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Abstract

We study the Laplacian eigenvalues for smooth planar domains with strongly attractive Robin
conditions imposed on a part of the boundary and Neumann condition on the remaining
boundary. The asymptotic behavior of individual eigenvalues is described in terms of an ef-
fective Schrödinger-type operator on an interval with boundary conditions at the endpoints.
For some typical geometries a more precise asymptotics in terms of the boundary curvature is
derived.

1 Introduction

Let Ω ⊂ Rd be an open set with a reasonably regular boundary ∂Ω (for example, bounded and
Lipschitz) and an outer unit normal ν. By a Robin Laplacian with negative boundary parameter in
Ω one usually means the operator Qp,α in L2(Ω) acting as u 7→ −∆u on the functions u satisfying
the Robin boundary condition ∂νu =αpu, where p ≥ 0 is a given function (for example, bounded)
and α> 0 is a parameter. The name “negative” is justified by the fact that for all u in the operator
domain one has

〈u,Qp,αu〉L2(Ω) =
∫
Ω
|∇u|2 d x −α

∫
∂Ω

p|u|2 dS,

where dS means the integration with respect to the hypersurface measure, so that the boundary
term makes a negative contribution for p ̸≡ 0 (often this is also termed as an attractive boundary
condition). The structure of the above expression suggests that in the limit α→+∞ the bound-
ary might play a central role in the asymptotic behavior of the eigenvalues En(Qp,α). The intuitive
expectation was made rigorous by Lacey, Ockedon, Sabina [20] and Levitin, Parnovski [21], who
showed that the main term in the asymptotic expansion of the first eigenvalue of Qp,α is deter-
mined by the singularities of the boundary. For smooth domains and p ≡ 1 the first eigenvalue
behaves always as E1(Q1,α) ∼ −α2, so it is reasonable to look at the higher eigenvalues and at the
next terms in the asymptotics. Pankrashkin [23] and Exner, Minakov, Parnovski [3] showed that
in the two-dimensional case (d = 2) the next term for individual eigenvalues is determined by
the maximum curvature of the boundary. It was asked if it is possible to analyze the gaps be-
tween individual eigenvalues as well. A major step in this direction was made by Helffer, Kach-
mar [10]. Roughly speaking, they observed that for any fixed number n ∈ N one has En(Q1,α) =
−α2 +En(Λα)+ small relative error with an effective operator Λα on the boundary given by Λα :=
−∂2

s −αk, where ∂s is the differentiation with respect to the arclength and k is the curvature. For-
mally, they considered the case of a curvature having a single non-degenerate maximum, which
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Figure 1: The domainΩ and the set Γ⊂ ∂Ω.

lead to the eigenvalue spacing of order
p
α. The idea of an effective operator and a semiclassical

reduction were then extended to a variety of situations including the multi-dimensional case [24],
Weyl asymptotics [15], tunneling problems [11, 13], domains with boundary singularities [17, 25]
and cusps [18, 26]. The study of Robin Laplacians also lead to important advances in isoperimet-
ric spectral problems [1, 7, 16] and added new ingredients to the analysis of magnetic operators
[6, 12]. We refer to the reviews in [2, 17] for a summary of most available results.

While a significant amount of work was done on the analysis of the case p ≡ 1, no detailed
asymptotic results seem known for non-constant p. In the present work we are making a first
step in this direction by considering the case when p is the indicator function of a subset Γ⊂ ∂Ω.
This corresponds to the situation when the parameter-dependent Robin condition is imposed on
Γ only, while the rest of the boundary is endowed with Neumann condition. From now on let d = 2
andΩ⊂R2 be a simply connected domain with a C 4-smooth boundary ∂Ω of length L. Let Γ⊂ ∂Ω
be a open connected set of length ℓ ∈ (0,L). For α ∈ R, denote by Qα the self-adjoint operator in
L2(Ω) acting as QΩ

αu =−∆u on the functions u satisfying the boundary condition

∂νu =αu on Γ, ∂νu = 0 on ∂Ω\Γ,

where ν is the outer unit normal at ∂Ω. More precisely, QΩ
α is the self-adjoint operator in L2(Ω)

associated with the closed hermitian sesquilinear form qα defined on D(qα) = H 1(Ω) by

qα(u,u) =
∫
Ω
|∇u|2 d x −α

∫
Γ
|u|2 dS,

where dS stands for the integration with respect to the arclength. The operator Qα has compact re-
solvent, and for each fixed n ∈Nwe are interested in the asymptotic behavior of its n-th eigenvalue
En(Qα) for α→+∞.

Let γ : [0,L] → R2 be an arclength parametrization of ∂Ω, then γ extends to an L-periodic C 4-
smooth function on R. The outer unit normal to ∂Ω at the point γ(s) will be denoted by ν(s). By
a suitable choice of the starting point γ(0) and the orientation we may assume that Γ = γ

(
(0,ℓ)

)
and det

(
ν(·),γ′(·)) = 1, see Figure 1. Then the curvature k(s) of ∂Ω at the point γ(s) is defined by

γ′′(s) =−k(s)ν(s), which is equivalent to ν′(s) = k(s)γ′(s) due to Frenet formulas. Note that k is C m

if the boundary is C m+2-smooth (so k is at least C 2 in our case).
The main results of the present paper can be very roughly summarized as follows: For any fixed

n ∈N and α→+∞ one has En(Qα) =−α2 +En(Lα)+ small relative error, where Lα is the “effective
operator” in L2(0,ℓ) given by f 7→ − f ′′−αk with Dirichlet boundary conditions at the endpoints
(for a rigorous formulation with precise remainder estimates we refer to Theorem 4.3). It should
be noted that if k attains its maximum in the interior of Γ, the localization argument of [10] can
be directly transferred, and we are mainly interested in the case when the maximum curvature is
attained at an endpoint ofΓ. The main difficulty to overcome comes from the contradictory expec-
tations that (i) the eigenfunctions should be localized near the endpoint and (ii) at the same time
the value of the eigenfunction is very small at the endpoint itself. This is an essentially new feature
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when compared with the case Γ = ∂Ω which does not require any boundary conditions as ∂Ω is
a closed curve. Using standard approaches of the semiclassical analysis to analyze the effective
operator we then give more detailed results for several specific situations. For the formulations it
will be convenient to denote

k∗ := sup
s∈(0,ℓ)

k(s), i.e. the maximum curvature on Γ,

then, in particular, the following holds true:

• if k is constant on (0,ℓ), then En(Qα) =−α2 −k∗α− k2∗
2 + π2n2

ℓ2 +o(1), see Theorem 5.1,

• if 0 is a strict maximum of k on [0,ℓ] with k ′(0) < 0, then

En(Qα) =−α2 −k∗α+an
(−k ′(0)

) 2
3α

2
3 +o(α

2
3 ),

where (−an) is the n-th zero of the Airy function Ai, see Theorem 5.4.

In fact, the main results also cover degenerate maxima attained at endpoints and maxima attained
in interior points and contain more precise remainder estimates: we refer to Theorems 5.2 and
5.4 for detailed formulations. Nevertheless we do not expect that our remainder estimates are
optimal.

Let us now describe the structure of the paper. Our first main goal is to describe the asymp-
totic behavior of En(Qα) for α→+∞ in terms of an effective operator Λ′

α on (0,ℓ) given by (2.7).
In Section 2 we introduce the r -neighborhoodΩr of ∂Ω and consider a “truncated version” Qα,r of
Qα acting in L2(Ωr ). This new operator is then rewritten in tubular coordinates near the boundary,
which gives rise to a unitarily equivalent operator Pα,r on T× (0,r ), with T := R/(LZ). By adjust-
ing the coefficients in Pα,r we construct two operators P±

α,r in T× (0,r ) whose eigenvalues provide
lower/upper bounds for those of of Pα,r . In Proposition 2.2 we introduce special test functions for
P+
α,r , which gives an upper bound for its eigenvalues and, in turn, an upper bound for En(Qα) in

terms of Λ′
α. In Section 3 we are moving towards the lower bound. First, the upper bound from

Section 2 is used to show that the individual eigenfunctions of Qα are localized near the boundary,
and this shows that the eigenvalues of Qα are very close to those of Qα,α−σ withσ ∈ (0,1), see Corol-
lary 3.2. We then obtain a lower bound for the eigenvalues of Qα,α−σ in terms of an intermediate
operator Λα,ρ on T defined in (3.7): the main part is Lemma 3.4 collecting various estimates for
the associated sesquilinear forms and based on the Born-Oppenheimer-type asymptotic separa-
tion of variables, and the final result on the eigenvalue comparison is given in Proposition 3.6. All
preceding constructions are then summarized in Corollary 3.7: at this moment we have an upper
bound in terms of Λ′

α and a lower bound in terms of Λα,r . In Section 4 we show that actually the
eigenvalues of these two one-dimensional operators are close to each other. This part the argu-
ment is based on an identification technique we learned from [4] (see Proposition 4.1), and the
final result is given in Lemma 4.2. Similar constructions were used in [17] for Robin laplacians in
polygons. We remark that the worst term in the final remainder arises in this step. As a summary
of all preceding computations we obtain Theorem 4.3 describing the asymptotics of En(Qα) solely
in terms of Λ′

α. The operator Λ′
α is a semiclassical Schrödinger operator, and by applying several

standard approaches in Section 5 we obtain more precise results on its eigenvalues in terms of the
curvature, which then translates into Theorems 5.1, 5.2 and 5.4 describing the asymptotic behavior
of the eigenvalues of Qα for several typical geometric situations.
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2 Tubular coordinates and the upper bound

Denote T :=R/(LZ) andΠr :=T× (0,r ) for r > 0. The tubular neighborhood theorem from the dif-
ferential geometry states that there exists R > 0 with ∥k∥∞R < 1 such that the mapΦ :ΠR ∋ (s, t ) 7→
γ(s)− tν(s) ∈ R2 is injective. Moreover, for each r ∈ (0,R) the map Φ defines a diffeomorphism
betweenΠr and the domain

Ωr := {
x ∈Ω : d∂Ω(x) < r

}
, d∂Ω(x) := min

y∈∂Ω
|x − y |.

In addition, for any (s, t ) ∈ΠR one has d∂Ω
(
Φ(s, t )

) = t , and the set ∂Ωr \∂Ω≡ {
x ∈Ω : d∂Ω(x) = r

}
is a C 2-smooth closed curve.

For r ∈ (0,R) we define a closed hermitian sesquilinear form qα,r in L2(Ω),

qα,r (u,u) :=
∫
Ωr

|∇u|2 d x −α
∫
Γ
|u|2 dS,

D(qα,r ) := {
u ∈ H 1(Ωr ) : u = 0 on ∂Ωr \∂Ω

}=: H̃ 1
0 (Ωr )

and let Qα,r be the associated self-adjoint operator in L2(Ωr ). For each u ∈D(qα,r ) its extension ũ
by zero onΩ belongs to D(qα) and satisfies ∥ũ∥L2(Ω) = ∥u∥L2(Ωr ) and qα(ũ, ũ) = qα,r (u,u), so due to
the min-max principle there holds

En(Qα) ≤ En(Qα,r ) for all n ∈N, α> 0, r ∈ (0,R). (2.1)

For any r ∈ (0,R) consider the unitary operator

Θr : L2(Ω) → L2(Πr ), (Θr u)(s, t ) :=
√

1− tk(s)u
(
Φ(s, t )

)
,

and the closed hermitian sesquilinear form pα,r in L2(Πr ) given by

pα,r (v, v) =
∫
Πr

(
1(

1− tk(s)
)2

∣∣∂s v(s, t )
∣∣2 + ∣∣∂t v(s, t )

∣∣2 −V (s, t )
∣∣v(s, t )

∣∣2
)

d s d t

−
∫ ℓ

0

(
α+ k(s)

2

)∣∣v(s,0)
∣∣2 d s,

V (s, t ) := tk ′′(s)

2
(
1− tk(s)

)3 + 5t 2k ′(s)2

4
(
1− tk(s)

)4 + κ(s)2

4
(
1− tk(s)

)2 ,

D(pα,r ) = {
v ∈ H 1(Πr ) : v(·,r ) = 0

}=: H̃ 1
0 (Πr ).

A standard computation shows that D(pα,r ) = Θr D(qα,r ) and that for any u ∈ D(qα,r ) there
holds qα,r (u,u) = pα,r (Θr u,Θr u); see e.g. [5, Section 2]. It follows that the self-adjoint operator
Pα,r in L2(Πr ) generated by the form pα,r is unitarily equivalent to Qα,r , in particular,

En(Qα,r ) = En(Pα,r ) for all n ∈N, α> 0, r ∈ (0,R). (2.2)

We note that for a suitably chosen A > 0 one has the estimates

∣∣V (s, t )−k(s)2

4

∣∣≤ At ,
∣∣∣ 1(

1− tk(s)
)2 −1

∣∣∣≤ At for all (s, t ) ∈Πr and r ∈ (0,R). (2.3)

In particular, p−
α,r (v, v) ≤ pα,r (v, v) ≤ p+

α,r (v, v) for all v ∈ H̃ 1
0 (Πr ), where p±

α,r are the closed hermi-
tian sesquilinear forms in L2(Πr ) defined on the domain H̃ 1

0 (Πr ) by

p±
α,r (v, v) =

∫
Πr

(
(1± Ar )

∣∣∂s v(s, t )
∣∣2 + ∣∣∂t v(s, t )

∣∣2
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+
(
± Ar − κ(s)2

4

)∣∣v(s, t )
∣∣2

)
d s d t −

∫ ℓ

0

(
α+ k(s)

2

)∣∣v(s,0)
∣∣2 d s,

If P±
α,r are the self-adjoint operators in L2(Πr ) generated by the forms p±

α,r , then the min-max prin-
ciple implies

En(P−
α,r ) ≤ En(Pα,r ) ≤ En(P+

α,r ) for all n ∈N, α> 0, r ∈ (0,R). (2.4)

By combining (2.4) with (2.1) and (2.2) we conclude, in particular, that

En(Qα) ≤ En(P+
α,r ) for all n ∈N, α> 0, r ∈ (0,R). (2.5)

To analyze the eigenvalues of P±
α,r we employ the following result from [24, Lemma 2.1]:

Lemma 2.1. For α > 0 and r > 0, denote by Tα,r the operator f 7→ − f ′′ acting in L2(0,r ) on the
domain

D(Tα,r ) = {
f ∈ H 2(0,r ) : f ′(0) =−α f (0), f (r ) = 0},

which is generated by the closed hermitian sesquilinear form

tα,r ( f , f ) =
∫ r

0

∣∣ f ′(t )
∣∣2 d t −α∣∣ f (0)

∣∣2, D(tα,r ) = {
f ∈ H 1(0,r ) : f (r ) = 0

}=: H̃ 1
0 (0,r ). (2.6)

If rα tends to +∞, then Tα,r has a unique negative eigenvalue, and E1(Tα,r ) =−α2 +O (α2e−rα)

for rα→+∞. Furthermore, if ψ is an associated L2-normalized eigenfunction, then
∣∣ψ(0)

∣∣2 = 2α+
O (αe−rα) for rα→+∞.

We will denote byΛ′
α the self-adjoint Schrödinger operator

Λ′
α : f 7→ − f ′′+

(
α(k∗−k)+ k2∗−2kk∗−k2

4

)
f (2.7)

with Dirichlet boundary conditions in L2(0,ℓ).

Proposition 2.2. Let σ ∈ (0,1), then there are A,B ,α0 > 0 such that for any n ∈ N and any α > α0

there holds
En(Qα) ≤−α2 −αk∗+ (1+ Aα−σ)En(Λ′

α)+Bα−σ. (2.8)

Proof. Let ψ be an L2-normalized eigenfunction for the first eigenvalue of T
α+ k∗

2 ,r (Lemma 2.1).

For g ∈ H 1
0 (0,ℓ) ⊂ H 1(T) consider the function v := g ⊗ψ : Πr ∋ (s, t ) 7→ g (s)ψ(t ), then v ∈ H̃ 1

0 (Πr )
with ∥v∥L2(Πr ) = ∥g∥L2(0,ℓ) and

p+
α,r (v, v) = (1+ Ar )

∫ ℓ

0

∣∣g ′(s)
∣∣2 d s +

∫ ℓ

0

∣∣g (s)
∣∣2 d s

∫ r

0

∣∣ψ′(t )
∣∣2 d t

+
∫ ℓ

0

(
Ar − k(s)2

4

)∣∣g (s)
∣∣2 − ∣∣ψ(0)

∣∣2
∫ ℓ

0

(
α+ k(s)

2

)∣∣g (s)
∣∣2 d s.

Due to the choice of ψ there holds∫ r

0

∣∣ψ′(t )
∣∣2 d t −

(
α+ k∗

2

)∣∣ψ(0)
∣∣2 = E1(T

α+ k∗
2 ,r ),

therefore,

p+
α,r (v, v) =

∫ ℓ

0

[
(1+ Ar )

∣∣g ′(s)
∣∣2 +

(
E1(T

α+ k∗
2 ,r )+ Ar − k(s)2

4
+ ∣∣ψ(0)

∣∣2 k∗−k(s)

2

)∣∣g (s)
∣∣2

]
d s.
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Now set r := α−σ with σ ∈ (0,1). Due to Lemma 2.1 there exist α0 > 0 and b > 0 such that for all
α>α0 we have

E1(T
α+ k∗

2 ,α−σ) ≤−
(
α+ k∗

2

)2 +bα−σ,
∣∣ψ(0)

∣∣2 k∗−k(s)

2
≤

(
α+ k∗

2

)(
k∗−k(s)

)−bα−σ for all s ∈ (0,ℓ),

which leads to

p+
α,α−σ(v, v) ≤ (−α−αk∗)∥g∥2

L2(0,ℓ)

+ (1+ Aα−σ)
∫ ℓ

0

[∣∣g ′(s)
∣∣2 +

(
α

(
k∗−k(s)

)+ k2∗−2kk∗−k2

4

)∣∣g (s)
∣∣2

]
d s +Bα−σ∥g∥2

L2(0,ℓ)

for all g ∈ H 1
0 (0,ℓ) and α>α0, with a suitable B > 0.

The integral of the right-hand side is exactly the sesquilinear form for the operator Λ′
α computed

on (g , g ). Therefore, the substition of the above functions v into the min-max principle shows
that for all n ∈ N and α > α0 one has En(P+

α,α−σ) ≤ −α2 −αk∗+ (1+ Aα−σ)En(Λ′
α)+Bα−σ. Due to

(2.4) for all sufficiently large α we have En(Qα) ≤ En(P+
α,α−σ) for all n ∈ N, which gives the sought

estimate.

Corollary 2.3. For any fixed n ∈N one has En(Qα) =O (α2) for α→+∞.

Proof. The upper bound is proved in Proposition 2.2. By [8, Theorem 1.5.1.10] one can find some
c > 0 such that for all ε ∈ (0,1) and u ∈ H 1(Ω) there holds∫

Γ
|u|2 d s ≤

∫
∂Ω

|u|2 d s ≤ ε
∫
Ω
|∇u|2 d x + c

ε

∫
Ω
|u|2 d x.

For ε := 1
α one arrives at qα(u,u) ≥−cα2∥u∥2

L2(Ω)
, which gives the lower bound E1(Qα) ≥−cα2.

3 Lower bound: Effective operator onT

For each fixed n, the equation (2.8) gives En(Qα) ≤ −α2 +O (α) for α→+∞. A minor adaptation
of [10, Theorem 5.1] (which formally considered the case Γ= ∂Ω) gives the following Agmon-type
estimate:

Lemma 3.1 (Boundary localization). Let n ∈N be fixed and uα be an L2-normalized eigenfunction
of Qα for the eigenvalue En(Qα). Then for any θ ∈ (0,1) there are C > 0 and α0 > 0 such that∫

Ω

(
α−2

∣∣∇uα(x)
∣∣2 + ∣∣uα(x)

∣∣2)e2θαd∂Ω(x) d x ≤C for all α>α0. (3.1)

Corollary 3.2. Let σ ∈ (0,1), then for any fixed n ∈N and M > 0 there holds En(Qα) = En(Qα,α−σ)+
O (α−M ) for α→+∞.

Proof. The proof is very standard if one takes into account Lemma 3.1, but we include it for the
sake of completeness. In view of the inequality (2.1) it is sufficient to find a suitable upper bound
for En(Qα,α−σ) in terms of En(Qα).

Let u1,α, . . . ,un,α be eigenfunctions of Qα for E1(Qα), . . . ,En(Qα) forming an orthonormal sys-
tem in L2(Ω). Denote Uα := span(u1,α, . . . ,un,α). As Lemma 3.1 holds for each u j ,α, we conclude
that for some θ ∈ (0,1) and C > 0 there holds∫

Ω

(
α−2

∣∣∇u(x)
∣∣2 + ∣∣u(x)

∣∣2)e2θαd∂Ω(x) d x ≤C∥u∥2
L2(Ω) (3.2)
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for all α>α0 and all u ∈Uα.
Let χ : R→ R be a C∞ function with 0 ≤ χ≤ 1 and such that χ(t ) = 1 for |t | ≤ 1

2 and χ(t ) = 0 for
|t | ≥ 1. Consider the linear map

J : Uα→D(qα,α−σ), (Ju)(x) :=χ(
ασd∂Ω(x)

)
u(x).

Due to the choice of χ we have Ju = u in Ωα−σ
2

for all u ∈ Uα. Furthermore, for any u ∈ Uα and

v := Ju and all sufficiently large α there holds

∥u∥2
L2(Ω) −∥v∥2

L2(Ωα−σ ) =
∫
Ω\Ωα−σ

2

(
1−χ(

ασd∂Ω(x)
))2∣∣u(x)

∣∣2 d x

≤
∫
Ω\Ωα−σ

2

∣∣u(x)
∣∣2 d x ≤

∫
Ω\Ωα−σ

2

e2θα
(

d∂Ω(x)−α−σ
2

)∣∣u(x)
∣∣2 d x ≤ e−θα1−σ

∫
Ω

e2θαd∂Ω(x)
∣∣u(x)

∣∣2 d x

(3.2)≤ Ce−θα1−σ ∥u∥2
L2(Ω) ≤α−N∥u∥2

L2(Ω)

with an arbitrarily chosen N > 0. Therefore,(
1−α−N )∥u∥2 ≤ ∥v∥2 ≤ (

1+α−N )∥u∥2, (3.3)

so J is injective, dim J (Uα) = n for all sufficiently large α. Due to u = v onΩα−σ
2

and on Γwe have

qα,α−σ(v, v)−qα(u,u) =
∫
Ωα−σ\Ωα−σ

2

|∇v |2 d x −
∫
Ω\Ωα−σ

2

|∇u|2 d x.

We estimate as before∫
Ω\Ωα−σ

2

∣∣∇u(x)
∣∣2 d x ≤

∫
Ω\Ωα−σ

2

e2θα
(

d∂Ω(x)−α−σ
2

)∣∣∇u(x)
∣∣2 d x

≤ e−θα1−σ
∫
Ω

e2θαd∂Ω(x)
∣∣∇u(x)

∣∣2 d x
(3.2)≤ e−θα1−σ

Cα2∥u∥2
L2(Ω).

Furthermore, due to |∇d∂Ω| ≤ 1 we have

|∇v |2 =
∣∣∣ασχ′(ασd∂Ω(x)

)
u(x)∇d∂Ω(x)+χ(

ασd∂Ω(x)
)∇u(x)

∣∣∣2

≤ 2
∣∣∣ασχ′(ασd∂Ω(x)

)
u(x)∇d∂Ω(x)

∣∣∣2 +2
∣∣∣χ(

ασd∂Ω(x)
)∇u(x)

∣∣∣2 ≤ 2α2σ∥χ′∥2
∞

∣∣u(x)
∣∣2 +2

∣∣∇u(x)
∣∣2,

and with previous estimates we have∫
Ωα−σ\Ωα−σ

2

|∇v |2 d x ≤ 2α2σ∥χ′∥∞
∫
Ωα−σ\Ωα−σ

2

∣∣u(x)
∣∣d x +2

∫
Ωα−σ\Ωα−σ

2

∣∣∣∇u(x)
∣∣∣2

d x

≤ 2α2σ∥χ′∥∞
∫
Ω\Ωα−σ

2

∣∣u(x)
∣∣d x +2

∫
Ω\Ωα−σ

2

∣∣∣∇u(x)
∣∣∣2

d x

≤ 2α2σ∥χ′∥2
∞Ce−θα1−σ ∥u∥2

L2(Ω) +e−θα1−σ
Cα2 ∥u∥2

L2(Ω) ≤α−N∥u∥2
L2(Ω),

This results in
∣∣qα,α−σ(v, v)−qα(u,u)

∣∣≤ 2α−N∥u∥2
L2(Ω)

. In addition, for any u ∈Uα we have qα(u,u) ≤
En(Qα)∥u∥2

L2(Ω)
, and for the respective v it follows

qα,α−σ(v, v) ≤ qα(u,u)+2α−N∥u∥2
L2(Ω) ≤

(
En(Qα)+2α−N )∥u∥2

L2(Ω)
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By to the min-max principle we have

En(Qα,α−σ) ≤ max
v∈J (Uα), v ̸=0

qα,α−σ(v, v)

∥v∥2
L2(Ωα−σ )

≤ max
u∈Uα,u ̸=0

(
En(Qα)+2α−N

)∥u∥2
L2(Ω)

∥v∥2
L2(Ωα−σ )

(3.4)

Due to (3.3) we have for all large α:

1−2α−N ≤ 1

1+α−N
≤

∥u∥2
L2(Ω)

∥v∥L2(Ω)
≤ 1

1−α−N
≤ 1+2α−N ,

which yields(
En(Qα)+2α−N

)∥u∥2
L2(Ω)

∥v∥2
L2(Ωα−σ )

≤ En(Qα)+2α−N +
∣∣∣En(Qα)+2α−N

∣∣∣2α−N ≤ En(Qα)+ cα2−N ,

where we used En(Qα) = O (α2), see Corollary 2.3. The substitution into (3.4) gives En(Qα,α−σ) ≤
En(Qα)+ cα2−N . As N > 0 is arbitrary, the result follows.

Recall that we have the lower bound En(Qα,α−σ) ≥ En(P−
α,α−σ), see (2.4). We will now proceed

with a lower bound for the right-hand side. A suitable form of the one-dimensional Sobolev in-
equality will be used, see e.g. Lemma 8 in [19]:

Lemma 3.3. For any 0 < b ≤ a and f ∈ H 1(0, a) there holds∣∣ f (0)
∣∣2 ≤ b

∫ a

0

∣∣ f ′(t )
∣∣2d t + 2

b

∫ a

0

∣∣ f (t )
∣∣2d t .

First let us make some preliminary steps. Letψ be an L2-normalized eigenfunction of the one-
dimensional operator T

α+ k∗
2 ,r from Lemma 2.1 for its first eigenvalue, then

t
α+ k∗

2 ,r (ψ,ψ) ≡
∫ r

0

∣∣ψ′(t )
∣∣2 d t −

(
α+ k∗

2

)∣∣ψ(0)
∣∣2 = E1(T

α+ k∗
2 ,r ),

We represent each v ∈ H̃ 1
0 (Πr ) as

v = g ⊗ψ+w, g ⊗ψ : (s, t ) → g (s)ψ(t ), (3.5)

with g ∈ H 1(T) defined by

g (s) :=
∫ r

0
ψ(t )v(s, t )d t , s ∈T.

By construction we have∫ r

0
ψ(t )w(·, t )d t = 0,

∫ r

0
ψ(t )∂s w(·, t )d t = ∂s

∫ r

0
ψ(t )w(·, t )d t = 0,

which implies∫ r

0

∣∣v(s, t )
∣∣2 d t =

∫ r

0

∣∣g (s)ψ(t )
∣∣2 d t +

∫ r

0

∣∣w(s, t )
∣∣2 d t = ∣∣g (s)

∣∣2 +
∫ r

0

∣∣w(s, t )
∣∣2 d t , s ∈T,

hence, ∥v∥2
L2(Πr ) = ∥g∥2

L2(T) +∥w∥2
L2(Πr ). (3.6)

For ρ ∈ (0,1) and α> 0 denote byΛα,ρ the Schödinger operator in L2(T) given by

Λα,ρ : f 7→ − f ′′+
[(
α(k∗−k)+ k2∗−2kk∗−k2

4

)
1(0,ℓ) +α2−ρ

1T\(0,ℓ)

]
f , (3.7)

which will play a central role below.
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Lemma 3.4. Let σ,ρ ∈ (0,1) and τ ∈ (
0, 1

3

)
, and denote

ν := min{ρ,τ} ∈ (0,1), µ := max{2−ρ,1+3τ} ∈ (1,2),

then there are c,c ′ > 0 and α0 > 0 such that for any α>α0 and any v ∈ H̃ 1
0 (Πr ) there holds

p−
α,α−σ(v, v) ≥ (−α2 −αk∗− cα−ν)∥g∥2

L2(T) + (1− c ′α−ν)λα,ρ(g , g )−bαµ
∥∥w

∥∥2
L2(Πr ),

where λα,ρ is the sesquilinear form forΛα,ρ.

Proof. During the proof all inequalities are considered for α → +∞, and we set r := α−σ. The
spectral theorem for T

α+ k∗
2 ,r gives for all s ∈T:

t
α+ k∗

2 ,r

(
w(s, ·), w(s, ·))≥ E2(Tα,r )

∥∥w(s, ·)∥∥2
L2(0,r ), (3.8)

t
α+ k∗

2 ,r

(
ψ, w(s, ·))= 0,

which implies

I (v) :=
∫
Πr

∣∣∂t v(s, t )
∣∣2 d s d t −

(
α+ k∗

2

)∫
T

∣∣v(s,0)
∣∣2 d s =

∫
T

t
α+ k∗

2 ,r

(
v(s, ·), v(s, ·))d s

=
∫
T

[
t
α+ k∗

2 ,r

(
g (s)ψ, g (s)ψ

)+ t
α+ k∗

2 ,r

(
w(s, ·), w(s, ·))]d s = I (g ⊗ψ)+ I (w),

with

I (g ⊗ψ) =
∫
T

E1(T
α+ k∗

2 ,r )
∣∣g (s)

∣∣2 d s = E1(T
α+ k∗

2 ,r )∥g∥2
L2(T),

I (w) ≥
∫
T

E2(T
α+ k∗

2 ,r )
∥∥w(s, ·)∥∥2

L2(0,r ) d s. (3.9)

The substitution into the expression for p−
α,r gives

p−
α,r (v, v) = I (v)+ J1(v)+ J2(v),

with J1(v) :=
∫
Πr

[
(1− Ar )

∣∣∂s v(s, t )
∣∣2 −

(
Ar + k(s)2

4

)∣∣v(s, t )
∣∣2

]
d s d t ,

J2(v) :=
(
α+ k∗

2

)∫
T\(0,ℓ)

∣∣v(s,0)
∣∣2 d s +

∫ ℓ

0

k∗−k(s)

2

∣∣v(s,0)
∣∣2 d s.

Using the above orthogonality relations we obtain J1(v) = J1(g ⊗ψ)+ J1(w), and one can simplify

J1(g ⊗ψ) =
∫
T

[
(1− Ar )

∣∣g ′(s)
∣∣2 −

(
Ar + k(s)2

4

)∣∣g (s)
∣∣2

]
d s.

On the other hand, J2(v) = J2(g ⊗ψ)+ J2(w)+ J ′(g ⊗ψ, w),

J ′(g ⊗ψ, w) := 2ℜ
[(
α+ k∗

2

)∫
T\(0,ℓ)

(g ⊗ψ)(s,0)w(s,0)d s +
∫ ℓ

0

k∗−k(s)

2
(g ⊗ψ)(s,0)w(s,0)d s

]
= 2ℜ

[
ψ(0)

((
α+ k∗

2

)∫
T\(0,ℓ)

g (s)w(s,0)d s +
∫ ℓ

0

k∗−k(s)

2
g (s)w(s,0)d s

)]
,

and one can again simplify

J2(g ⊗ψ) =
(
α+ k∗

2

)∣∣ψ(0)
∣∣2

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s + ∣∣ψ(0)

∣∣2
∫ ℓ

0

k∗−k(s)

2

∣∣g (s)
∣∣2 d s.
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Overall, we arrive at

p−
α,r (v, v) = p−

α,r (g ⊗ψ, g ⊗ψ)+p−
α,r (w, w)+ J ′(g ⊗ψ, w), (3.10)

with

p−
α,r (g ⊗ψ, g ⊗ψ) = I (g ⊗ψ)+ J1(g ⊗ψ)+ J2(g ⊗ψ)

= E1(T
α+ k∗

2 ,r )∥g∥2
L2(T) +

∫
T

[
(1− Ar )

∣∣g ′(s)
∣∣2 −

(
Ar + k(s)2

4

)∣∣g (s)
∣∣2

]
d s

+
(
α+ k∗

2

)∣∣ψ(0)
∣∣2

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s + ∣∣ψ(0)

∣∣2
∫ ℓ

0

k∗−k(s)

2

∣∣g (s)
∣∣2 d s,

and we recall that p−
α,r (w, w) = I (w)+ J1(w)+ J2(w) and that due to Lemma 2.1 we have

E1(T
α+ k∗

2 ,r ) ≥−
(
α+ k∗

2

)2 − r, (3.11)

E2(T
α+ k∗

2 ,r ) ≥ 0, (3.12)∣∣ψ(0)
∣∣2 ≥ 2

(
α+ k∗

2

)
− r. (3.13)

We estimate
∣∣J ′(g ⊗ψ, w)

∣∣≤ J ′1 + J ′2 with

J ′1 :=
(
α+ k∗

2

)∫
T\(0,ℓ)

2
∣∣ψ(0)

∣∣∣∣g (s)
∣∣ · ∣∣w(s,0)

∣∣d s,

J ′2 :=
∫ ℓ

0

k∗−k(s)

2
2
∣∣ψ(0)

∣∣∣∣g (s)
∣∣ · ∣∣w(s,0)

∣∣d s.

For any ε> 0 we have

2
∣∣ψ(0)

∣∣∣∣g (s)
∣∣ · ∣∣w(s,0)

∣∣≤ ε∣∣ψ(0)
∣∣2∣∣g (s)

∣∣2 + 1

ε

∣∣w(s,0)
∣∣2. (3.14)

Set ε := 1−α−ρ with ρ ∈ (0,1), then 1
ε
≤ 1+2α−ρ, and

J ′1 ≤ (1−α−ρ)
(
α+ k∗

2

)∣∣ψ(0)
∣∣2

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s + (1+2α−ρ)

(
α+ k∗

2

)∫
T\(0,ℓ)

∣∣w(s,0)
∣∣2 d s. (3.15)

To obtain an upper bound for J ′2 we will need a different choice of ε. Remark first that due to
(3.8) and (3.12) we have ∫ r

0

∣∣∂t w(s, t )
∣∣2 d t −

(
α+ k∗

2

)∣∣w(·,0)
∣∣2 ≥ 0.

Using α+ k∗
2 ≥ α

2 we deduce ∣∣w(s,0)
∣∣2 ≤ 2

α

∫ r

0

∣∣∂t w(s, t )
∣∣2 d t . (3.16)

For any η ∈ (0,1) and b ∈ (0,r ) we have, by using (3.16) and Lemma 3.3:∣∣w(s,0)
∣∣2 = (1−η)

∣∣w(s,0)
∣∣2 +η∣∣w(s,0)

∣∣2

≤ 2(1−η)

α

∥∥∂t w(s, ·)∥∥2
L2(0,r ) +η

(
b
∥∥∂t w(s, ·)∥∥2

L2(0,r ) +
2

b

∥∥w(s, ·)∥∥2
L2(0,r )

)
= 2

α

(
1−η

[
1− αb

2

])∥∥∂t w(s, ·)∥∥2
L2(0,r ) +

2η

b

∥∥w(s, ·)∥∥2
L2(0,r ).
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The choice b := 2(1−θ)
α with θ ∈ (0,1), simplifies the preceding inequality to

∣∣w(s,0)
∣∣2 ≤ 2(1−θη)

α

∥∥∂t w(s, ·)∥∥2
L2(0,r ) +

ηα

1−θ
∥∥w(s, ·)∥∥2

L2(0,r ),

and the substitution into (3.14) gives

2
∣∣ψ(0)

∣∣∣∣g (s)
∣∣ · ∣∣w(s,0)

∣∣≤ ε∣∣ψ(0)
∣∣2∣∣g (s)

∣∣2 + 2(1−θη)

αε

∥∥∂t w(s, ·)∥∥2
L2(0,r ) +

ηα

(1−θ)ε

∥∥w(s, ·)∥∥2
L2(0,r ).

Choose the parameters as

ε :=α−τ with τ ∈ (
0, 1

3

)
θ := 1−ε2 ∈ (0,1), η := 1−ε

θ
= 1−ε

1−ε2
= 1

1+ε ∈ (0,1),

then
1−θη
ε

= 1,
ηα

(1−θ)ε
= α

(1+ε)ε2ε
= α1+4τ

ατ+1
≤α1+3τ.

So we arrive at

2
∣∣ψ(0)

∣∣∣∣g (s)
∣∣ · ∣∣w(s,0)

∣∣≤α−τ∣∣ψ(0)
∣∣2∣∣g (s)

∣∣2 + 2

α
∥∂t w(s, ·)∥∥2

L2(0,r ) +α1+3τ
∥∥w(s, ·)∥∥2

L2(0,r ),

and the substitution into the expression for J ′2 gives

J ′2 ≤α−τ∣∣ψ(0)
∣∣2

∫ ℓ

0

k∗−k(s)

2

∣∣g (s)
∣∣2 d s + 2K

α

∫ ℓ

0
∥∂t w(s, ·)∥∥2

L2(0,r ) d s +Kα1+3τ
∫ ℓ

0

∥∥w(s, ·)∥∥2
L2(0,r ) d s,

where we denoted

K := sup
s∈(0,ℓ)

k∗−k(s)

2
.

Using the last bound for J ′2 and the bound (3.15) for J ′1 we obtain the lower bound J ′(g ⊗ψ, w) ≥
−J ′1 − J ′2. Inserting this estimate into the decomposition (3.10) and collecting separately the terms
with g and the terms with w one arrives at

p−
α,r (v, v) ≥ Y (g )+Y ′(w),

where

Y (g ) := E1(T
α+ k∗

2 ,r )∥g∥2
L2(T) +

∫
T

[
(1− Ar )

∣∣g ′(s)
∣∣2 −

(
Ar + k(s)2

4

)∣∣g (s)
∣∣2

]
d s

+α−ρ
(
α+ k∗

2

)∣∣ψ(0)
∣∣2

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s + (1−α−τ)

∣∣ψ(0)
∣∣2

∫ ℓ

0

k∗−k(s)

2

∣∣g (s)
∣∣2 d s,

Y ′(w) :=
∫
Πr

∣∣∂t w(s, t )
∣∣2 d s d t −

(
α+ k∗

2

)∫
T

∣∣w(s,0)
∣∣2 d s

+
∫
Πr

[
(1− Ar )

∣∣∂s w(s, t )
∣∣2 −

(
Ar + k(s)2

4

)∣∣w(s, t )
∣∣2

]
d s d t ,

+
(
α+ k∗

2

)∫
T\(0,ℓ)

∣∣w(s,0)
∣∣2 d s +

∫ ℓ

0

k∗−k(s)

2

∣∣w(s,0)
∣∣2 d s

− (1+2α−ρ)
(
α+ k∗

2

)∫
T\(0,ℓ)

∣∣w(s,0)
∣∣2 d s

− 2K

α

∫ ℓ

0
∥∂t w(s, ·)∥∥2

L2(0,r ) d s −Kα1+3τ
∫ ℓ

0

∥∥w(s, ·)∥∥2
L2(0,r ) d s.
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Let us first find a lower bound for Y ′(w). Choose any K ′ > K and use

∣∣∂s w(s, t )
∣∣2 ≥ 0,

k∗−k(s)

2
≥ 0,

∫
T\(0,ℓ)

| f |d s ≤
∫
T
| f |d s,

then

Y ′(w) ≥
∫
T

[(
1− 2K

α

)∥∥∂t w(s, ·)∥∥2
L2(0,r ) − (1+2α−ρ)

(
α+ k∗

2

)∣∣w(s,0)
∣∣2

]
d s −K ′α1+3τ ∥w∥2

L2(Πr )

≥
(
1− 2K

α

)∫
T

[∥∥∂t w(s, ·)∥∥2
L2(0,r ) − (1+3α−ρ)

(
α+ k∗

2

)∣∣w(s,0)
∣∣2

]
d s −K ′α1+3τ ∥w∥2

L2(Πr ).

We further have∥∥∂t w(s, ·)∥∥2
L2(0,r ) − (1+3α−ρ)

(
α+ k∗

2

)∣∣w(s,0)
∣∣2

= (1−3α−ρ)
(∥∥∂t w(s, ·)∥∥2

L2(0,r ) −
(
α+ k∗

2

)∣∣w(s,0)
∣∣2︸ ︷︷ ︸

≥0

)

+3α−ρ
(∥∥∂t w(s, ·)∥∥2

L2(0,r ) −2
(
α+ k∗

2

)∣∣w(s,0)
∣∣2

)
≥ 3α−ρE1(T2α+k∗)

∥∥w(s, ·)∥∥2
L2(0,r ),

and one obtains Y ′(w) ≥
[(

1 − 2K

α

)
3α−ρE1(T2α+k∗) − K ′α1+3τ

]∥∥w
∥∥2

L2(Πr ). Using Lemma 2.1 we

estimate E1(T2α+k∗,r ) ≥−(2α+k∗)2 −1 ≥−5α2, and for a suitable b > 0 we obtain

Y ′(w) ≥−bαµ
∥∥w

∥∥2
L2(Πr ), µ := max{2−ρ,1+3τ} ∈ (1,2);

the inclusion for µ follows from the fact that the above estimates are valid for any ρ ∈ (0,1) and
τ ∈ (

0, 1
3

)
.

Now let us proceed with Y (g ). Using (3.11) and (3.13), for ν := min{σ,τ} and sufficiently large
but fixed c,c ′ > 0 we get

Y (g ) ≥−
[(
α+ k∗

2

)2 +α−σ
]
∥g∥2

L2(T) +
∫
T

[
(1− Aα−σ)

∣∣g ′(s)
∣∣2 −

(
Aα−σ+ k(s)2

4

)∣∣g (s)
∣∣2

]
d s

+α−ρ
(
α+ k∗

2

)(
2α+k∗−α−σ

)∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s

+ (1−α−τ)
(
2α+k∗−α−σ

)∫ ℓ

0

k∗−k(s)

2

∣∣g (s)
∣∣2 d s,

≥ (−α2 −αk∗− cα−ν)∥g∥2
L2(T) + (1− c ′α−ν)

[∫
T

∣∣g ′(s)
∣∣2 d s +

∫ ℓ

0

(
α

(
k∗−k(s)

)
+ k2∗−2k(s)k∗−k(s)2

4

)∣∣g (s)
∣∣2

)
d s +α2−ρ

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s

]
= (−α2 −αk∗− cα−ν)∥g∥2

L2(T) + (1− c ′α−ν)λα,ρ(g , g ).

We need some a priori estimates for the eigenvalues En(Λ′
α) and En(Λα,ρ). Due to the min-max

principle we immediately get

−a ≤En(Λα,ρ) ≤ En(Λ′
α) for all α> 0, n ∈N, ρ ∈ (0,1), a := sup

s∈(0,ℓ)

∣∣∣k2∗−2k(s)k∗−k(s)2

4

∣∣∣. (3.17)
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Lemma 3.5. Let s∗ ∈ [0,ℓ] be a maximum of k on [0,ℓ]. If for some m > 0 one has k(s)−k(s∗) =
O

(|s − s∗|m
)

for s → s∗, then for each n ∈N and ρ ∈ (0,1) there holds

En(Λ′
α) =O (α

2
2+m ) and En(Λα,ρ) =O (α

2
2+m ) as α→+∞.

In particular, without any additional assumption one has

En(Λ′
α) =O (α

2
3 ) and En(Λα,ρ) =O (α

2
3 ) as α→+∞.

Proof. In view of (3.17) it is sufficient to obtain an upper bound for En(Λ′
α). By assumption one

can find some M > 0 and δ0 ∈ (0,ℓ) with

k∗−k(s) = k(s∗)−k(s) ≤ M |s∗− s|m for all s ∈Twith |s − s∗| < δ0.

The length of the intervall I := (s∗−δ0, s∗+δ0)∩ (0,ℓ) is at least δ0, so for any δ ∈ (0,δ0) we can
choose a subinterval Iδ ⊂ I of length δ. By the min-max principle one has En(Λ′

α) ≤ En(Λ′
α,δ),

whereΛ′
α,δ is the operator

Λ′
α,δ : f 7→ − f ′′+

(
α(k∗−k)+ k2∗−2kk∗−k2

4

)
f

in L2(Iδ) with Dirichlet boundary conditions. For any s ∈ Iδ we have

α
(
k∗−k(s)

)+ k2∗−2k(s)k∗−k(s)2

4
≤αMδm +a,

which givesΛ′
α,δ ≤π2n2δ−2 +αMδm +a, and by choosing δ :=α− 1

2+m we obtain the first claim.

The function k is C 2 and, therefore, Lipschitz, so the assumption is always satisfied for m = 1,
which gives the last claim.

Proposition 3.6. Let n ∈N, ρ ∈ (0,1) and τ ∈ (0, 1
3 ). Then there are c,c ′ > 0 and α0 > 0 such that for

any α>α0 there holds

En(Qα) ≥−α2 −k∗α+ (1− c ′α−τ)En(Λα,ρ)− cα−τ.

Proof. Let ρ ∈ (0,1). Denote µ := max{2 − ρ,1 + 3µ} and ν := min{σ,τ}. Let G ⊂ L2(Πr ) be the
closure of the subspace of all w in (3.5) with v ∈ H̃ 1

0 (Πr ), and let I : G →G be the identity map. The
decomposition (3.5) together with Proposition 3.4 show En(P−

α,α−σ) ≥ En(Lα⊕−bαµI ) with

Lα :=−α2 −αk∗+ (1− c ′α−ν)Λα,ρ− cα−ν.

By Lemma 3.5 we have En(Lα) =−α2 +O (α) <−bαµ, so

En(Lα⊕−bαµI ) ≡ min
{
En(Lα),−bαµ

}= En(Lα),

En(P−
α,α−σ) ≥ En(Lα). (3.18)

In addition, we can choose σ> τ to have ν= τ. Using Corollary 3.2 we obtain for any M > 0:

En(Qα) = En(Qα,α−σ)+O (α−M )
(2.2)= En(Pα,α−σ)+O (α−M )

(2.4)≥ En(P−
α,α−σ)+O (α−M )

(3.18)≥ En(Lα)+O (α−M ),

and we obtain the claim by taking M > τ.

We summarize Propositions 2.2 and 3.6 as follows:

Corollary 3.7. Let n ∈N, ρ,σ ∈ (0,1) and τ ∈ (0, 1
3 ). Then there are c,c ′,b,b′ > 0 such that forα→+∞

one has

(1− c ′α−τ)En(Λα,ρ)− cα−τ ≤ En(Qα)+α2 +k∗α≤ (1+bα−σ)En(Λ′
α)+b′α−σ.
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4 Reduction to an effective operator on (0,ℓ)

Now we are going to show that En(Λα,ρ) and En(Λ′
α) are asymptotically close to each other. This

will allow to transform the two-sided estimate of Corollary 3.7 into an asymptotic expansion. Our
analysis will be based on the following result, see e.g. [4, Lemma 2.1]:

Proposition 4.1. Let T be a non-negative self-adjont operator with compact resolvent in an infinite-
dimensional Hilbert space H , defined by a closed hermitian sesquilinear form t, and T ′ be a lower
semibounded self-adjoint operator with compact resolvent in an infinite-dimensional Hilbert space
H ′, defined by a closed hermitian sesquilinear form t ′. Assume that there are a linear map J :
D(t ) →D(t ′) and δ1,δ2 ∈ [0,+∞) such that for all g ∈D(t ) there holds

∥g∥2
H −∥J g∥2

H ′ ≤ δ1

(
t (g , g )+∥g∥2

H

)
,

t ′(J g , J g )− t (g , g ) ≤ δ2

(
t (g , g )+∥g∥2

H

)
.

Then for any n ∈Nwith
δ1

(
En(T )+1

)< 1 (4.1)

one has

En(T ′) ≤ En(T )+
(
δ1En(T )+δ2

)(
En(T )+1

)
1−δ1

(
En(T )+1

) .

Lemma 4.2. For any fixed n ∈N and ρ ∈ (0, 1
3 ) one has for α→+∞:

En(Λα,ρ) = En(Λ′
α)+Rα,

Rα =
O (α− 1−ρ

4 ), if En(Λ′
α) =O (1),

O
((
α− 3−ρ

4 En(Λ′
α)+α− 1−ρ

4
)
En(Λ′

α)
)
, if En(Λ′

α) →+∞.

Proof. Remark first that Λ′
α is monotonically increasing with respect to α, so each eigenvalue is a

monotonically increasing function of α and either En(T ′
α) = O (1) or En(Λ′

α) → +∞, so the claim
covers all possible cases.

In view of (3.17) it is sufficient to find an upper bound of for En(Λ′
α) in terms of En(Λα,ρ). We

will apply Proposition 4.1 to the operators

T :=Λα,ρ+a, T ′ :=Λ′
α+a (4.2)

with a from (3.17). For convenience we denote

U := k∗−k, V := k2∗−2kk∗−k2

4
,

and recall that the sesquilinear form t for T and the sesquilinear form t ′ for T ′ are given by

t (g , g ) =
∫ ℓ

0

(
|g ′|2 + (αU +V +a)|g |2

)
d s +

∫
T\(0,ℓ)

(∣∣g ′|2 + (α2−ρ+a)|g |2
)

d s with D(t ) = H 1(T),

t ′(g , g ) =
∫ ℓ

0

(
|g ′|2 + (αU +V +a)|g |2

)
d s with D(t ′) = H 1

0 (0,ℓ).

Pick any h ∈ C∞
c (R) with supph ∈ (−ℓ

2 , ℓ2 ) and h(0) = 1 and define a linear map J : H 1(T) →
H 1

0 (0,ℓ) by
(J g )(s) := g (s)− g (0)h(αq s)− g (ℓ)h

(
αq (s −ℓ)

)
, s ∈ (0,ℓ),
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with a parameter q > 0 whose value will be chosen later. Due to Lemma 3.3 we have∣∣g (0)
∣∣2 + ∣∣g (ℓ)

∣∣2 ≤ 2δ
∫
T\(0,ℓ)

∣∣g ′(s)
∣∣2 d s +4δ−1

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s

for any g ∈ H 1(T\ (0,ℓ)
)

and any 0 < δ< L−ℓ.
(4.3)

Using the inequality |a +b|2 ≥ (1−ε)|a|2 −ε−1|b|2 (valid for any a,b ∈C and ε> 0) we estimate
for any g ∈ H 1(Tα):

∥J g∥2
L2(0,ℓα) =

∫ ℓ

0

∣∣∣g (s)− [
g (0)h(αq s)+ g (ℓ)h

(
αq (s −ℓ)

)]∣∣∣2
d s

≥ (1−ε)
∫ ℓ

0

∣∣g (s)
∣∣2 d s −ε−1

∫ ℓ

0

∣∣∣g (0)h(αq s)+ g (ℓ)h
(
αq (s −ℓ)

)∣∣∣2
d s︸ ︷︷ ︸

=:I

,

therefore,

∥g∥2
L2(T) −∥J g∥2

L2(0,ℓ) ≤
∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s +ε

∫ ℓ

0

∣∣∣g (s)
∣∣2 d s +ε−1I . (4.4)

Using |a +b|2 ≤ 2|a|2 +2|b|2 we obtain

I ≤ 2
∫ ℓ

0

∣∣h(αq s)
∣∣2 d s · ∣∣g (0)

∣∣2 +2
∫ ℓ

0

∣∣∣h(
αq (s −ℓ)

)∣∣∣2
d s · ∣∣g (ℓ)

∣∣2.

Using the substitution s :=α−q t we estimate∫ ℓ

0

∣∣h(αq s)
∣∣2 d s =α−q

∫ ℓ

0

∣∣h(t )
∣∣2 d t =O (α−q )

and analogously ∫ ℓ

0

∣∣∣h(
αq (s −ℓ)

)∣∣∣2
d s =O (α−q ),

which yields (with suitable α-independent c j > 0)

I ≤ c1α
−q

(∣∣g (0)
∣∣2 + ∣∣g (ℓ)

∣∣2
) (4.3)≤ c2α

−q
(
δ

∫
T\(0,ℓ)

∣∣g ′(s)
∣∣2 d s +δ−1

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s

)
.

The substitution into (4.4) gives

∥g∥2
L2(T) −∥J g∥2

L2(0,ℓ) ≤ ε
∫ ℓ

0

∣∣g (s)
∣∣2 d s + c2ε

−1δα−q
∫
T\(0,ℓ)

∣∣g ′(s)
∣∣2 d s

+ (1+ c2ε
−1δ−1α−q )

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s

Each of the first two integrals on the right-hand side is bounded from above by t (g , g )+∥g∥2
L2(T)

,
while for the last integral we have∫

T\(0,ℓ)

∣∣g (s)
∣∣2 d s ≤αρ−2t (g , g ).

This gives ∥g∥2
L2(T)

−∥J g∥2
L2(0,ℓ)

≤ c3(ε+ ε−1δα−q +αρ−2 + ε−1δ−1α−qαρ−2)
(
t (g , g )+∥g∥2

L2(T)

)
. We

optimize the right-hand side by taking ε = ε−1δα−q = ε−1δ−1α−qαρ−2, i.e. δ := α
ρ−2

2 , ε := α
ρ−2q−2

4 ,
and arrive at

∥g∥2
L2(T) −∥J g∥2

L2(0,ℓ) ≤ c4α
ρ−2q−2

4

(
t (g , g )+∥g∥2

L2(T)

)
. (4.5)
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With the help of the inequality |a+b|2 ≤ (1+ε)|a|2+2ε−1|b|2 for any a,b ∈C, ε ∈ (0,1), we obtain

t ′(J g , J g ) =
∫ ℓ

0

∣∣∣g ′(s)−αq[
g (0)h′(αq s)+ g (ℓ)h′(αq (s −ℓ)

)]∣∣∣2
d s

+
∫ ℓ

0

(
αU (s)+V (s)+a

)∣∣∣g (s)− [
g (0)h(αq s)+ g

(
αq (s −ℓ)

)]∣∣∣2
d s

≤ (1+ε)
∫ ℓ

0

∣∣g ′(s)
∣∣2 d s +2ε−1α2q

∫ ℓ

0

∣∣∣g (0)h′(αq s)+ g (ℓ)h′(αq (s −ℓ)
)∣∣∣2

d s

+ (1+ε)
∫ ℓ

0

(
αU (s)+V (s)+a

)∣∣g (s)
∣∣2d s

+2ε−1
∫ ℓ

0

(
αU (s)+V (s)+a

)∣∣∣g (0)h(αq s)+ g (ℓ)h
(
αq (s −ℓ)

)∣∣∣2
d s,

and then

t ′(J f , J f )− t ( f , f ) ≤ ε
∫ ℓ

0

(
|g ′|2 + (αU +V +a)|g |2

)
d s

+2ε−1α2q
∫ ℓ

0

[
g (0)h′(αq s)+ g (ℓ)h′(αq (s −ℓ)

)∣∣∣2
d s︸ ︷︷ ︸

=:I1

+2ε−1
∫ ℓ

0

(
αU (s)+V (s)+a

)∣∣∣g (0)h(αq s)+ g (ℓ)h
(
αq (s −ℓ)

)∣∣∣2
d s︸ ︷︷ ︸

=:I2

.

(4.6)

We have

I1 ≤ 2
∫ ℓ

0

∣∣h′(αq s)
∣∣2 d s · ∣∣g (0)

∣∣2 +2
∫ ℓ

0

∣∣∣h′(αq (s −ℓ)
)∣∣∣2

d s · ∣∣g (ℓ)
∣∣2,∫ ℓ

0

∣∣h′(αq s)
∣∣2 d s

s=α−q t= α−q
∫ ℓ

0

∣∣h′(t )
∣∣2 d t =O (α−q ),∫ ℓ

0

∣∣∣h′(αq (s −ℓ)
)∣∣∣2

d s
s=ℓ+α−q t=

∫ 0

−ℓ

∣∣∣h′(αq (t )
)∣∣∣2

d s =O (α−q ),

hence, I1 ≤ c5α
−q

(∣∣g (0)
∣∣2 + ∣∣g (ℓ)

∣∣2
)
. Similarly,

I2 ≤ c4α
(∫ ℓα

0

∣∣h(αq s)
∣∣2 d s · ∣∣g (0)

∣∣2 +
∫ ℓα

0

∣∣∣h(
αq (s −ℓ)

)∣∣∣2
d s · ∣∣g (ℓ)

∣∣2
)
≤ c6α

1−q
(∣∣g (0)

∣∣2 + ∣∣g (ℓ)
∣∣2

)
.

The substitution into (4.6) yields

t ′(J g , J g )− t (g , g ) ≤ ε
∫ ℓ

0

(
|g ′|2 + (αU +V +a)|g |2

)
d s + c7ε

−1(αq +α1−q )
(∣∣g (0)

∣∣2 + ∣∣g (ℓ)
∣∣2

)
.

The optimization with respect q implies the choice q := 1
2 , and

t ′(J g , J g )− t (g , g ) ≤ εt (g , g )+ c8ε
−1α

1
2

(∣∣g (0)
∣∣2 + ∣∣g (ℓ)

∣∣2
)
. (4.7)

Using (4.3) we estimate∣∣g (0)
∣∣2 + ∣∣g (ℓ)

∣∣2 ≤ 2δ
∫
T\(0,ℓ)

∣∣g ′(s)
∣∣2 d s +4δ−1

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s
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≤ 2δ
∫
T\(0,ℓ)

∣∣g ′(s)
∣∣2 d s +4δ−1αρ−2 ·α2−ρ

∫
T\(0,ℓ)

∣∣g (s)
∣∣2 d s ≤ c9(δ+δ−1αρ−2)t (g , g ),

and by (4.7) we obtain

t ′(J g , J g )− t (g , g ) ≤ c10(ε+ε−1α
1
2δ+ε−1α

1
2δ−1αρ−2)

(
t (g , g )+∥g∥2

L2(T)

)
.

We optimize the right-hand side by choosing ε = ε−1α
1
2δ = ε−1α

1
2δ−1αρ−2, i.e. ε := α

ρ−1
4 , δ :=

α
ρ−2

2 , which yields

t ′(J g , J g )− t (g , g ) ≤ c11α
ρ−1

4

(
t (g , g )+∥g∥2

L2(T)

)
. (4.8)

The estimate (4.5) with the chosen value q = 1
2 and (4.8) show that we are in the situation of Propo-

sition 4.1 with
δ1 := c4α

ρ−3
4 , δ2 := c11α

ρ−1
4 .

Let n ∈N be fixed. From now on assume ρ ∈ (0, 1
3 ), then by Lemma 3.5 we have

δ1
(
En(T )+1

)=O (α
ρ−3

4 )O (α
2
3 ) =O (α

3ρ−1
12 ) = o(1), (4.9)

and the assumption (4.1) of Proposition 4.1 is satisfied (for all sufficiently large α). Using the defi-
nitions (4.2) of T and T ′ we obtain the inequality En(Λ′

α) ≤ En(Λα,ρ)+Rα with

Rα :=
(
δ1En(T )+δ2

)(
En(T )+1

)
1−δ1

(
En(T )+1

) =O
(
δ1

(
En(Λα,ρ)+a

)+δ2
)(

En(Λα,ρ)+a +1
))

If En(Λ′
α) =O (1), then also En(Λα,ρ) =O (1) due to (3.17), so

O
(
δ1

(
En(Λα,ρ)+a

)+δ2
)=O (δ1 +δ2) =O (α

ρ−3
4 +α ρ−1

4 ) =O (α
ρ−1

4 ),

and finally Rα =O (α
ρ−1

4 ).
Let En(Λ′

α) → +∞. Due to (3.17) we have En(Λα,ρ) = O
(
En(Λ′

α)
)

and then En(Λα,ρ + a + 1
) =

O
(
En(Λα,ρ

) = O
(
En(Λ′

α)
)
. The substitition of these estimates and (4.9) into the expression for Rα

gives the result.

Theorem 4.3 (Effective operator). Let n ∈N be fixed and ϑ ∈ ( 1
6 , 1

4 ).

(i) If En(Λ′
α) =O (1) for α→+∞, then En(Qα) =−α−k∗α+En(Λ′

α)+O (α−ϑ) for α→+∞.

(ii) If En(Λ′
α) →+∞ for α→+∞, then for α→+∞ one has

En(Qα) =−α2 −k∗α+En(Λ′
α)+O

(
α−ϑ(α− 1

2 En(Λ′
α)+1

)
En(Λ′

α)
)
.

Proof. (i) The substitution of the result of Lemma 4.2 into Corollary 3.7 shows that for any ρ ∈ (0, 1
3 )

and σ,τ ∈ (0, 1
3 ) one has En(Qα) =−α2−αk∗ = En(Λ′

α)+O (α−σ+α− 1−ρ
4 +α−τ). Denoting ϑ := 1−ρ

4 ∈
( 1

6 , 1
4 ) and taking any σ ∈ (ϑ,1) and τ ∈ (ϑ, 1

3 ) we arrive at the sought conclusion.
(ii) One proceeds in the same way: The result of Lemma 4.2 is substituted into Corollary 3.7,

which gives, with ϑ := 1−ρ
4 ∈ ( 1

6 , 1
4 ) and with any σ ∈ (0,1) and τ ∈ (0, 1

3 ),

En(Qα) =−α2 −k∗α= En(Λ′
α)+O

([
α−ϑ(α− 1

2 En(Λ′
α)+1

)+α−τ+α−σ]
En(Λ′

α)+α−τ+α−σ
)
.

and we obtain the sought result by taking any σ ∈ (ϑ,1) and τ ∈ (ϑ, 1
3 ).
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5 Main results

Now we apply Theorem 4.3 to several specific situations. The first one is very straightforward:

Theorem 5.1 (Constant curvature). Assume that the curvature k is constant on (0,ℓ), i.e. k ≡ k∗,
then for any fixed n ∈N and ϑ ∈ ( 1

6 , 1
4 ) there holds

En(Qα) =−α2 −k∗α− k2∗
2 + π2

n2ℓ2 +O (α−ϑ) for α→+∞.

Proof. For k ≡ k∗ on (0,ℓ) the operatorΛ′
α is independent ofα: there holdsΛ′

α = D− k2∗
2 with D :=the

Dirichlet Laplacian on (0,ℓ), so we are in the situation of Theorem 4.3, while

En(Λ′
α) = En(D)− k2∗

2
= π2n2

ℓ2
− k2∗

2
.

Another case which can be directly deduced from the existing results is as follows:

Theorem 5.2 (Maximum curvature attained inside Γ). Let m ∈ 2N and the boundary ∂Ω be C m+3-
smooth. Assume that k assumes its strict maximum on [0,ℓ] at some point s∗ ∈ (0,ℓ) such that
k(m)(s∗) < 0 and k( j )(s∗) = 0 for all j ∈ {1, . . . ,m −1}. Then for and fixed n ∈ N and α→+∞ there
holds

En(Qα) =−α2 −k∗α+
(
− k(m)(0)

m!

) 2
m+2

En(Zm)α
2

m+2 +O (α
1

m+2+ε),

with any ε> 0 for m = 2 and ε= 0 for m ≥ 4, where Zm is the Schrödinger operator in L2(R) given by

(Zm f )(t ) =− f ′′(t )+ t m f (t ).

In particular, for m = 2 one has for any ε> 0

En(Qα) =−α2 −k∗α+ (2n −1)
√

−k ′′(0)
2 ·pα+O (α

1
4+ε). (5.1)

Proof. Denote U := k∗−k, and let D be the Dirichlet Laplacian in L2(0,ℓ). The analysis of D +αU
is covered by the classical results of semiclassical analysis [9, 14, 22], in particular, for any fixed
n ∈Nwe have

En(D +αU ) =
(U (m)(0)

m!

) 2
m+2

En(Zm)α
2

m+2 +O (α
1

m+2 ),

see [22, Theorem 2.1], and then En(Λ′
α) = En(D+αU )+O (1). The substitution into Theorem 4.3(ii)

gives

En(Qα) =−α2 −k∗α+
(U (m)(0)

m!

) 2
m+2

En(Zm)α
2

m+2 +O (α
1

m+2 +α 2
m+2−ϑ)

with any ϑ ∈ ( 1
6 , 1

4 ), which gives the claim (remark that for m ≥ 4 it is possible to choose ϑ≥ 1
m+2 ).

The formula (5.1) follows by the using the well-known formulas for the eigenvalues of Z2 (one-
dimensional harmonic oscillator), En(Z2) = 2n −1.

In order to cover several cases of variable curvature with a minimum attained at an end point
of Γ, for m ∈N and β> 0 we denote by Sm,β the Schrödinger operator in L2(0,+∞) given by

(Sm,β f )(t ) =− f ′′(t )+βt m f (t ) (5.2)

with Dirichlet boundary condition. It is standard to see that Sm,β has compact resolvent and all its
eigenvalues are simple. In addition, the homogeneity of the potential implies

En(Sm,β) =β 2
2+m En(Sm,1) for all m,n ∈N and β> 0. (5.3)

The following result is a straightforward adaptation of the known results of semiclassical results
to the case of a potential attaining its minimum at a boundary point.
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Lemma 5.3. Let a > 0 and m ∈N. Let U ∈C m+1([0, a]) with U (0) = 0 such that

(i) the point 0 is a strict minimum of U on [0, a], i.e. U (t ) > 0 for all t ∈ (0, a],

(ii) U (m)(0) > 0 and U ( j )(0) = 0 for all j ∈ {1, . . . ,m −1}.

Let D be the Dirichlet Laplacian in L2(0, a), then for α→+∞ one has

En(D +αU ) =
(U (m)(0)

m!

) 2
2+m

En(Sm,1)α
2

2+m +O (α
2

3+m ).

Proof. For an interval I ⊂R it will be convenient to denote D I :=the Dirichlet Laplacian in L2(I ), in
particular D = D(0,a). Further define the constants

M := U (m)(0)
m! > 0, N := ∥∥U (m+1)

(m+1)!

∥∥∞,

and the function
U0 : t 7→ M t m .

Let ε ∈ (0, M
2

)
, then there exists δ> 0 with δN < 1 such that∣∣U (t )−U0(t )

∣∣≤ N t m+1 for all t ∈ (0,δ). (5.4)

In particular, one can choose some δ0 ∈ (0, a) such that M t m

2 ≤ U (t ) ≤ 3M t m

2 for all t ∈ (0,δ0). Let
c := min

t∈[δ0,a]
U (t ), then c > 0 by (i), and

U (t ) ≥ min
{

M t m

2 ,c
}

for all t ∈ (0, a). (5.5)

Let n ∈ N be fixed. Let q > 0 (the precise value will be chosen later). The min-max principle
gives the upper bound

En(D +αU ) ≤ En(D(0,2α−q ) +αU ). (5.6)

For a lower bound we pick two C∞-smooth functions χ1,χ2 : R→ R with χ2
1 +χ2

2 = 1 such that
χ1(t ) = 1 for all t ≤ 1 and χ2(t ) = 1 for all t ≥ 2, and define χ j ,α := χ j (αq · ). For any f ∈ H 1

0 (0, a)
one has the obvious relation ∥ f ∥2

L2(0,a)
= ∥χ1,α f ∥2

L2(0,2α−q )
+∥χ2,α f ∥2

L2(α−q ,a)
and the so-called IMS

formula ∫ a

0

(| f ′|2 +αU | f |2 +Wα| f |2
)
d t =

∫ 2α−q

0

(∣∣(χ1,α f )′
∣∣2 +αU |χ1,α f |2

)
d t

+
∫ a

α−q

(∣∣(χ2,α f )′
∣∣2 +αU |χ2,α f |2

)
d t

with Wα := |χ′1,α|2 + |χ′2,α|2. The left-hand side is the sesquilinear form for the operator D +αU +
Wα computed on ( f , f ), while then the right-hand side is the sesquilinear form for the operator
(D(0,2α−q ) +αU )⊕ (D(α−q ,a) +αU ) computed on

(
(χ1,α f ,χ2,α f ), (χ1,α f ,χ2,α f )

)
. The min-max prin-

ciple implies

En(D +αU +Wα) ≥ En

(
(D(0,2α−q ) +αU )⊕ (D(α−q ,a) +αU )

)
≥ min

{
En(D(0,2α−q ) +αU ),E1(D(α−q ,a) +αU )

}
.

(5.7)

By (5.5) one has αU (t ) ≥ M
2 α

1−mq for all t ∈ (α−q , a), which yields the lower bound E1(D(α−q ,a) +
αU ) ≥ M

2 α
1−mq .
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Now let p > q , thenα−p ≤ 2α−q . Due to (5.5) for all t ∈ (0,α−p ) we have U (t ) ≤ 3M
2 α1−pm , which

shows

En(D(0,2α−q ) +αU ) ≤ En(D(0,α−p ) +αU ) ≤ En(D(0,α−p ))+ 3M

2
α1−pm = π2

n2
α2p + 3M

2
α1−pm .

From now on assume
q ∈ (

0, 1
m+2

)
(5.8)

and set p := 1
m+2 , then En(D(0,2α−q ) +αU ) =O (α

2
m+2 ) < E1(D(α−q ,a) +αU ), and from (5.7) we obtain

En(D +αU +Wα) ≥ En(D(0,2α−q )+αU ). Taking into account ∥Wα∥∞ =O (α2q ) and (5.6) we arrive at

En(D +αU ) = En(D(0,2α−q ) +αU )+O (α2q ). (5.9)

For all t ∈ (0,2α−q ) by (5.4) one has
∣∣U (t )−U0(t )

∣∣≤ 2m+1Nα−(m+1)q , then

En(D(0,2α−q ) +αU ) = En(D(0,2α−q ) +αU +α(U −U0)
)= En(D(0,2α−q ) +αU0)+O (α1−(m+1)q ),

and the substitution into (5.9) gives

En(D +αU ) = En(D(0,2α−q ) +αU0)+O (α2q +α1−(m+1)q ). (5.10)

Now we are going to compare the eigenvalues of D(0,2α−q ) +αU0 with those of Sm,Mα, see (5.2).
The min-max-principle gives the upper bound

En(Sm,Mα) ≤ En(D(0,2α−q ) +αU0). (5.11)

With the functions χ j ,α and Wα introduced above we have again the identity

∥ f ∥2
L2(0,+∞) = ∥χ1,α f ∥2

L2(0,2α−q ) +∥χ2,α f ∥2
L2(α−q ,+∞)

and ∫ +∞

0

(| f ′|2 +αU0| f |2 +Wα| f |2
)
d t =

∫ 2α−q

0

(∣∣(χ1,α f )′
∣∣2 +αU0|χ1,α f |2

)
d t

+
∫ +∞

α−q

(∣∣(χ2,α f )′
∣∣2 +αU0|χ2,α f |2

)
d t

for all f ∈ H 1
0 (0,+∞) such that the left-hand side is finite. The left-hand side is the sesquilinear

form for the operator Sm,Mα+Wα computed on ( f , f ) and the right-hand side is the sesquilinear
form for (D(0,2α−q )+αU0)⊕Bα computed on

(
(χ1,α f ,χ2,α f ), (χ1,α f ,χ2,α f )

)
, where Bα is the operator

acting as f 7→ − f ′′+αU0 f in L2(α−q ,+∞) with Dirichlet boundary condition. Using ∥Wα∥∞ =α2q

and U0(t ) ≥ Mα−mq for all t ∈ (α−q ,+∞) we obtain E1(Bα) ≥ Mα1−mq and then

En(Sm,Mα)+O (α2q ) = En(Sm,Mα+Wα) ≥ En
(
(D(0,2α−q ) +αU0)⊕Bα

)
≥ min

{
En(D(0,2α−q ) +αU0),E1(Bα)

}
≥ min

{
En(D(0,2α−q ) +αU0), Mα1−mq

}
.

(5.12)

For any δ ∈ (0,2α−q ) one has U0(t ) ≤ 2m Mδm for all t ∈ (0,δ), therefore,

En(D(0,2α−q ) +αU0) ≤ En(D(0,δ) +αU0) ≤ En(D(0,δ))+2m Mαδm = π2n2

δ2
+2m Mαδm ,

and for δ := α− 1
m+2 this results in En(D(0,2α−q ) +αU0) = O (α

2
m+2 ). Using (5.8) and (5.12) yields

En(Sm,Mα) ≥ En(D(0,2α−q ) +αU0)+O (α2q ), and by combining with (5.11) we arrive at the asymp-
totics En(D(0,2α−q ) +αU0) = En(Sm,Mα)+O (α2q ). The substitution into (5.10) with q := 2

m+3 gives

En(D+αU ) = En(Sm,Mα)+O (α
2

m+3 ), and we conclude the proof by using En(Sm,Mα)
(5.2)= (αM)

2
2+m En(Sm,1).
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Theorem 5.4 (Maximum curvature attained at an endpoint of Γ). Let m ∈N and assume that:

• the boundary ∂Ω is C m+3-smooth,

• the curvature k has its unique global maximum on [0,ℓ] at 0, i.e. k(s) < k∗ ≡ k(0) for all
s ∈ (0,ℓ],

• there holds k(m)(0) < 0 and k( j )(0) = 0 for all j ∈ {1, . . . ,m −1}.

Then for any fixed n ∈N and α→+∞ one has

En(Qα) =−α2 −k∗α+
(
− k(m)(0)

m!

) 2
m+2

En(Sm,1)α
2

m+2 +O (αq ), (5.13)

with any q > 7
12 for m = 1 and q = 2

m+3 for if m ≥ 2, and the operator Sm,1 is defined in (5.2). In
particular,

• for m = 1:

En(Qα) =−α2 −k∗α+an
(−k ′(0)

) 2
3α

2
3 +O (αq ), (5.14)

where (−an) is the n-th zero of the Airy function Ai and q > 7
12 is arbitrary,

• for m = 2:

En(Qα) =−α2 −k∗α+ (4n −1)

√
−k ′′(0)

2
·pα+O (α

2
5 ). (5.15)

Proof. Let n ∈ N be fixed. We denote again U := k∗−k, V := k2∗−2kk∗−k2

4 , then Λ′
α = D +αU +V ,

where D is the Dirichlet Laplacian in L2(0,ℓ), and note that V is bounded and independent of α.
The function U satisfies the assumptions of Lemma 5.3 on (0,ℓ), with U (m)(0) = −k(m)(0), so we
obtain

En(Λ′
α) = En(D +αU )+O (1) =

(
− k(m)(0)

m!

) 2
m+2

En(Sm,1)α
2

m+2 +O (α
2

m+3 ).

The substitution into Theorem 4.3(ii) gives, for any ϑ ∈ ( 1
6 , 1

4 ),

En(Qα) =−α2 −k∗α+
(
− k(m)(0)

m!

) 2
m+2

En(Sm,1)α
2

m+2 +Rα

with Rα =O
(
α

2
m+3 +α−ϑ(α− 1

2α
2

m+3 +1
)
α

2
2+m

)
.

For m = 1 one has Rα =O (α
1
2 +α 1

6−ϑα
2
3 ), and forϑ close to 1

4 one obtains Rα =O (αq ) for any q > 7
12 .

If m ≥ 2, then α− 1
2α

2
2+m +1 = O (1), and then Rα = O (α

2
m+3 +α 2

2+m −ϑ) = O (α
2

m+3 ) as ϑ≥ 2
(m+2)(m+3) ∈

(0, 1
10 ].
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