA41,pk+j
[0 720 = \90 DD g ks — Gl

14
n=0 k=0 j—0 n+1,pk+j

Using the assumption (2.2)) we have

(S

n,k 9 (WA
3 < .
Tk S C (6) for all (n, k),

12



which results in

oo p"—1p—

1
w n+1
[/ [|72¢r) < C? {’90,0 2 Z Z <Z> |Gn+1pkt5 — Inkl |- (2.19)
n=0 k=0 ;=0
To estimate the left-hand side via g, we use an equivalent norm || - ||, in H°%(T):
oo
P12 = 1 Pohl 22y + D 0?71 Pag = Pat1gll oy, (2.20)
n=0
see [4, Sec. 3.2 and 3.4]. Also, due to the choice of ¢ in (2.10) we have
20 __ %
7
For the function g we have, using properties of the multiscale decomposition of I:
pr—1
Png = Z Inklr,
k=0
pr—1
HPngH%Q(F) = Z ‘gn,k‘2’Fn,k‘7 (221)
k=0
p"—1 p"—1p—1
Pog = Pos1g = Y gnglr,, = D D Gnttpkti I0mis e
k=0 k=0 j=0
p"—1p—1
= (Inde = Gnt1,pk+5) L0001 ey
k=0 j=0
p"—1p—1
1Pg — P19l 22y = |9nk = Gnt1pk i Cngtprra |- (2.22)
k=0 j=

Due to the assumptions on (I';, ;) we can find a constant c¢g > 0 such that |I';, ;| > cop™"

for all (n, k). From (2.21) and (2.22) it follows that

pn_l
Z ‘gn,k|2 < chanPngH%z(p), (2.23)
k=0
p"—1p—1
Z Z |gn,k - gn+1,pk+j|2 < Calp"HHPng — Pn+1gH%2(F). (224)
k=0 j=0

Plugging in the above two bounds into (2.19)) yields
2 2 —1 2 | (WP 2 2 —1y .12
I lser < gt (1Rl + 2 ((F) " 1Pag = Punagllieqry | < €25 gl
n=0

by definition ([2.20)).
Step 2: Estimating |[v||z2(7). From the explicit expressions (2.18) for v we see that

||U0,0||%2(0,40,0) < ‘90,0|2€0,07

2 2
+ |Gn+1,pk+5 — Inokl?) bt 1,phets-

2
||Un+1,pk+] ”LQ(Ln,kan+1,pk+j) S 2(|g'l’L,k

13



Hence

HUH%%T)
oo p'—lp-1

+2 Z Z Z (’9n,k’2 + ’9n+1,pk+j - gn,k’2)£n+1,pk+jwn+1,pk+j-
n=0 k=0 j=0

With the help of (2.1)) and (2.2) we estimate £, pwnr < C?(lw)" for all (n, k), and the
above further rewrites

oo pt—
ll720y < C*(lg00” +2p) Z (0)" g k|
n=0 k=0
—1p—1
+ 22 &’J e Z |gn+1,pk+j In, k:| )
k=0 5=0

We combine and (| - ) to obtain

017207y < C?eg* (| Pogl* + 2 Z(mp)nH”PngHQH(r)
n=0

o
+2) (bwp)™ | Pag - Prigll72my)-
n=0
The assumption (2.1)) fwp < 1 and the inequality || P.gl|r2r) < [|9lz2(ry allow to bound

the first sum in the right-hand side by ||g[|z2(ry. As for the second sum, since lwp < p°
we bound it by the norm (2.20)). This yields the desired bound:

lolairy < Gy (2gl 22y + 2llg1)-

The results of the steps 1 and 2 show that |lv||g1¢) < C’HgHHUd with some C' > 0
independent of g.
Step 3: Computing the trace of v. By construction for each n € N it holds that

p"—1
Z Xnk)lr, , = Z gnklr, , = Pag.
k=0

k=0

For n — oo the left-hand side converges in H°(T") to vJ v (see Theorem , while
the right-hand side converges to g as shown in ([2.17]), which gives the sought property

Yv=g. =
2.4 Normal derivative and Dirichlet-to-Neumann map
We will start with a simple boundary value problem for the Laplacian A7

Lemma 2.10. For any g € H°%T) there is a unique solution u = ug of the Dirichlet
problem
Aru=0, YJu=g, uec HY(T), (2.25)

and the map
Pr: H°YT) 3 g+ u, € HY(T) (2.26)

is a bounded linear operator with ATPr =0 and I Pr =1d.

14



Proof. In view of the decomposition (2.8) and the identity (2.12]) the map
v HY(T) Nnker Ap — HOYT)

is a bounded bijective linear operator, hence, an isomorpshism by the closed graph
theorem, and its inverse is exactly the map Pr. O

Definition 2.11. For u € HX(T), its normal derivative v{ « € H=°4T") on T is defined
by the duality product:

(W w A 0) g oary ooy = /T (A7u)vdp + /T u'v'dp for all v € HY(T).  (2.27)

Remark that with the above choice of the duality product, for g € H=°4(T), H*4T") >
© > (9, 9) g—od(r),mea(ry is a linear, rather than antilinear, form.

Lemma 2.12. The map
HA(T)3u~—~]ue H D)

1s a well-defined bounded linear operator.

Proof. For vJv = 0 in one has v € ﬁ& (T), and the right-hand side is zero due
to the definition of A, so 7{ u is well-defined, and its linearity is clear. It remains to
show the continuity properties of ﬂ—. With the help of the map Py from , for any
g € H°Y(T) one has

‘ (’Vllrua g) H—"d(F),H"d(F)) = ‘ (’Yflruv Vg—PTg)H—Ud(F%Had(F)‘
= ‘ / (A7u)Prgdu+ / u'(Prg)’ du‘
T T

< |NA7ull 21 Prgllc2¢ry + 14 | 2 1(Prg) L 2o
< 2l|ull gy () 1P gl e )

< 2lull gy (I Prllgoawy— e 9l meagr)
and by taking the supremum over all g with ||g|| gjoa(ry < 1 we arrive at the conclusion. [
Definition 2.13. The Dirichlet-to-Neumann operator D for T is defined by
D:=~] Pr: H°Y) — H°UT).
By Lemmas and it is a bounded linear operator.

For the following we make the trivial observation that the maps 707 , ’y?, A7 and Pr
are real, e.g. commute with the pointwise complex conjugation. The following property
of the Dirichlet-to-Neumann map will be important:

Theorem 2.14. The operator D is positive and coercive, i.e. for some ¢ > 0 one has,

(Dgug)H—ad(F)’Hod(p) Z CHQH?{Gd(F) fOT’ any g € Hgd(r)'

15



Proof. Let g € H°(T'). The substitution u := Prg and v := Prg in ([2.27) yields
_ 2
(’D.g?g)Hfad(F)’Hcrd(F) = /7_ ’(PTQ)/} dp = ||PTg||%1(T)7
and with ||g[| groa(r) =g Prgll geary < ||78’||ITI1(T)—>H”d(F)’|PTg||g1(T) we arrive at

ngzad(r)

(P9:9) y-oa(ry,soa(ry 2 (BT - pep—
% o

2.5 Boundary values on finite sections

The question that we study in two next sections is the following. Assume that the infinite
tree T is replaced by a tree %N which only contains a finite number of generations, and
instead of solving the boundary-value problem for the Laplace equation with the Cauchy
data ’70 U= g, we solve the boundary-value problem on TN, by imposing on its truncated

boundary 'y Nuny = Pyg. Is it possible to choose 'TN so that the associated Dirichlet-to-
Neumann map is suitably close to DPy? In these two sections we give a positive answer
to this question (Theorem , provided some auxiliary assumptions on 7. We start by
formalizing the problem.

For N € N denote by Tny = T ((¢nk), (wn,k)) the finite portion of the tree 7~ obtained
by keeping the edges e, with n < N only, with the same edge lengths /, ; and edge
weights wy, i, i.e.

TN = {(n,k:,t) eT:n< N},

and for f : Ty — C one defines

N p"—1

fd/i = Z Z / fnk wn,kdtv fn,k = f<n7 k? )

n=0 k=0 ’Ln.k=tnk

This induces the spaces
ET) = {F T = €3 W lagry = [ 1Pan < oc:
N

R 2(Tw) = gdu,
(fs9) r2(7) /TNfg I
and
Hl(TN) = {f € L2 TN) : f is continuous with f’ € LQ(TN)},
(£, 9y = 9 2 + (9 201

as well as

Hl(TN) = {f S Hl(TN) : f(O) = 0}.
As the embedding H!(T) < L2(T) is compact, there is fy € H (T) with fy # 0 such
that for all f € H'(Ty) with f # 0 it holds

”fNHLQ TN) ”f/HLQ TN

an = <
1N Z2 ey — 11227

16



and ay > 0 as fy cannot be constant. Hence, we have the Poincaré inequality

1712207y = anllf Iz for all f e H'(Tw),
which shows that
<f) g>[7[1(7’N) = <f,a gl>L2(7—N)

is a scalar product on H L(Tx) which is equivalent to the scalar product inherited from
HY(Tw).

Recall that the subspaces Vi (I') € L?(I") were defined in (2.13]). The set of the pending
nodes Xy g with K € {0,..., pV — 1} represents the natural boundary of 7y, and by using
the same multiscale decomposition (I', ;) of I' one defines the bounded surjective Dirichlet

trace operator

V-1

WV HY(TN) 3 f = Y f(XNk)Iry,. € Vn(T)
K=0

and the spaces
HY(Tw) :={f € H(Tn): n¥f=0},  Hi(Tn):={f € H (Tn): v~ f =0}

Any function in H}(Tx), respectively H}(Tx), can be extended by zero to a function in
HE(T), respectively H}(T), and this extension preserves the respective norms.

Definition 2.15. For f € H'(Ty) define its Laplacian
A f € HN(Tx) = (Hy(Tw))'
by

(ATNfa g)Hfl(TN)JTI(}(TN) = /TN f/g/d:u = _<f7 §>ﬁ1(TN) for all g€ FI&(TN) (228)
We also define

HA(Tw) = {f € H'(T) : Ay, f € IA(Tw) |,

which will be equipped with the scalar product

(Fr9) my () = 9 ) + A7 [ ATn9) 12(73y)-

Remark that for any f € HX(T) one also has f € HA(Tn) with A7, f = Arf on Ty.
Similarly to Proposition [2.4] one shows:

Lemma 2.16. For any f = (fux) € H (Tw) and h € L*(Ty) the following two conditions
are equivalent:

(a) A1 f=h,
(b) f" € L*(Tn), and f satisfies the Kirchhoff transmission conditions

p—1

Frge(m i dmge = > Frt g (L )wn 1 pkt (2.29)
=0

at each node X, 1, € Ty withn < N —1, and f" = h.

17



The assertion (b) in Lemma does not contain any condition at the pending nodes
X~ K, which is used in the following definition:

Definition 2.17. For u € H)\(7Ty) define its normal derivative
’71 Ny € Vn(T) ¢ LA(T)

by

/(VZ—NU)'Y(Z'NU ds := / (A u)odu + / u'v' dp,
r Tw T
for all v € H'(Ty). Using Lemma one directly shows

WN,K
Ny = Z Ty u’NK (L) iy i (2.30)

The following result can be proven literally as Lemma [2.12

Lemma 2.18. The map
HA(Tn) 2 u v y{¥u € H™74T)
1s a well-defined bounded linear operator.

Remark that 7 Ny Moo, yTw in Ho4(T) for any u € H'(T), see Theorem Let
us establish a related approximation result for 'yru

Lemma 2.19. For any u € HA(T) one has v/~ u Noo, v w weakly in H=4(T).

Proof. Let u € HA(T) and g € H°4(T). In virtue of Lemma there is a function
v € H(T) such that

1
Wv=g v(Xnk) = |1“]/ gds for all (n, k).
n,k ke
Then
Vi U, 9)H-od(T),Hod(T) = TU)V A wv dyp
(7] u, 9) | (Arwudu+ [ wv'd

N—oo N—oo

pN—1
T WN,K
_]\}gnoo (Z UNKLNK HFNK><Z‘FNK’/I‘NKgdSHFNK>d

T k|

= lim (/ (ATNu)vdu+/ u'v’du) = lim (WIrNu)(yg—Nv) ds
TN TN

:A}i_r}noo Z \I‘ u’NK LNK)/ gds

I'nk

~ WN.K _
Z “/N,K(LN K):H‘FN,K>gdS
TN, k| ’

)

= ]\}E,n (’)’1 U, 9) - od(T), Hod(T") - m

18



Using the scalar product (-, -) 7. (Tw) W€ obtain the orthogonal direct sum decomposition
HY(Tx) = H(Tw) © (HY(Tw) Nker Ay,). (2.31)
As H}(Ty) is exactly the kernel of the map
W~ : HY(Ty) = Va(D),
it follows that for any g € Viy(I") there is a unique solution u = w4 of the Dirichlet problem
Aryu =0, WgNu =g, ue H(Ty), (2.32)
and the Dirichlet-to-Neumann map D7V for Ty is defined by
DIV . Vn(T) 3 g = vV u, € V().

2.6 Approximations of the Dirichlet-to-Neumann map

The purpose of this subsection is to construct a good approximation for the Dirichlet-
to-Neumann map D using finite-dimensional operators. These constructions are mainly
adaptations of the ideas used in [12] for discrete dyadic trees to the case of metric trees.

In Subsectionwe have seen that Png Moo, gin H°T) for any g € H°Y(T). Let us
show that the convergence rate can be estimated under additional regularity assumptions.
Recall that the norms || - [| 4r(r) are defined in (2.15)).

Lemma 2.20. Let o' be such that

1
0<0d<0’d<§,

then for any N € Ny and any g € H‘T/d(F) one has

20
p —N(o'—
1Prg = gllasir) < —5—gp 7 llglasragry. (2:33)

Proof. With the definition of the norm [ - [| yora(r, the right-hand side of (2.33) rewrites
as

oo
p 2N NG sy = 272 Pogll ey + Y 0% NN g — Paglfa

n=0

o0
> 1PVl — PrglZaey + 9257 S 0% llg — Prswalday = T

n=1

To study the left-hand side of (2.33)) we note first that
Po(Png —9) = PoPng — Pog
= Puin{n,0) — Pog = Pog — Pog = 0,

(Png—9) — Pu(Png —9) = Png — g — PaPng + Pug
=Png—g— Pmin{n,N} + Phg = Pmax{N,n}g -9
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which yields

N o)
1Pxg = gleey = ™ IPvg = gI*+ Y 0 IPag = gll32r
n=0 n=N+1
20(N+1) _ 1 0
p No o
= WHPNQ - 9”%2@) +p° Zp2n [ Prsng — g||2L2(F)'

n=1

By estimating

20(N+1) p* - 71 2 2
p i —1 pZUN 2No - p i 2No 2no p i 2no’

p20_1 = p20'_1 p —p20'_1p ’ p —p20'_1p

we arrive at

20 20 &
p p !
1Prg = glaoary < Joe 2" 1PN = 9liae) + oo 2™ D 0" 1Py — glZ2qr)

n=1
20 20
p p —2N(o' =) || 112
S p20_ — 1I S pza. _ 1 Hg”AU/d(l")

As a corollary we obtain:

Corollary 2.21. Let o’ be such that
d<od< !
o o -
2 )
then there is a constant ¢ > 0 such that for any N € Ny it holds

HD o PN - DHHG"d(F)A)H—n‘d(F) < CP_N(U _U).

Proof. Let us use the norm |||/ g+ := ||-|| 4, then Lemma yields for any g € H” 4(T):

|D o Png —Dgllgp-oa = [|D(Png — 9)llg-ca < ||D||groa_y p-oal|Png — gll goa

pQU

< WHDHHUMH—MP’N (

" gll grora- =

In order to work efficiently with the “truncated map” D o Py we have to make an
additional assumption on the structure of the tree 7. Recall that the subtrees T]{,  and
trees TP were defined in Subsection 2.1

Definition 2.22. The metric tree T is called geometric from the generation N; (with
some N; € Ny) if for any k& € {0,...,pM — 1} and any j € {0,...,p — 1} it holds

J
TNhk - Tp(£N1+1,pk+j7£7 WNy+1,pk+j> w)'

In this case for any N > N; we denote by ’fNH the finite metric tree which is obtained
from the truncated tree Ty in the following way:

e the combinatorial structure remains unchanged,

20
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e the lengths of the pending (leaf) edges en1 prt; becomes

7 . Oty
N+Lpk+j =~ 7 >
1—- —
wp

and these new edges will be denoted by €n1 pk+;s
e the lengths of all other edges and the weights of all edges remain unchanged.
The tree Ty41 will be called the (N + 1)-condensation of 7.

Recall that Definition [2.7] contains a parameter Ny € Ny related to the chosen decom-
position (I', ;) of I', as well as associated local charts ®n, g, covering I'n, k, and the
induced open sets FNO Ko = <I>NO Ko (T, k) € RY for Ky € {0,...,pNo —1}. We consider
the respective Jacobians

JNo,Ko : fNo,Ko — Rv JNo,Ko (y) = \/det ((D(I)N(),KO (y))TD(I)No,Ko (y))v

which are smooth functions, bounded and separated from zero due to the above
assumptions, and their push-forwards

o 1
Hpy, iy 7= JINo Ko © Py i+ TNo g = R

Theorem 2.23. Let the metric tree T be geometric from some generation N1, and for
any N > Np let
Dy+1: V() = Vv (T)

be the Dirichlet-to-Neumann map for its (N + 1)-condensation 7~'N+1 constructed as in
Definition [2.29. Then

DPN+1 = HN05N+1PN+1 fOT’ any N > max{No, Nl}

; - FNO Ko
with Hy, = No T Z ]TN o H (2.34)
0,Ko 0,Ko

Remark 2.24. Before delving into the proof of the above result, let us discuss why we work
with condensed trees rather than truncated trees. This is particularly easy to understand
for the case when 7 is a geometric tree for p =1, w = 1, Ly = wg = 1. In that case the tree
T can be seen as the interval (0, L) with L = (1 —¢)~!. The traces and normal derivatives
reduce to scalars, and the Dirichlet-to-Neumann map is the simple multiplication operator:
D = L~'. The truncated tree Ty is then identified with the interval (0, (1 — ¢V)L), and
the associated Dirichlet-to-Neumann map is then Dy = (1 — ¢V¥)"1L~1. However, the
condensed tree ’7’N+1 again becomes the interval (0, L), and this ensures whose Dirichlet-
to-Neumann map l~)N coincides with D. It is a generalization of this observation that
allows to express DPy,1 via 25N+1 exactly as stated in the above result.

Proof of Theorem 2.23. We first derive an explicit expression of Dy41, and next
compute explicitly DPn41.
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Step 1: Computing 75N+1. Let f € Viy41(T), then it is given by

pN+171 1
f= Z INtigIry, ks INTLE = T ] In41dz.
K=0 TNt IN1,k
Denote by u € H 1(7~’N+1> the uniquely defined solution of
Tr
T =0 u= 1
For K € {0,...,p" — 1} and j € {0,...,p — 1} denote
by i = u(XMK), CN+1,pK+j ‘= ulN—i-l,pK-I-j(L]J’\_f,K)'

The harmonicity of  on the modified edges en41 K +; implies its linearity,

UN+1,pK+j(t) = unt1pk+i (LN g) + Nt pr+j(t — LK)

= b, + N 1picr (E— D) for all ¢ € (L, L, i + Eny1,pc45)s

hence,
_ pN—1p-1
Yoy = UN 11 pK+j (LN K + EN11pK+5) 10 x4y s
K=0 j=0
prl p—1 _
= (bN,K + CN+1,pK+j€N+1,pK+j) Irn it prces (2.35)
K=0 j=0

The boundary condition for u shows that

p—1
by, + ZCN+1,pK+jZN+1,pK+j = fnsipr+js K €{0,....pY =1}, j€{0,...,p—1},
= (2.36)
and in addition we have, with the use of the explicit expression for ’yIrN ,
_ pN—1p-1
R

Step 2: Computing DPpy 1. To compute the desired expression, we will construct an
appropriate ansatz to the solution of the Dirichlet boundary problem on 7.

Step 2.1: Ansatz for the solution. Let v : 7 — C be defined as follows: we set v := u
on Ty. Next, on eni1pK+j, we define

’UN_|_17pK+j(t) = bN,K + CN+1,pK+j(t — LN,K) for all JjE {0, e, p— 1},

which ensures that the transmission condition (2.7)) is fulfilled at each Xy g, and then
extend it to a continuous function on the whole of T such that v is radial along each
subtree T3 ;- (which means that for all € T , the value of v(z) only depends on the

distance between Xy g and z), linear on each edge e, € 7']{[ x and the transmission
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conditions (2.7 are satisfied at all nodes X, ), € 7']{, x- Note that such an extension is
unique and is given by the following expressions:

t—Lpp+Y
v=u’+ul, where uqo%k = by gr" N <1 + (r — 1)%)7
n,k

n—N—lt—LmHEn,k)

n—N-—-2
r°+7r
—0 gn,k

o _ .
and Uy, = ONK,j

S

. 4
with 7= ) N = CN+1pK+iINT1pK+; — N (r—1).

By [9, Theorem 4.4], it follows that u° is a harmonic function with fyg— u® = 0 which equals
to by, x in Xy x. At the same time, u/ is a harmonic function with 7(7)' ul = f that
vanishes in Xy g (and hence the notation). Let us prove that indeed this decomposition
defines a function in H* (TR x)-
Step 2.2: Let us show that v € ﬁl(T). Asr = p% < 1 by assumption , we
conclude that
il oo oy < Toni| (14 (r = 1)),

f

» (2.38)
||un,k||L°°(7-]{,’K) < |an,k,j] ((1 —r) + 1) )

Using the assumptions (2.1]) and (2.2)) we see that constant functions are in L?(7):

oo pt—1 oo pt—1 )
/ dp = Z Z U kwn e < C? Z Z M, < ZCQ(&;p)” < 0.
T n=0 k=0 n=0 k=0 n=0

Therefore, the above together with (2.38)) yields that v € L?(T). Next, let us remark that
for e, 1 € T]{,’k,

U = (bn g (r = 1)+ an g ) N

= (bN,K(T - 1) + CYN’KJ)ER&FLPK—F]‘TW/—N—IEN_R_’_:L

= CN+1’pk+an_N_1€N_n+1 = CN+17pk+j(pw)_n+N+1. (239)

A direct computation yields

o pt—1

/j W' Pdp = |eng phrs Z Z Uy oo, (pw) 2N =)

Tk n=N+1 k=0
o0
2 ~N—-1, n—N—-1 2(N+1—
= [ent1pbti PNt Lprrjon s piy Y, PN T TN T () PV
n=N-+1
o0 o0
<Cnk,j Z (pw) ™™ = Cn,k Z r" < oo (due to |r| < 1).

Recall that A7v = 0 by construction, and it follows that v € ﬁi(T)
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Step 2.3: Let us show that ’yg—v = f. First of all, we remark that for all n > N + 1
with e, ; € TR, , we have

n—N-—-2

N
(X k) = Vn k(L) = by er™ N+ an g Z re
s=0 (240)

= (b aer ™ =N = ) hany ) + an (1)

and the right-hand part does not depend on & due to the radiality of v on ’T]{‘, 5+ Therefore,
forn > N +1,

pr—1 pr—1 pN—1p—1
Tr,y —
Yo" U = Z v( nk Ilrnk = Z @nNK,g Thk — Z Z‘Pn,N,K,jﬂFNH,pKH'
k=0 K=0 j=0
Next, we take lim of the above; with (2.40) and r < 1, as well as using the definition of
n—-+o0o
an,k,j we conclude that
N_1p-1 ,
T, _ N+1pK+j
T V= Z Z (bN,K + CN+1,pK+j 1—r > ]lFN+1,pK+j
K=0 j=0
N_1p-1
_ 7 _ TN+1
=> > (bN,K + 0N+1,pK+j£N+1,pK+j> Iryjipies = Y0 =/
K=0 j=0

as per and ([2.36)).
Step 2.4: Relatmg ’yl v to 'yZ—N“v. We will compute ’leU using Lemma [2.19| and an
explicit expression of the co-normal derivative ([2.30). Let g € H7%(I'), then

pr—1
. Wn k
(V] v, 9) r-oa(ry proary = lim / Z A Unk(Lyy )1, g ds

n—oo

—1p—1

:nli_{rolo Z Z/ (N, K, j)gds, (2.41)

K=0 j=0

. Wnk _
F.(K,j) = Z ’F”k|v1’%k(Ln’k)]1pn,k forn> N+ 1.
kin,kCT]{]’K "

)

By (2.39) and the assumption on TJ{, 5 We have

~N-1
3 WN+1,pK+jW" CNALPK+) g

Fu(K. j) = T (o) V=1

b T ke C TR,

1
= WN+1,pK+jCN+1,pK+j E : P N-1T, 4 L,

ke To kCT 1
and the substitution into gives
—1p-1
(V] v, 9) fr-oa(r) groary = Z D WN LK N1 pE Jim G (K, 7),
K=07=0 (2.42)
Gn(K,j):= Z / — T 1|F Ir, ,gds.
k: TnkCTR i
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For the computation of the limits we are going to use the local charts ®x; r,. Let
Ko €{0,...,pNo — 1} be such that T3, ;- C Ty ko, then for T, C T3, 5 one has

/ L g g4 / ! d
'n = ——N_1r 94s
P PN, r PV

1
e T J dy.
/I:nk pn_N_l‘Fn,Mg( NO,KO(y>) NOJQ)(Z/) y

(2.43)

Choose arbitrary points a, 1 € fnk and denote jy i := Jny, Ko (an k). As Jng K, is smooth,
one has |Jny. ko (Y) — Jnk| < bly — ap k| with some fixed b > 0 uniformly in (y,n,k).
Remark that by assumption the diameter of f‘n,k is O(pf%) for large n, which shows that
INo, Ko (Y) = Jne + O(p~ ) uniformly for y € fn,k as n becomes large. Similarly,

\Tn,k!:/~ JNo,Ko(y)dy:/~ jn,kdy+/~ (INo, Ko () — dn) dy

Fn,k: F'n,k’ Fn,k

. _n fod ]n k|fn k’
(Jn,k‘ (p ) | n,k’ 1 —|—O(p_3)

The substitution of these asymptotic estimates into (2.43)) yields

1 1 _n
/1_‘pn_N_1‘Fn,k ]lrn,kgds = /1: . p”_N_lffnk‘g((I)NmKO(y)) (1 +O(p d))dy

1

= = P 1+0(p~d))d
ST e o) (1406

where the O-term is uniform in y € I'y, x,, and we have used |fnk| = pNo=" Ty, ko |- One
has then

lim Gu(K,j) = lim > P,y (y)) (1+O(p™7))dy

n—00 n—00 ]
k: ﬁz,kCTK],K

1 n
= lim - 3 9(Pno, o (y)) (1+0(p~a))dy
n—o0 pNofN71|I‘NO7KO| TN41pK4; 070
1
= = B g((bNo,Ko (y)) dy
pNO_N_1|FNo,Ko| INt1pK+j
1
= — g ds.
PMO NN 1| o e HNo Ko

1
No—N-1|T° = g(
p 0 ‘FN(),K0| Fn,k

Recall that this result was obtained under the assumption Ty x C T, k-
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We now regroup the summands in (2.42)):
pNo—1

T _ . .
(V1 v:9) -oa(r),goar) = Z Z WN+1,pk+jCN+1pK+j nh_{go Gn(K,j)
Ko=0 (va):T]{hKCTNO,KO

pNo—1

_ Z Z WN+1,pk+jCN+1,pK+j / 9 4
INy1,pE+5

No—N-1|T° H
— N p No,K No,Ko
Ko=0 (KJ):T]{/,KCTN(),KO | 0 0|

pNo—1

- No—N-—1 T~
r\p Ko=0 1T No, k0 [ H No,

pN—1p—1

WN+1,pK+jCN+1,pK+j
" ( % +|i£a +j +'7|p +j ]lFNH,pKﬂ-) gds
K=0 j—=0 N+1,pK+j

,'7V—
- / Hyyv " ugds,
I

where (2.34) and ([2.37) were used in the last step, and we arrive at

Df =~]v=Hyy!"'u = HyyDni1 f- O

3 Boundary value problems on the exterior domain

Recall that in the context of boundary value problems for an open set U C R™ one usually
denotes by H. (U) the set of the functions f on U such that ¢f € H'(Q) for any cut-off
function ¢ € C°(R™). In particular, H. (U) = H'(U) for all bounded U.

loc
For the rest of the section it will be convenient to denote

Q,:=Q, Q_:=R™\Q,

and let v be the unit normal on I' pointing to 2. We then have the respective Dirichlet
trace maps

1 _ 1
=AY Hb(Q4) = H2(T), gy @ HYQ) — H2(T),

so that for the functions u smooth up to a boundary one has voiu := u|r, and the Neumann
trace maps

_1
=t {ue Hy () : Aue L (Q4)} — H 2(DD),
i {ue H(Q) : Aue LX)} — H™3(I),
such that for the functions u smooth up to the boundary one has
Witu = al/u|F7

where v is the unit normal on I' pointing to 2 = ;. Remark that with this sign
convention, one has u € H*(R™) if and only if u € HY(R™\T) with (v{ — 5 )u = 0.
In addition, v € H'(R™) with Au € L?(R™) if and only if v € H'(R™ \ I') with
Au € L2 (R™\T) (in the sense of distributions on R™ \ I') with (v; — 75 )u = 0 and
(M =1 )u=0.

The aim of the present section is to give detailed proofs of the following results:
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Theorem 3.1 (Exterior Dirichlet problem). For any f € L2, (Q) and g € H %(I‘) there

comp
is a unique solution u € HL (Q) of

—Au = fin Q,
Yu=gonT, (3.1)

u(@) = O(|z[*™™) for |z| — oo,

and the solution u depends continuously on the right-hand sides f and g in the following
sense: for any p € C°(R™) there is a constant ¢ > 0 such that for any (f,g) one has

leullm@ < e(lflzz) + ol 4 )

Theorem 3.2 (Dirichlet-to-Neumann map for the exterior domain). For g € H %(F) let
ug denote the solution of (3.1) with f = 0. Define the Dirichlet-to-Neumann operator

C: H2(T)> g +ug, € H2(T),
then C is bounded, Fredholm of index zero, and nmon-positive, i.e.

—(Cg,g)H >0 for anygEH%(F).

_1 1
2(I),H2(T)
Moreover,

(i) if m >3, then C is coercive, i.e. one can find a constant ¢ > 0 such that

~(C0:9) -y oy d oy 2 €0l (32)

(F),H%(F H2(T)

holds for all g € H%(F), in particular, C is bijective,

(iii) if m =2, then kerC = Clr, and C is coercive on

i 1
Hi (T):={g € H>(T): (Ir.9) oy ) prdpy = OF

1
i.e. there is a constant ¢ > 0 such that (3.2)) is fulfilled for all g € H§ (T').

While both results are indeed folkloric, we did not manage to find a suitable reference
containing all necessary details for the required H'-setting. McLean’s book [13] provides
all important tools but lacks a precise formulation of final results for the problems in
exterior domains, so we decided to complete the respective part of the argument.

In the next subsection we recall some constructions related to boundary integral
operators. These machineries are then used to prove Theorems [3.1] and [3.2] first for
m > 3 in Subsection [3.2) and then for m = 2 in Subsection [3.3}

3.1 Surface potentials

We begin by citing some of the important statements from [I3]. Let G be the standard
fundamental solution for the Laplace equation in R™,
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ITNE m = 27
G(z) = (3.3)
m > 3,

(m = 2)Tpy Ja|m =2
where T,, is the hypersurface area of the unit sphere in R” and r > 0 is arbitrary (to be
chosen later), and consider the convolution operator

G: ER™ > frs GxfeSR™),
which satisfies —A oG = —Go A =1Id. For g € H~2(T) define 7 € S'(R™) by

(169, @) = (9,7 0) 4 ) 413 (ry 0 11 & € SR™).

Analogously, for g € H %(F) we define the distribution v;g € S’'(R™) by

(719, 0) = (9:770) 13 1y -3y O 211 & € SR™).

By construction both vjg and vjg are supported by I' for all admissible g, and in fact,
v HO3(D) = Hobo(R™), o HE(T) = H 2 (R™).

comp comp

The single-layer potential SL and the double-layer potential DL associated with T" are
defined by

SL:=Gonyg, DL:=Gonj.

By construction, the functions SL g and DL g are harmonic in Q4 for all admissible g. For
every cutoff function y € C2°(R™), the operators

H3T)>g—xSLge H'(Qx), H2()>g— xDLge HY(Qy)
are bounded, and the jump relations

(W —75)SLg=0, (3 —7)SLg=—g forallge H 3(T),

(3.4)
(W —7)PLg =g, (3 =7 )DLg=0 forallge H? (L),
are fulfilled. We will frequently use the identity
+ — +
(v SL gb’w)H*%(F),H%(F) = (9.7 DLw)H*%(F),H%(F) (3.5)

for any ¢ € H_%(I‘), P € H%(F),

see [13, Thm. 6.17 and Sec. 7].
The above considerations give rise to four important boundary operators:

S = vESL: H 2(T) - Hz(T),
4 1 _1

R:= —yDL: H2(T) = H™2(T),

T := (v +~5)DL: H2(T) - Hz(T),
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and remark that the adjoint of T is given by
T* = (v +~7)SL: H™2(T) — H2(T).

By [13, Theorem 6.11] these operators are bounded in respective spaces, and the jump
relation (3.4) yield the identities

1 . 1
N SLg=5(Fg+T"9), 7 Dlg= (&g +Ty) (3.6)

valid for all ¢ in respective domains. By general results for elliptic problems of [13|
Thm. 7.6, 7.8] and their refinement for the Laplacian (namely, [13, Theorem 8.16] for the
single-layer boundary integral operator in m = 2, [13, Corollary 8.13] for the single-layer
boundary integral operator in m = 3 and [I3, Theorem 8.21] for the hypersingular integral
operator), we have:

Lemma 3.3. The operator S is a self-adjoint Fredholm operator of index 0, and for
a suitable choice of r > 0 in (3.3 one has ker S = {0}, in particular, S has a bounded
inverse. Furthermore, the operator R is self-adjoint Fredholm of index O with ker R = Clr.

From now we assume that r in (3.3]) is chosen in such a way that the assertions of

Lemma [3.3 hold.
Remark that for any g € H%(F) and z € R\ I one has

DL g(x) Z/F@ny(:vy)g(y) ds(y) = 1/1“%’:6%”9(3/)615(‘@)-

Tm |LL‘ - y|m
Using a standard computation with an integration by parts we arrive at the following
identities:

DLIr=0inQ4, DLIr=-1inQ_, ~/DL1r=0, ~;DLIp=—1r. (3.7)

The following two theorems are crucial for the subsequent considerations. First, [13|
Thm 7.15 4 8.9] yield:

Theorem 3.4. Let f € L2, ().

comp

(A) Let g € H%(F) If u € HL (24) solves the exterior Dirichlet problem

—Au = fin Qy,
Jr
You=g on T,
’ (3.8)
O(|z|>=™) for m > 3,
u(z) = as |x| — oo,
blog |x| + O(|z|~Y) with some b € C for m = 2,
then the function
1
h:=~fue H 2(I)
satisfies the equation
1
Sh=r76f—5(9-T9g), (3.9)
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and u can be represented as
u=Gf+DLg—SLh. (3.10)

Conversely, if h € H_%(F) is a solution of (3.9), then the equation (3.10) defines a

solution of (3.8)).
(B) Let h € Hf%(l“). If u € HL (24) is a solution of the exterior Neumann problem

—Au = f1in Qg
vfu =honl,
(3.11)
O(|z|>=™) for m > 3,
u(x) = as x| — oo,
blog || + O(|z|~1) with some b € C for m = 2,
then the function g := g u € H%(F) s a solution of the equation
1
Rg=~{Gf - 5 (h+T"h) (3.12)

and w is of the form (3.10). Conversely, if g € H%(F) is a solution of (3.12), then the
function u defined by (3.10) defines a solution of (3.11)).

Remark 3.5. The required behavior of w at infinity in Theorem [3.4]is termed as Mu = 0
in most assertions in the book [I3], see [13, Thm. 8.9] for more detail.

The above result states an equivalence between the solutions to the exterior boundary-
value problems and the representation (Kirchhoff) formula (3.10]), coupled with associated
boundary integral equations for unknown traces. However, at this point it is unclear

whether the exterior boundary-value problems are well-posed. This will be clarified in
Theorem B.8
The following theorem combines the claims of [13, Thm. 8.10 and 8.18]:

Lemma 3.6. Let u € H (1) with Au =0 on Q4 satisfy the radiation condition
u(z) = O(|a:|2_m) for |z| — oo,
then:
(a) v¢u =0 if and only if u =0 on Q,
(b) v{u =0 if and only if

(i) w=0 in Qy form >3,

(ii) w is constant on Q4 for m = 2.
The following computation will also be used at several places:
Lemma 3.7. Let u,v € H} (Q4) with Au = Av =0 on Q. satisfy the radiation condition
u(z) = O(\x|2*m), v(z) = O(|:c\2*m) for |x| — oo,

then
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Proof. Remark first that by [3, Prop. 2.75] the radial derivative 0,u of u satisfies

1-m >
Oru(x) = ("), m 23, for |z| — o0
O(‘x’_2)7 m = 27

Let R > 0 such that _ C Bg(0) and denote Qf; = Br(0) N Q4. We have then
0= /Q+(Au)vdx = (AU’U)H&;}HP(QH,HIZC(QH
R

(&m)vds—/ (Vu, Vo)emdz,
Ot

R

(A F
= ('yl U Yo 'U)H*%(I‘),H%(F) + /x|=R

with ds being the hypersurface measure, which yields
Fu, g o =~ [ (Vu,Vo)end / 0ru)o ds. 3.13
(w70 U)H*%(F),H%(F) /Q# u, Vo)emda + |x|=R( u)vds (3.13)
Using the above bounds for d,u and v, for large R we have (with some fixed C' > 0)

-~ C. Rm=1. RI=m. R=m — O(RZ™) = (1), m >3,
‘/ (aru)vds‘ <
|z|=R C-R-R2%2.1=0R"Y =0(1), m =2,

and sending R to oo in (3.13) gives

— lim (Vu, Vu)emdz. (3.14)

4, T _
(71 %0 U)H_%(F%H%(F)  Rooo Jot
R

Using the last identity for u = v we conclude that |Vu|? and |Vv|? are integrable on €,
so the limit on the right-hand side of (3.14) is exactly the Lebesgue integral over Q. [

3.2 Dirichlet-to-Neumann map for m > 3

Theorem 3.8. Let m >3 and f € L2, (). Then

comp

a) For everyg € H2(T) there is a unique solutionw € H} (Q4) to the Dirichlet problem
loc\® &+
with radiation condition

—Au = f in Q4
'yaru =gonl,
u(x) = O(|z[>~™) for |z — oo,
and for any cut-off function ¢ € C°(R™) one can find a constant ¢ > 0 such that

for any (f,g) as above and the respective solution u one has

loull o,y < c(Ilfll2) + HQHH%(F))- (3.15)

(b) For everyh € H 2 (T) there is a unique u € HL () fulfilling the Neumann problem
with radiation condition

—Au = fin Q4
yHu=honT,

u(x) = O(]a:\%m) for |z| — oo.
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(¢c) For g € H%(F) let ug be the solution of (a) for f = 0. Define the Dirichlet-to-
Neumann operator
C: H2(T) > grs vfuy € H 2(T),
then C is bounded, invertible and coercive, i.e. there is a constant ¢ > 0 such that
for every g € H%(F) one has
~(€9.9) 3 oy by = M9 2
Proof. The uniqueness in (a) and (b) follows directly by Lemma (3.6])(a,b-i). For the
existence we note first that by Theorem the solvability in (a) resp. (b) is equivalent
to the solvability of the boundary equations resp. (3.12)). Since S is a bijective
isomorphism, the problem has a unique solution h € H~2(I") for any choice of g, and
this solution continuously depends on g, which proves the existence in (a). The stability
estimate follows from the representation and the continuity properties of G,
SL and DL.

To complete the argument for (b) slightly more work is needed. First, by using
we rewrite the condition as Rg = 7{Gf — 7, SLh. As R is Fredholm and self-
adjoint with ker R = Clr, this last equation is solvable with respect to ¢ if and only if the
right-hand side satisfies

I:=(Ip,%Gf -~ SLh), 1o =0. (3.16)

Using the definition of DL we obtain

(SN

+ _ j—
(Ir, v, gf)H%(me%(F) = (DL1r, f)Hlloc(Q+),H;,1ﬂp(Q+) (o, f)Hlloc(QJ,),H;,}np(QJr) =0,
_ ot _
(T SLR) g oy -3y = (0 DL )y gy = O h) g b oy = 0

therefore, I = 0 and the solvability condition is fulfilled, which proves (b).

It remains to prove (c¢). Let g € H%(F) with Cg = 0, then uy is a solution of (b) for
f=0and h=0,ie uyg=0in Qy, and g = ’yarug = 0. This proves the injectivity of C.
Let h € H%(F) and let u be a solution of (b) for f = 0 and the chosen h, then h = C g for
g:= 'yJ u, which shows the surjectivity of C.

We further remark that for any g € H%(F), as shown by with f =0,

1 .
Cg=—35 Y(g—Tg),

which yields the boundedness of C, and the open mapping theorem implies that C™! is
bounded as well.

It remains to show the coercivity. For h € H _%(F) let vy, be the solution of (b) with
f=0. For any g € H%(F) and any h € H_%(F) we have then, due to Lemma

- / (Vup, Vug)ende.
Q4

Nj—=

RIS TeVES

In particular, noting that vj, = u, for h = C g one arrives at

= _ 2
—(CQ’Q)H—%(F),H%(F) = /Q+ |Vug|“dx (3.17)
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and, similarly,

2 _ —1 1 2
9 = =T, iy S 1€ P

Then for any g € H%(F) we have

[ .

> Hoboy, )
HgHH%(F) = 81UP HhHZ
heH ™2 (), h#0 H3(T)
2
‘ <V'Uh, vug>(C7n d{L‘
Q4
= sup 5
heH™ 2 (T), h#£0 1] B3 (D)
/ |Vup| dx/ IV, |*dx
< sup 24 5 2
heH™ % (T), h#0 17 HH 3(T)
et PO LT
< sup e =
heH ™3 (T), h£0 I HH*%(F)

-1 2
<|cC ||H*%([‘)_>H%(F) /Q+ |Vug| dz,

l.e.
Vug|?de > |||t 2 ,
/Q+ | ug’ T > || ”H,7 () H2(F HQHH%(F)

and the substitution into (3.17]) gives the required result. O

3.3 Dirichlet-to-Neumann map for m = 2

Compared to the case m > 3 considered in the statement of Theorem [B.8 the two-
dimensional case presents additional difficulties. Recall the lemma from [13| Sec. 8.14]:

Lemma 3.9. Let m = 2, then for any (g,b) € H%(I‘) x C there is a unique solution
(h,c) € H_%(F) x C to the system
Sh+c=y,
R T L1 ke

In addition, the solution (h,c) is continuously dependent on the right-hand side (g,b), i.e.
there is cg > 0 such that

IRl _y o+ lel® < eo(llgl?

1 L+ b
H=3(T) 2(I)

for all (g,b).
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Theorem 3.10. Let m =2 and f € L2, (Qy), then for any g € H%(F) there is a unique
u € H (Q4) solving the Dirichlet problem with the radiation condition

—Au=f in Qy,
’yaru =g on T,
u(z) =0(1) for|z| — oo.

This solution has the form

u=Gf+SLh+c, (3.18)
with h € Hfé(f‘) and ¢ € C satisfying

Shte=g=§0f I,y = [ A G19)
’ supp

In addition, for any cut-off function ¢ € C°(R?) there is a constant ¢ > 0 such that for
all (f,g) as above and the respective solution w it holds that

leulln oy < c(lfllzz@y) + 9l (3.20)

H2(T) )

Remark that the radiation condition at infinity in the above theorem differs from the
condition at infinity stated in Theorem This explains appearance of an extra constant
term in the representation formula (3.18]).

Proof. The uniqueness of u follows by Lemma [3.6(a). For the existence we will use the
ansatz (3.18) with (h,c) € H_%(I‘) x C to be determined. Remark that —Awu = f for any
choice of (h,c). For any = € Q4 one has by construction

1 T —
G = [ Ga-nfar=—o [ 1,
supp f T Jsupp f r
_ 1 + |z — |
(SLA)(x) = (b Glo - ))H_%(F%H%(F) 2 (h’% log )H*%(F),H%(F)'
Representing
Lo Je—yl 1. |z
27 log r 27 log T +Faly)
with o.y) w
1 y 1 T, YRz | 1Y
Foly) = — =1 e L
2W) =50 Og’m e og (12 B \x|2>
we obtain
Lo |z
(Gf)(@) = —5log == fdz+ Fo(y) f(y)dy,
& " Jsupp f supp f
_ 1 e
(SLR)(@) = —5-log 2 (h, 1),y s o+ (B F) gt

Using Taylor expansion of log(1 + -) we immediately obtain

‘|FxHLoo(B) = <‘ ’> for |z| — oo,
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for any bounded B C R?, and for B := supp f this results in

GF) (@) = — = log 12!

5= log - fdx+0<‘ |) for |z| — oo. (3.21)

supp f

Now let B C R? be a bounded open set containing I', then for each j € {1,2} we have
additionally

18y, il 1o () = O (|Qﬁmwr+m

showing

|l 1) = O Q|)mwﬂ—ﬂm
and the boundedness of the trace map implies

I Foll g3 ) = (|Qﬂmm++m
and then

(SLA) (@) = —log ZLn,1)

5 . e <‘ |> for |z| — oo. (3.22)

We conclude that the function u given by (3.18]) behaves as

1 ()] 10g——|—c+0(| |) for |z| — oo,

and it satisfies the radiation condition u(z) = O(1) for large |z| if and only if the coefficient

Nl

in the square brackets vanishes. Furthermore,
70“-')’0 TGf+ Sh+ec
Using Lemma we can choose (h,c) such that holds, then
u(x )—c+0<‘ |> O(1) for |x| — oo, Y u=g,
i.e. all requirements are satisfied. The norm control follows from the continuity of
the map (g, f) — (h,c) and the mapping properties of G and SL. O

Again, unlike in the case m > 3, the exterior Neumann problem for the Laplacian is
no longer well-posed for arbitrary initial data, but rather requires a certain compatibility
relation that ensures the existence of the solution.

Theorem 3.11. Let m = 2, then for any f € Lcomp(ﬂ+) and h € H_%(F) with

o, fdx —+ (h, HF)H_%(F)7H%(F) =0

there is a unique solution u € IOC(Q_,_) for the Neumann problem

—Au = fin Q4,
y{u="honT,

u(z) = o(1) for |z| — oo.
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Proof. The uniqueness follows by Lemma (b—ii). Indeed, assume that w solves the
Neumann problem with f = 0 and h = 0. From the radiation condition u(z) = o(1) for
|z| — 400 it follows that u(z) = O(1) for |x| — +oo and by Lemma u = const.
However, since u(z) = o(1) for |z| — +o00, necessarily, u = 0. To show the existence we
use the ansatz

u=Gf—DLg+SLh

with g € H%(F) to be determined. Note that —Awu = f for any choice of g.
Let us show that u satisfies the required bound at infinity. By using the above

assumptions on f and h in the previously obtained estimates (3.21]) and (3.22]) we conclude
that

Gf(z) +SLh(x) = o(1) for |z| — oo,

and it remains to study DL g(z) for large x. For z € Q one has

| DLg( }—‘/3 Gz -y (y)dS(y)’— /Fwwg(y)dS(y)

2 v —yl?
<
27['/1"

l9(y)]
g(y)|ds(y S/ds Y).
owlasts) < [ 22 asty
Let R > 0 with I" € Bg(0), then for |z| > R and y € I one has |z — R| > |z| — R, which
yields

1

<Vy737 y>]R2
|z —y|?

1 1

PLy@) <o g

gl 1y = o(1) for |z| — oo. (3.23)

This shows u(x) = o(1) for |z| — oo for any choice of g.

It remains to check that g can be chosen such that u satisfies the required boundary
condition. Note that 7 u = 7{Gf + Rg + ~; SLh, and the boundary condition 7;"u = h
is satisfied if and only if

h=7{Gf +Rg+~fSLh ie. Rg=h—~Gf -~/ SLh.

As R is Fredholm and self-adjoint with ker R = Clr (see Lemma , this last equation
is solvable with respect to g if any only if

I:=(1r,h—~Gf—~{SL h)H1 1 =0. (3.24)
We have I = I; — (I2 + I3), where
Il — (HF771 gf)

I = (Ir, h) HZ(I),H™2(T)’
Iyi= (Ir, 07 SLA),

H3(T),H 2(T)’

(I),H™2(I)’

m\»—t

For I we have, due to the definition of DL,
II = (DL ﬂ, f)Hlloc(QwLLHcTa}np(Q«r) = 0,
as DL1p =0 in 4, see (3.7). With the help of (3.5) we obtain

I3 = (70_ DL ﬂr’h)H%(F),Hfﬁ(F)'
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By (3.7) one has 7y DL1r = —1r, hence,

Iy = —(Ir.h) g by = 12

This shows I = 0, i.e. the solvability condition (3.24]) is satisfied, which gives a harmonic
function u of the above form with v u = h. O

To prove the result that follows, it will be convenient to introduce the following
decomposition of the space H 2 (I):

H#(T) = Clr + HZ(T), (3.25)
)= {g € HED) s () g e = O

This decomposition can be obtained by introducing the L?—orthogonal projector II; onto
the space Clr:

1 1
I : HiD)S g g: —mipmﬂp:m</gdx>lpeHé(F).
I

The projector on the subspace HO% (T') with respect to the direct sum is given by
IIy = Id —II;, and thus the corresponding direct sum becomes orthogonal with respect to
the L?(T')-scalar product. Remark that IT; and Ily are continuous in H 2 (I") and consider
their adjoints (which are also projectors):

f I Ho2(T) — Ho2(I).
The usual computation for the adjoints, see e.g. [13, Theorem 2.13], gives

* -1 2
rantly = {h €HT2(D): (hlr) 3y phry = 0} = Ho M), (3.26)
ranII] = Clp,

which gives the direct sum decomposition

H=(I) = C1r + H, *(T)

with IIj, respectively, IIjj being the projector on the first, respectively, the second
component, and one obtains the following assertion:

Lemma 3.12. The map

0 16 ot gy = T - )+ Iy

()

defines an equivalent norm on H_ﬁ(l“).

Proof. Both projectors IIj and II] are continuous, thus |g0\ by S C’Hg0|| by On
the other hand,
(©:9) -3 oy, 18 () (I + 1060 9) 14 0y b ()
Pltn = W Tl ol
geH 2 (T): g#0 H(T) geH 2 (T): g#0 H2(T')
(M5l g oy + 1500y ) 1913
< sup = el -1 O
1 llgll HE(T)
geH 2 (I'): g#0 Hﬁ(l_‘
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Corollary 3.13. Let m = 2. The Dirichlet-to-Neumann operator C : H%(F) — H_%(F)
defined by
C: g v ug,

where ug € Hﬁ)c(QJr) 1s the unique solution of the Dirichlet problem

—Au =0 1in Q4
'yaru =gonl,
u(z) = 0(1) for |z| — oo,

_1
is bounded, non-positive and Fredholm of index 0, with kerC = Clr and ranC = H, *(I").

1
In addition, it is coercive on Hg (I'), i.e. there is a constant ¢ > 0 such that for any
g€ H%(I‘) it holds that

og|® 1 .

~€99) 430y whry 2 °l (1)

Proof. Step 1. The boundedness of C follows directly from Theorem [3.10
Step 2: Let us show kerC = Clr. For g := 1Ir one clearly has uy, = 1o, and
Cg= fyfrug =0, i.e. Ir C kerC. On the other hand, let g € kerC, then u, satisfies

Aug =0, ~fu, =0, wu(z)=O0(1) for |z| — oo,

so u is constant in 2, by Lemma (c—ii), and then ¢ is a multiple of 1.
Step 3: We show that C is a self-adjoint operator. Let g,h € H%(F), and let ug, up,
resp. be the solutions of the Dirichlet problem of Theorem with f = 0. Then, by

Lemma [3.7]

(Cy, h)H,%(F)’H%(F) =— /Q+(Vug, Vup)emde = —/Q+<Vuh, Vug)emdz

which gives the sought conclusion.

Step 4: We show that ranC = HO_%(F) Due to the self-adjointness of C the subspace
ranC is contained in the annihilator of kerC, see e.g. [13| Lemma 2.10 and p. 23]. The
annihilator of ker C = Cly is exactly H, %(F), Whichlgives the inclusion ranC C H,, %(F)

On the other hand, by Theorem [3.11|for any h € H 2(T') there is a function v € HL _(Q4)
with

Av=0, ~fv="h, v(x)=o0(1)=0(1) for |z| = oo,

so v = uy, for g ;== v v, and h = Cg. This shows HO_%(F) C ranC. Finally we obtain the
sought equality, which then implies codimranC = 1.

Step 5: Fredholm index. The above discussion shows that C is Fredholm with
codimranC = 1 = dimker C, thus C has zero index.

1
Step 6: Coercivity on the space H; (I'). For any g € H%(F) one has, due to Lemma

B.7

—(Cyg,9) = — (v ug, g ug) = / Vug?dz >0,  (3.27)

HOEMHET) — Jo,

H™%(T),H3 ()
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which shows the non-positivity of C. Further remark that by the above consideration the
restricted operator

1 _1
Co: HOQ(F) 3 go Hng EHO Q(F)
is bounded and bijective, therefore, it has a bounded inverse. In particular, for any
1
ho € Hy *(I') we have

2
/Q+ |Vuco_1h0| dz = —(h,Cy ho) baoy.ab

(3.28)
<lico - y Mholl?
H, (F)—>Ho () H72(I)
By Lemma (3.12f we can find some B > 0 such that |p[ _; < Bih| _; = for all
H™2(T) — H™ 3 (D)
heH 2(T).
1
Let go € Hy (I'), then
lgoll 3 oy = suP H H <B  sup T
heH™ 2 (T), h#0 H-2(I) heH ™2 (T), h#0 H™2(T)
— B sup ‘(Hah+H*h7§O)H7%(F)7H%(F)‘ =17
heH ™3 (I), h#£0 TGPl - nt HthHH_l(F)
Remark that for any h € Hfé(lj),
(I11h: 90) g4y grd oy = (o Migo), - yopda =0

_1
since go € H, *(I') = KerIl;, and the preceding computation can be continued as:

|(IT5h, gO)H’%(F),H%(F)‘
ISRl g oy + IIERA - g

2(I')

|(IT5A, Q)Hf%(p),H%(r)‘
HHShHH—%(F) + Ik
| (I, !?)Hf%(r),H%(F)}

[

I=18B sup
heH™ 3 (T), h#£0

=B sup
heH ™2 (T), TT5h+£0

H3(T)

<B sup
hEH’%(F),th;ﬁO

1

Since ranIIf = H, 2(T), the reparametrization hg := I[jh yields

}(ho@o)H,%(F) H%(r)‘

g0 sup

<
) ool
ho€H, 2(T), ho#0 5(D)
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By applying Lemma [3.7) on the right-hand side we arrive at

2

’ / <Vuca1 ho? vugO>Cmdﬂf
Q4

2 <B
ol ) < Sr Il _,
ho€H, 2 (T'), ho#0 H™2(D)
/ \Vuco1h0\2dx/ Vg, |*dz
S B sup £y HhH2 Q+
hoeHg%(r),hoyéo H™3(I)
el IO T A S
H, 2(T)—=HZ (T H™2()
use (3.28): < B sup o (DA TViHQ a2
1
ho€Hy 2 (), ho#0 H™3(D)

<BlC' |, . / Vg, [2de,
O Tutmysngm Jo, "
i.e. 1

C .=
Blcgtll s 3
Hy *(T)—Hg (T)

)

2 2
V dx >
/Q+ ‘ ugo| Tz CHQOHH%(F)

The substitution into (3.27) gives

—(Cg(),gi())H,%

1
2 3
©.H (D) > cHgQHH%(F) for all go € Hy (I). (3.29)

Using the self-adjointness of C and the identity C Il = 0, for any g € H> (T") we obtain:

—(Cg, g)Hi%(F)’H%(F) = —(C(Ilpg + 1g), g + ng)H*%(F),H%(F)

—
= —(CTyg, 11 S c||[Tygl? .
(CIlpg,Ilog) > (|| OQHH%(F) O

4 Hybrid transmission problem

4.1 'Well-posedness

Now we give a rigorous formulation of the transmission problem described in the
introduction.

Problem 4.1. Let a; € C\{0} and ag € L>(T') be given. For fr € L*(T), fa € LZ,,(€)
and ¢ € C, find the solutions (u7,uq) € HY(T) x H}

10c(€2) of the transmission problem

( Agur = fronT,

Aug = fq on §,
’)/(?UQ = 'y{)ruT on I,
Q T Q (4.1)
Vi uQ — a17y] uT = agpyg uq on I,

ug(x) = O(|z|*™™) for |z| — oo,

ur(o0) = c.

Let us start with preliminary remarks on the associated homogeneous problem.
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Lemma 4.2. Let a; € C\ {0} and ap € L>®(T"). Define the operator
M: H:(I)3g — —Cg+a1Dg+agg € H2(I), (4.2)

then dimker M coincides with the dimension of the solution space of the homogeneous

problem
(

Arwr =0 on T,

Awg =0 on (Q,

Wwe =1 wr onT,
Q T 9] (43)
Y1 wo — oy wr = agyy we on L

wa(z) = O(|2*™™) for Jz| — o,

wy(0) = 0.

Proof. Let (wr,wgq) be a solution of [£3) and g := vJ wr = 7§wq, then wr and wq are
solutions of

A7wr=0on T, Awg =0 on
yJwr=gonT, YWwg=gonT, (4.4)
wr(0) =0, wo(x) = O(|z|*~™) for |z| — oo,

therefore, 1*wq = C g and v/ wy = Dg. The fourth condition in (£.3)) is satisfied if and
only if Cg — a1 Dg = g, i.e. g € ker M. To arrive at the desired conclusion, it remains
to note that by Lemma and Theorem the map g — (wy,wq) is one-to-one. ]

Our principal result is as follows:

Theorem 4.3. Let a3 € C\ {0} and ag € L*>°(T") be such that the homogeneous problem
has the unique solution (wy,wq) = (0,0).

Then the operator M in s an isomorphism. Moreover, the non-homogeneous
problem has a unique solution (ur,uq) € H'(T) x H} () for any choice of fr €
L*(T), fo € L2,,,,(Q) and c € C, and the solution depends continuously on (fr, fa,c) as

comp

follows: for any cut-off function ¢ € C°(R™) there is a constant B > 0 such that

lur Loy + leuall @) < Bz + el 2 + Iel).-

Proof. Step 1: We are going to show that the operator M defined by is surjective.
The embeddings ¢ : H%(F) — H°UT) and 1o : HUT) — H_%(F), are compact,
which yields the compactness of 19Dy : H %(F) — H 7%(1“). Similarly, the compactness of
the embeddings ¢3 : H%(F) s L2(T), 1g: L*(T) — Hfé(F), and the boundedness of the
multiplication operator

Too : L*(T) 3 g — apg € L*(I)

imply that t4T0,¢3 : H%(F) — H_%(I‘) is compact. For the above operator M we have
the representation M = —C 412Dty + 14Ty t3, so M is a compact perturbation of the
zero-index Fredholm operator — C (see Theorem [3.2)), and it follows that M is a zero-index
Fredholm operator too. The assumption (unique solvability of the homogeneous problem)
and Lemma [£.2] show that M is injective, so it is also surjective.
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Step 2: Uniqueness of solutions. Let (u7,uq) and (a7, uq) be two solutions of the
non-homogeneous problem , then the functions wy := wr — ur and wq = ug — uqQ
solve the homogeneous problem (4.3). By assumption (w7, wq) = (0,0), which yields
(ur,ug) = (ur, ug).

Step 3: Existence of solutions. Use the ansatz ur = u + cuy +uy, ug = v + vy, where

e u; € H}(T) is an arbitrary function with u;(0) = 1 and Ayuy € L*(T),
o uy € ﬁé(T) satisfies Aruy = fr — ¢A7uq, which exists by Lemma [2.5
e ue H(T) is to be determined,
e vs € HL (Q) is the solution of

—Avy = fq in Q4

’yé)vf =0on T,

03(z) = O(lx>~™) for [z] = oo,
which exists by Theorem

e veE H!

loc

() is to be determined.

Then (ur,uq) satisfy (4.1)) if and only if the new unknown functions (u,v) satisfy

.

Aru=0on T,
Av =0 on {2,
Q T

YoU ="y uonl,
Q T Q (4.5)
YU — a1yl u=apyv+honl,

v(z) = O(|z|*™™) for |x| — oo,

u(o) =0,

with b := —fvs + gy (cur +uy) € Hfé(I‘). Note that for any g € H%(F) the solutions
(u,v) to

A7u=0o0n T, Av =20 on €,
yJu=gonT, Wv=gonT, (4.6)
u(o) =0, v(z) = O(|m|2_m) for |z| — oo,

satisfy all conditions in (4.5 expect the fourth one for the normal derivatives. In order to
fulfill this remaining condition we note that for (u,v) in (4.6) we have

MwWv=Cg, ] u=Dy,
and the fourth condition in (4.5)) holds if and only if
Cg—a1Dg— apgg = h, (4.7)

which can be rewritten as Mg = —h. As M is surjective (as shown in Step 1), this equation
1
has a solution g € H2(I"). By solving (4.6 for this g we obtain a required solution for

[E3).
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Step 4: Dependence on the initial data. The continuity of the solution on the initial
data easily follows by noting that the transitions

(fr.e)=up,  favp, (fr.fo.c)—=h, h—g, gewv, goru
are continuous in respective norms (with an additional cut-off on ). O

Specific cases for which Theorem is applicable are easily obtained using the sign-
definiteness and coercivity of C and D:

Corollary 4.4. The assumptions of Theorem[{.3 are satisfied in the following cases:
(i) Reay, Reag > 0 with Reag + Reag > 0 a.e.
(i) Imaq, Imag > 0, with Ima; +Imag > 0 a.e.

Hence, for each of these cases Problem 18 uniquely solvable.

Proof. Let a1 € C\ {0} and ag € L®(T"). Let g € H2(T) with Mg = 0, then

0=(Mg.9),-4 (T),H3 (T)

= 9.9 -3 ry yt oy T (P D r-oar) o) + /r aglgl* ds. (4.8)

We start by arguing that (i) is sufficient. Taking the real part and using the coercivity of
D (Theorem [2.14) and the non-positivity of C (Corollary for m = 2, Theorem |3.8| for
m > 3), we obtain, with some ¢ > 0,

0= _(Cgmg)H—%

(O).H3 (D) + (Re Oél)(ngg)H*ad(FLHod(F) + /F(Re ao)]g]2 ds

> (Rear)(Py. D) ey vy + [ (Reaw)lgl?ds,
> (Rean)elglfor) + [ (Reao)lofds
> (Rean)elglia) + [ (Reao)lgfds
> min{L.c} [ (Rea + Reao)lgf ds,
and the assumptions (7) yields g = 0 a.e.

To argue that (i7) is sufficient, we take the imaginary part of (4.8) and use the coercivity
of D. This yields

0 = (Im 1)(Dg, §) g -sa(r sreir) + /F (Im ao)|g? ds,

and we conclude by proceeding almost verbatim like in the previous case. O
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4.2 Approximations by finite truncations

In this subsection we illustrate how the finite-dimensional approximations of D constructed
in Subsection can be employed to approximate the solutions of the transmission
problem . For that we assume that the metric tree 7 is geometric from some
generation N (see Definition and denote

Dy :=DPy, N eN.
The result of Corollary and the boundedness of the embeddings
H2(T) — HUT), H°UT)— H 2(T)
imply that for large N one has

IDn =Dl 3

1—-20
HE2 () H™ % (T) ) (4.9)

= O(p~"N) with any p € (O, —).

2d
Further recall that Theorem [2.23] provides an efficient way of computing Dy for large N
using N-condensations of 7.

In virtue of Theorem [4.3]and Corollary [4.4] for suitably chosen a; € C and a9 € L>(T)

and any f € Lzomp(Q) there is a unique solution (u7,uq) € HY(T) x HL (Q) of the
transmission problem
( A7ur=0on T,
A’LLQ = fQ on Q,
Q T
un = vy uy on I,
70 Yo UT (4.10)

Q Q
Vg — a1y] ur = apytug on T,

ug(x) = O(|z[*™™) for |z| — oo,

ur(0) = 0.

To construct this solution, we proceed like in the proof of Theorem (Step 3).
Repeating the corresponding argument and using the same notation we conclude that

uQ =v+0f, UT = U
where u, v solve (4.6 with g being the unique solution to (4.7)), i.e.
Cg—a1Dg — apg = —'y?vf.

A natural approximation to the above problem consists in replacing D by Dy (all the
related quantities will be marked by index N).
By combining (4.9) with Theorem we conclude that for large N the operator

q— —Cq+a1Dng+ apg = (— Cq+ a1Dg + apq) + a1 (Dy — D)g

is an isomorphism H %(I’) — H _%(F), and applying the Neumann series for its inverse
yields that there is a unique solution gy € H %(I‘) of

—Cgn +a1Dngn + apgn = h,
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and one has ||gy — gHH%(F) =O0(p—"N).

By using the continuous dependence of the solutions of (4.6) on g we conclude that
the solutions vV and u® of

AruN =0on T, AvY =0 on Q,
W uN =gyonT, v =gy onT, (4.11)
u¥(0) = 0, oY (@) = (™) for |z| - oo,

satisfy

lu = a1y = O@™"Y), el = ™)) = O™"Y),
for any cut-off function ¢ € C2°(R™). Hence, the functions u¥ = ulV and uf) == vy + 0V
with large N provide a good approximation to the solution (u7,uq) in the sense that

HU¥ - uN”Hl(T) = O(prN)a ”@(Ug - UQ)HHI(Q) = O(ppr)
for any cut-off function ¢ € C°(R™).

Remark 4.5. Consider in greater details the case g = 0. Then the unique solvability of
Problem fails if and only if the homogeneous problem

ATU)T =0on T,

Awg =0 on €,
Yowa =~ wr on T, (4.12)
Wwg = ary] wr on T,

wao(z) = O(]x|27m) for |z| — oo,

wr(0) = 0.

has non-trivial solutions. Lemma [4.2] implies that the values oy for which it happens are

exactly those with
ker(—C +a1D) # {0}. (4.13)

Using the non-positivity of C one concludes that Id — C : H%(F) — Hfé(lj) is an
isomorphism. Then the factorization

—C+aD = (Id + (D — 1d)(1d — C)‘1> (Id - C)
shows that (4.13) rewrites as
ker (Id + (D — 1d)(1d — C)‘1> £ {0}

Noting that (Id—C)~! and D(Id—C) ! can be viewed as compact operators in Hz (T") we
conclude (using the analytic Fredholm theorem) that the values of a; for which has
non-trivial solutions form a discrete subset of C (i.e. without finite accumulation points).
In fact, in view of Corollary [4.4] and using the complex conjugation one easily sees that
all these values belong to (—oc,0).

The problem and the respective critical values of o1 represent a natural mixed-
dimensional counterpart of the so-called plasmonic eigenvalue problem in R™, see e.g. the
discussion in [B, [6], and it is known that the plasmonic eigenvalues in the Euclidean case
have a finite accumulation point, contrary to what was just observed for our problem.
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