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Abstract. We discuss the spectral properties of three-dimensional Dirac opera-
tors with critical combinations of electrostatic and Lorentz scalar shell interactions
supported by a compact smooth surface. It turns out that the criticality of the
interaction may result in a new interval of essential spectrum. The position and
the length of the interval are explicitly controlled by the coupling constants and
the principal curvatures of the surface. This effect is completely new compared to
lower dimensional critical situations or special geometries considered up to now,
in which only a single new point in the essential spectrum was observed.

1. Introduction

The three-dimensional Dirac operator D with fixed mass m ∈ R acts on C4-valued
vector functions (spinors) u as

D : u 7→ −i
∑

j∈{1,2,3}

αj ∂ju+mβu,

where ∂j is the partial derivative with respect to the jth variable (in any orthogonal
Cartesian basis of R3) and (α1, α2, α3, β) is a family of four anticommuting 4 × 4
hermitian matrices such that the square of each of them is the identity matrix. The
maximal realization H0 of D in L2(R3,C4), given by

H0 : u 7→ Du, domH0 := H1(R3,C4),

is a self-adjoint operator in L2(R3,C4); it is the free Dirac operator playing a central
role in relativistic quantum mechanics. In fact, many relativistic quantum Hamil-
tonians have the form H0 + V with potential perturbations V : we refer to the book
[27] for a detailed discussion. The present paper is devoted to the spectral analysis
of the operators formally written as

H := H0 + (ε+ µβ)δΣ, (1)

where ε and µ are real parameters and δΣ is the Dirac distribution supported by
a compact surface Σ ⊂ R3. Such operators represent limiting models of potential
interactions strongly localized near Σ (the parameter ε is usually referred to as the
strength of the electrostatic shell interaction supported by Σ, while µ is the strength
of the Lorentz shell interaction), and they are rigorously defined using transmission
conditions along Σ. It seems that the operators of the above type were first studied
in [13] for the case when Σ is a sphere, while the case of general Σ was introduced
in [2, 3].
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In order to avoid technicalities we assume that Σ is C∞ smooth (recall that it
is also compact). By applying the Jordan-Brouwer separation theorem to each
connected component of Σ one finds a bounded open set Ω+ with smooth boundary
∂Ω+ = Σ. We further set Ω− := R3 \ Ω+ and denote by ν the smooth unit normal
on Σ pointing to Ω−. For a function u defined on R3 \ Σ we denote by u± its
restrictions on Ω±, and if u± admit suitably defined traces on Σ, one defines δΣu to
be the distribution defined by

〈δΣu, ϕ〉 :=

∫
Σ

u+ + u−
2

ϕ ds

for any test function ϕ on R3. For such a function u, the condition that the distri-
bution Du+ (ε+ µβ)δΣu contains no summands with δΣ is then (at least formally)
equivalent to the transmission condition (compensation of singularities)

i(α · ν) (u+ − u−) + (ε+ µβ)
u+ + u−

2
= 0 on Σ, (2)

where we use the same symbol for functions and their traces on Σ for a better
readability, and for x = (x1, x2, x3) ∈ R3 the traditional notation

α · x := x1α1 + x2α2 + x3α3 (3)

is used. Then by the operator H formally written as (1) we actually understand the
linear operator H in L2(R3,C4) acting as

H : u 7→ Du in the sense of distributions on R3 \ Σ

on the maximal domain

domH :=
{
u ∈ L2(R3,C4) : Du ∈ L2(R3 \ Σ,C4)

and u satisfies the transmission condition (2)
}

;

recall that the traces of u± on Σ are then well-defined by duality as elements of

H−
1
2 (Σ,C4).

The operator H was already analyzed for a variety of situations, and main ob-
servations can be summarized as follows. If ε2 − µ2 6= 4, then the operator H is
self-adjoint. Moreover, its domain is contained in H1(R3 \ Σ), the essential spec-
trum coincides with the spectrum of the free Dirac operator H0, i.e. there holds
specessH = specH0 ≡

(
− ∞,−|m|

]
∪
[
|m|,∞

)
, and the discrete spectrum of H

in
(
− |m|, |m|

)
is at most finite. In other words, the spectral picture of H for

ε2 − µ2 6= 4 (which is usually referred to as the non-critical case) is a kind of classi-
cal one, i.e. it is a compactly supported perturbation which does not influence the
essential spectrum and which produces at most finitely many discrete eigenvalues,
see the papers [4, 7, 23] which also contains an overview of related results. As dis-
cussed in [24], the non-critical case corresponds exactly to the situations in which
the Lopatinski-Shapiro condition is satisfied.

It seems that the critical case ε2 − µ2 = 4 was first approached in [5, 22]: they
only considered the purely electrostatic case ε = ±2 and µ = 0 and have shown
that H is still self-adjoint but may have new portions of essential spectrum. Namely
it is shown in [5] that for any m 6= 0 one has 0 ∈ specess H if Σ is partially flat
(i.e. if it contains a non-empty relatively open subset of a plane). The paper [8]
established the self-adjointness of H for the general critical case (even under less
restrictive regularity assumptions for Σ), but the question of the essential spectrum
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for general Σ was not covered. The very recent preprint [7] shows the inclusion
−mµ

ε
∈ specess H for partially flat Σ.

The operator H admits a naturally defined counterpart in two dimensions, i.e.
a two-dimensional Dirac operator with an interaction supported by a closed curve,
which was studied in [6]. The respective family of operators is again parametrized
by (ε, µ) ∈ R2, and the same critical and non-critical cases arise. In the non-
critical case the conclusions were the same as in the three-dimensional case, but
the critical case ε2 − µ2 = 4 could be completely analyzed: it was shown that the
operator is self-adjoint on the natural maximal domain and that the criticality of
the perturbation results in the appearance of the new point −mµ

ε
in the essential

spectrum (if m 6= 0). In other words, the compactly supported critical perturbation
produces infinitely many eigenvalues in the initial gap of the essential spectrum.
We also mention that a complete characterization of the essential spectrum of H
was established in [8] in three dimensions, but for a special unbounded Σ (locally
perturbed plane), and the same spectral effect was found, i.e., the appearance of the
new point −mµ

ε
for any critical combination of parameters.

In the present paper, we resolve completely the problem of the essential spectrum
of H for all critical combinations of parameters (ε2 − µ2 = 4) and any smooth
compact surface Σ ⊂ R3. The spectral picture turns out to be quite different from
what could be predicted from all earlier observations, as shown in our main result:

Theorem 1. Let κ1 and κ2 be the principal curvatures on Σ and

AΣ := max
x∈Σ

∣∣κ1(x)− κ2(x)
∣∣.

If ε2 − µ2 = 4, then specess H =
(
−∞,−|m|

]
∪
[
|m|,∞

)
∪ J with

J :=
[
− mµ

ε
− AΣ

2|ε|
,−mµ

ε
+
AΣ

2|ε|

]
.

Therefore, for any critical perturbation of parameters the essential spectrum of
H consists of two (probably overlapping) portions having different nature. The first
portion,

(
−∞,−|m|

]
∪
[
|m|,∞

)
≡ specH0, is inherited from the free Dirac operator

and does not depend on Σ, while the second portion J (and which only becomes
visible for m 6= 0) is the interval of length AΣ

|ε| centered at the point −mµ
ε

, and it

strongly depends on the geometry of Σ. Remark that a similar structure of the
essential spectrum appears in some mixed order problems [15].

It is a well known result of differential geometry that the only connected closed
surfaces Σ ⊂ R3 with κ1 ≡ κ2 (which is equivalent to AΣ = 0 in our context) are
spheres [14, Sec. 3.2, Prop. 4]. Therefore, the case when Σ is the union of finitely
many disjoint spheres is the only one which produces a single new point in the
essential spectrum, and a critical shell interaction supported by any other Σ adds a
non-trivial interval to the essential spectrum. It may be of its own interest to look
for Σ that minimize AΣ under various constraints (which then minimize the length
of the new portion of the essential spectrum), which leads to the following open
problem:

Open problem 2. Which connected smooth surfaces Σ ⊂ R3 of genus g ≥ 1 and
fixed area minimize max |κ1 − κ2|, with κ1 and κ2 being the principal curvatures?
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Remark 3. One can easily obtain some estimates for AΣ in terms of simpler geo-
metric characteristics. The lower bound for the Willmore energy from [16] states
that for any connected smooth compact surface Σ ⊂ R3 of genus g ≥ 1 there holds∫

Σ

(κ1 + κ2)2 ds ≥ 8π2. (4)

As the Euler characteristics of Σ is χΣ := 2− 2g, the Gauss-Bonnet theorem gives∫
Σ

(κ1 − κ2)2 ds =

∫
Σ

(κ1 + κ2)2 ds− 4

∫
Σ

κ1κ2 ds

=

∫
Σ

(κ1 + κ2)2 ds− 4 · 2π(2− 2g) ≥ 8π2 + 16π(g − 1).

Using the trivial inequality

A2
Σ|Σ| ≥

∫
Σ

(κ1 − κ2)2 ds (5)

one arrives at the lower bound

AΣ ≥
2π√
|Σ|
·
√

2 +
4(g − 1)

π
≡ 2
√

2π√
|Σ|
·
√

1− χΣ

π
. (6)

However, this bound is never attained. In fact, if one had the equality in (6) for
some Σ, then would have equalities in both (4) and (5). It is shown in [16] that
the equality in (4) only holds for Clifford tori (some special tori of revolution). As
the difference of principal curvatures of Clifford tori is non-constant, the inequality
in (5) is strict. We further remark that the Clifford tori are not minimizers of AΣ

for g = 1 and constant |Σ|: a simple explicit computation shows that other tori of
revolution produce strictly smaller values of AΣ.

The rest of the text will be devoted to the proof of Theorem 1, so from now on
we assume that ε2 − µ4 = 4. The inclusion (−∞,−|m|] ∪ [|m|,∞) ⊂ specess H is
easily shown by constructing Weyl sequences supported away from Σ as in [5, Thm.
5.7], so we will only be interested in

(
− |m|, |m|

)
∩ specess H with m 6= 0. The

proof structure is as follows. In Section 2 we recall the reformulation of the spectral
problem in terms of matrix singular integral operators over Σ. Using the theory of
block operator matrices we reduce our problem to the essential spectrum of a pencil
of 2×2 integral operators Sλ over Σ, see (18). As the first step in the analysis of Sλ,
in Section 3 we compute the principal symbols of some auxiliary operators. These
computations are then used in Section 4 in order to complete the spectral study of
Sλ, which completes the proof of Theorem 1.

2. Preparations for the proof

Remark that there are many possible choices for αj and β, but it follows from
the theory of Clifford algebras that the resulting operators are unitarily equivalent
to each other and have the same spectra: see e.g. [12, Chapter 15] or the very
condensed discussion in [21, Lemma 2.4]. To have more explicit computations we
choose (α1, α2, α3, β) as

αk =

(
0 σj
σj 0

)
for j = 1, 2, 3, β =

(
I2 0
0 −I2

)
,
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where In is the n× n-identity matrix and (σ1, σ2, σ3) are the 2× 2 Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

By analogy with (3), for x = (x1, x2, x3) ∈ R3 we denote

σ · x := x1σ1 + x2σ2 + x3σ3,

which satsfies the identity

(σ · x)(σ · y) = 〈x, y〉I2 + iσ · (x× y), x, y ∈ R3, (7)

where 〈·, ·〉 and × are the usual scalar and cross vector product in R3 respectively.
Recall that the Dirac operator D satisfies (D−λ)2(D+λ) = −∆− (λ2−m2) and

the function

Ψz : x 7→ ei
√
z|x|

4π|x|
, =

√
z > 0,

is a fundamental solution of −∆ − z. One easily checks that for any |λ| ≤ |m| the
function Φλ := (D + λ)(Ψλ2−m2 ⊗ I4), i.e.

Φλ : x 7→ e−
√
m2−λ2|x|

4π|x|

(
λI4 +mβ +

(
1 +
√
m2 − λ2|x|

)
iα · x

|x|2

)
,

is a fundamental solution of D − λ. For the same λ define the singular integral
operators Cλ on L2(Σ,C4) by

Cλf(x) = lim
ρ↘0

∫
y∈Σ
|x−y|>ρ

Φλ(x− y)f(y) ds(y),

where ds stands for the integration with respect to the surface measure. It is well
known that Cλ : L2(Σ,C4) → L2(Σ,C4) is bounded and self-adjoint [2, Sec. 2],
satisfies (

(α · ν)Cλ
)2

=
(
Cλ(α · ν)

)2
= −1

4
I4, λ ∈ [−m,m], (8)

see [3, Lemma 2.2], and standard considerations [25, Chap. 7, Sec. 11] show that it
is a zero-order classical pseudodifferential operator on Σ, cf. [9, Thoerem 4.1]. The
operator Cλ is known to play a central role in the spectral analysis of H. To explain
the link, let ∆Σ be the negative Laplace-Beltrami on Σ and

L̃ := (1−∆Σ)
1
4

viewed as a pseudodifferential operator, then L̃ : Hs(Σ) → Hs− 1
2 (Σ) is an isomor-

phism for any s ∈ R. Consider now the operator

Λ̃λ := (L̃⊗ I4)
(1

4
(εI4 − µβ) + Cλ

)
(L̃⊗ I4)

acting in L2(Σ,C4) on the maximal domain, Remark that Λ̃λ is a first-order pseu-
dodifferential opperator, so it can be alternatively defined by starting on smooth
functions and then taking the closure. Our analysis will be based on the follow-
ing equivalence proved in [8, Lemma 4.1]: for any λ ∈

(
− |m|, |m|

)
one has the

equivalence

λ ∈ specess H ⇐⇒ 0 ∈ specess Λ̃λ. (9)

All subsequent analysis of H will be based on this relation and on the study of Λ̃λ.
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It will be convenient to consider the above 4×4 operators as 2×2 block operators
with 2× 2 blocks. Namely,

Φλ =

(
(λ+m)kλI2 wλ

wλ (λ−m)kλI2

)
,

kλ : x 7→ ei
√
m2−λ2|x|

4π|x|
, wλ : x 7→ e−

√
m2−λ2|x|

4π|x|

(
1 +
√
m2 − λ2|x|

)
iσ · x

|x|2
, (10)

which implies the block decomposition

Cλ =

(
(λ+m)Kλ ⊗ I2 Wλ

Wλ (λ−m)Kλ ⊗ I2

)
,

with bounded self-adjoint operators Kλ in L2(Σ) and Wλ in L2(Σ,C2) defined by

Kλg(x) =

∫
Σ

kλ(x− y)g(y) ds(y), g ∈ L2(Σ), x ∈ Σ,

Wλg(x) = lim
ρ↘0

∫
y∈Σ
|x−y|>ρ

wλ(x− y)g(y) ds(y), g ∈ L2(Σ,C2), x ∈ Σ,
(11)

and then the equality (8) reads as(
(σ · ν)Wλ

)2
+ (λ2 −m2)

(
(σ · ν)(Kλ ⊗ I2)

)2
= −1

4
I2. (12)

This gives the representation

Λ̃λ =

[L̃( ε−µ4
+ (λ+m)Kλ

)
L̃
]
⊗ I2 (L̃⊗ I2)Wλ(L̃⊗ I2)

(L̃⊗ I2)Wλ(L̃⊗ I2)
[
L̃
(
ε+µ

4
+ (λ−m)Kλ

)
L̃
]
⊗ I2

 . (13)

Let us proceed with an interpretation of the blocks of Λ̃λ as pseudodifferential
operators. In order to fix various 2π-like factors we remark that all conventions will
correspond to the initial definition of the Fourier transform in Rn by

f̂(ξ) =

∫
Rn
e−i〈x,ξ〉f(x) dx

for f in the Schwartz class of functions, and we denote by Op Smn the class of classical
pseudodifferential operators of order ≤ m acting on sections of Σ × Cn and refer
to [25, 26] for basic definitions and properties of pseudodifferential operators on
manifolds. It follows from the standard approach treating layer potential operators
as pseudodifferential operators, see [25, Chap. 7, Sec. 11], that Kλ ∈ Op S−1

1 and
Wλ ∈ Op S0

2.

Remark 4 (Special coordinates near a point of Σ). We will compute all princi-
pal symbols for a specific choice of local coordinates on Σ. Namely, let x ∈ Σ
and consider the respective Weingarten map Mx := − dν|x : TxM → TxM . The
eigenvalues κ1(x) and κ2(x) of Mx are called the principal curvatures of Σ in x.
As Mx is self-adjoint with respect to the scalar product inherited from R3, there
exists an orthonormal basis (e1, e2) in TxM (we omit its dependence on x) such that
Mxej = κj(x)ej for j ∈ {1, 2} and that the orthonormal basis

(
e1, e2, ν(x)

)
of R3

is positively oriented. Then one can construct a local chart ϕ : R2 ⊃ U → V ⊂ Σ
near x, with 0 ∈ U , ϕ(0) = 0, ∂jϕ(0) = ej for j ∈ {1, 2}. The coordinates defined
by ϕ will be referred to as special coordinates near x. Remark that the matrix of
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the metric tensor at x in these coordinates coincides then with I2, and the matrix
of Mx is diag

(
κ1(x), κ2(x)

)
.

The following properties of Kλ are well known, but we include a proof for the sake
of competeness (and as a warm-up for the subsequent constructions).

Lemma 5. For any |λ| ≤ |m| the operator Kλ is positive and injective in L2(Σ),
and Kλ ∈ Op S−1

1 with principal symbol

pKλ : (x, ξ) 7→ 1

2|ξ|
in the above special coordinates near x. Moreover, Kλ : Hs(Σ) → Hs−1(Σ) is an
isomorphism for any s ∈ R.

Proof. Consider the single layer potential Kλ for −∆ +m2 − λ2,

Kλg(x) =

∫
Σ

kλ(x− y)g(y) ds(y), g ∈ L2(Σ), x ∈ R3.

and briefly recall its properties [17, Chapter 9]. One has (−∆ + m2 − λ2)Kλg = 0
in Ω±. For |λ| = |m| one has ∇Kλg ∈ L2(Ω±) with lim|x|→∞Kλg(x) = 0, while
Kλg ∈ H1(Ω±) for |λ| < |m|. The trace of Kλg on Σ coincides with Kλg, and one
has the jump relation ∂+

ν Kλg − ∂−ν Kλg = g on Σ, where ∂±ν is the outer normal
derivative for Ω±.

Let |λ| < |m|, then using the Green formula we have

(λ2 −m2)
∥∥Kλg

∥∥2

L2(Ω±)
=
〈
Kλg,−∆Kλg

〉
L2(Ω±)

=
∥∥∇Kλg‖2

L2(Ω±) ∓ 〈Kλg, ∂
±
ν Kλg〉L2(Σ).

Using the above jump relation one obtains then

〈Kλg, g〉L2(Σ) = 〈Kλg, ∂
+
ν Kλg〉L2(Σ) − 〈Kλg, ∂

−
ν Kλg〉L2(Σ)

=
∥∥∇Kλg‖2

L2(Ω+) +
∥∥∇Kλg‖2

L2(Ω−) + (m2 − λ2)
∥∥Kλg

∥∥2

L2(R3)
≥ 0.

If Kλg = 0 for some g ∈ L2(Σ), then the last equation gives Kλg ≡ 0, and the jump
relation on Σ gives g = 0.

For |λ| = |m| we obtain in the same way

〈Kλg, g〉L2(Σ) =
∥∥∇Kλg‖2

L2(Ω+) +
∥∥∇Kλg‖2

L2(Ω−) ≥ 0.

If Kλg = 0 for some g ∈ L2(Σ), then ∇Kλg = 0 in L2(Ω±) and it follows that Kλg
is constant on each connected component of R3 \ Σ. Due to the decay at infinity,
Kλg = 0 on the unbounded component, then the continuity along Σ shows that Kλg
is identically zero, and the jump relation on Σ gives g = 0.

Let us compute the principal symbol of Kλ. For any convolution kernel k(x, y)
we will denote by Tk the associted integral operator. First observe that kλ(x) =
k±m(x) + kλ,1(x), where kλ,1 is bounded near 0, which shows that Tkλ,1 ∈ Op S−2

1 .
Hence, it is sufficient to compute the principal symbol of Km.

Let x ∈ Σ and choose a special coordinates (U, V, ϕ) near x as in Remark 4. Let
ψj ∈ C∞c (Σ), j ∈ {1, 2}, be real-valued with suppψj ⊂ V . Let Dϕ be the Jacobi
matrix of ϕ and

Gϕ(t) := Dϕ(t)TDϕ(t), gϕ(t) :=
√

detGϕ(t). (14)
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Recall that for any f ∈ C∞(Σ) we have

ψ2

(
ϕ(s)

)
Kλ(ψ1f)

(
ϕ(s)

)
= ψ2

(
ϕ(s)

) ∫
U

kλ
(
ϕ(s)− ϕ(t)

)
ψ1

(
ϕ(t)

)
f
(
ϕ(t)

)
gϕ(t) dt.

For small |s− t| we have∣∣ϕ(s)− ϕ(t)
∣∣ =

√〈
(s− t), Gϕ(s)(s− t)

〉(
1 +O

(
|s− t|

))
,

gϕ(t) = gϕ(s) +O
(
|s− t|

)
,

(15)

so we can represent(
ψ2Km(ψ1f)

)(
ϕ(s)

)
= ψ2

(
ϕ(s)

)
gϕ(s)

∫
U

ψ1

(
ϕ(t)

)
f(ϕ(t))

4π
√〈

(s− t), Gϕ(s)(s− t)
〉 dt

+
(
ψ2Tkλ,2(ψ1f)

)(
ϕ(s)

)
,

(16)

with some kernel kλ,2 bounded near 0, and we again deduce Tkλ,2 ∈ Op S−2
1 .

Consider the homogeneous function

ha : R2 3 t 7→ 1

4π
√〈

t, Gϕ(a)t
〉 ,

then the equality (16) takes the form[(
ψ2Km(ψ1f)

)]
(ϕ(s)) = ψ2

(
ϕ(s)

)
gϕ(s)

[
hs∗
(
(ψ1f)◦ϕ

)]
(s)+

(
ψ2Tkλ,2(ψ1g)

)(
ϕ(s)

)
,

where ∗ is the convolution product on R2. This shows that the principal symbol

in the chosen coordinates is gϕ(s) ĥs(ξ). The point x corresponds to s = 0, and
Gϕ(0) = I2 and gϕ(0) = 1. Then

h0(t) =
1

4π|t|
, ĥ0(ξ) =

1

2|ξ|
,

so we obtain that the principal symbol of Km at x is pKm(x, ξ) = 1
2|ξ| .

As the principal symbol of Kλ does not vanish for ξ 6= 0, the operator Kλ is
elliptic of order (−1), so Kλ : Hs(Σ) → Hs+1(Σ) is Fredholm of index 0 for any
s ∈ R. As we have already shown that Kλ is injective on L2(Σ), we then deduce
that Kλ : Hs(Σ)→ Hs+1(Σ) is an isomorphism and the proof is complete. �

Now let get back to the condition 0 ∈ specess Λ̃λ with Λ̃λ from (13). In view of
Lemma 5 the well-defined operator

Lλ := K
− 1

2
λ , λ ∈

[
− |m|, |m|

]
is an isomorphism between Hs(Σ) and Hs− 1

2 (Σ) for any s ∈ R. Then LλL̃
−1 is an

isomorphism of Hs(Σ) for any s ∈ Σ, and the condition 0 ∈ specess Λ̃λ becomes
equivalent to

0 ∈ specess Λλ (17)
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with the operators Λλ in L2(Σ;C4) given by

Λλ :=
[
(LλL̃

−1)⊗ I4

]
Λ̃λ

[
(L̃−1Lλ)⊗ I4

]
=

[Lλ( ε−µ4
+ (λ+m)Kλ

)
Lλ

]
⊗ I2 (Lλ ⊗ I2)Wλ(Lλ ⊗ I2)

(Lλ ⊗ I2)Wλ(Lλ ⊗ I2)
[
Lλ
(
ε+µ

4
+ (λ−m)Kλ

)
Lλ

]
⊗ I2


=:

(
Λ11
λ Λ12

λ

Λ21
λ Λ22

λ

)
defined first on C∞(Σ,C2) and then extended by taking the closure, which is equiv-
alent to taking the maximal domain as it is a first-order pseudodifferential operator.

We know that Kλ ≥ 0 by Lemma 5. For λ ∈
(
−|m|, |m|

)
the numbers λ+m and

λ −m have opposite signs, while the numbers ε + µ and ε − µ have the same sign
due to (ε+µ)(ε−µ) ≡ ε2−µ2 = 4. To be definite we assume that ε+µ and λ+m
have the same signs, then Λ11

λ is invertible for all λ ∈
(
− |m|, |m|

)
(if ε + µ and

λ+m have opposite signs, then one procceds in the same way using the invertibility
of Λ22

λ ). It follows by the theory of block operator matrices [28, Thm. 2.4.6] that
(17) holds if and only if 0 ∈ specess Sλ, where Sλ is the Schur complement of Λλ,
which is defined by

Sλ = Λ22
λ − Λ21

λ

(
Λ11
λ

)−1
Λ12
λ

≡ 1
ε−µL

2
λ + (λ−m)LλKλLλ − LλWλLλ

(
1

ε+µ
L2
λ + (λ+m)LλKλLλ

)−1

LλWλLλ

and viewed as an operator in L2(Σ,C2) defined first on C∞(Σ,C2) and then extended
by taking the closure; for simplicity of writing from now on we denote Lλ ⊗ I2 and
Kλ ⊗ I2 again by Lλ and Kλ respectively. In view of (9), the preceding discussion
shows that for any λ ∈

(
− |m|, |m|

)
one has the equivalence

λ ∈ specess H ⇐⇒ 0 ∈ specess Sλ. (18)

3. Principal symbols

In order to study specess Sλ we need to better understand the operators Wλ defined
in (11) and the anticommutator

Zλ := (σ · ν)Wλ +Wλ(σ · ν).

From the previous consideration one has at least Zλ ∈ Op S0
2, but we are going to

see that actually Zλ ∈ Op S−1
2 . We collect all observations in the following theorem.

Theorem 6. Let λ ∈ [−|m|, |m|], then the principal symbols pWλ
of Wλ and pZλ of

Zλ in the special coordinates defined in Remark 4 near x ∈ Σ are

pWλ
(x, ξ) =

1

2
σ ·
(
ξ1e1 + ξ2e2

|ξ|

)
,

pZλ(x, ξ) =
1

2

(
κ1(x)− κ2(x)

)
(σ · ν(x))

ξ1ξ2

|ξ|3
.
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Proof. The computations are very close to the respective part of the proof in
Lemma 5. For a convolution kernel k let Tk denote the associated integral oper-
ator. Recall that for small |x| we have

wλ(x) ≡ e−
√
m2−λ2|x|

(
1 +
√
m2 − λ2|x|

)
iσ · x

4π|x|3

=
(
1−
√
m2 − λ2|x|+O(|x|2)

) (
1 +
√
m2 − λ2|x|

)
iσ · x

4π|x|3

=
(
1 +O(|x|2)

)
iσ · x

4π|x|3
= wm(x) + wλ,1(x)

with |wλ,1(x)| = O(1) for |x| → 0, therefore, Twλ,1 ∈ Op S−2
2 . As σ · ν ∈ Op S0

2, it is
sufficient to show the assertions for Wm and Zm only.

Let x ∈ Σ. We again introduce a special local chart (U, V, ϕ) as in Remark 4 and
make use of (14) and (15). Take any ψj ∈ C∞c (V ), j ∈ {1, 2}, and recall the explicit
form of the kernel wm,

wm(y) =
1

4π|y|3
iσ · y.

For any s ∈ U we have[
ψ2Wm(ψ1f)

](
ϕ(s)

)
= ψ2

(
ϕ(s)

)
) p. v.

∫
U

iσ · ϕ(s)− ϕ(t)

4π
∣∣ϕ(s)− ϕ(t)

∣∣3ψ1(ϕ(t))f(ϕ(t))gϕ(t) dt

+
[
ψ2Twλ,1(ψ1f)

](
ϕ(s)

)
,

and using (14) and (15) we rewrite it as[
ψ2Wm(ψ1f)

](
ϕ(s)

)
= ψ2

(
ϕ(s)

)
gϕ(s) p. v.

∫
U

iσ · Dϕ(s)(s− t)

4π
〈
(s− t), Gϕ(s)(s− t)

〉 3
2

ψ1(ϕ(t))f(ϕ(t)) dt

+
[
ψ2Twλ,2(ψ1f)

](
ϕ(s)

)
,

for some kernel wλ,2 with |wλ,2(x)| = O(|x|−1) for |x| → 0, so Twλ,2 ∈ Op S−1
2 . If one

considers the following matrix-valued homogeneous distribution ha on R2,

ha := p. v. iσ · Dϕ(a)t

4π
〈
t, Gϕ(a)t

〉 3
2

,

the above can be rewritten as[(
ψ2Wm(ψ1f)

)]
(ϕ(s)) = ψ2

(
ϕ(s)

)
gϕ(s)

[
hs∗
(
(ψ1f)◦ϕ

)]
(s)+

(
ψ2Twλ,2(ψ1g)

)(
ϕ(s)

)
,

and the principal symbol ofWλ in the chosen coordinates is gϕ(s)ĥa(ξ). Now consider
the symbol at x, i.e. for s = 0. Due to the special choice of coordinates one has
Gϕ(0) = I2 and gϕ(0) = 1. In addition, Dϕ(0)t = t1e1 + t2e2, which gives

h0 = p. v. iσ · t1e1 + t2e2

4π|t|3
.



11

Using (
p. v.

tj
2π|t|3

)̂
(ξ) = −i ξj

|ξ|
, j ∈ {1, 2}, (19)

we obtain the required form of the principal symbol of wm at x.
To analyze Zm we remark first that it is given by

Zmf(x) = lim
ρ↘0

∫
y∈Σ
|x−y|>ρ

zm(x, y)f(y) ds(y)

with the singular kernel

zm(x, y) =
(
σ · ν(x)

)
wm(x− y) + wm(x− y)

(
σ · ν(y)

)
=

i

4π|x− y|3
((
σ · ν(x)

)
σ · (x− y) + σ · (x− y)

(
σ · ν(y)

))
.

Using (7) we transform(
σ · ν(x)

)
σ · (x− y) + σ · (x− y)

(
σ · ν(y)

)
=
〈
ν(x), x− y

〉
I2 + iσ

(
ν(x)× (x− y)

)
+
〈
x− y, ν(y)

〉
I2 + iσ ·

(
(x− y)× ν(y)

)
=
〈
ν(x) + ν(y), x− y

〉
I2 + iσ ·

[(
ν(x)− ν(y)

)
× (x− y)

]
.

This gives the representations

zm(x, y) = θ(x, y) + θ1(x, y),

θ(x, y) := − 1

4π|x− y|3
σ ·
[(
ν(x)− ν(y)

)
× (x− y)

]
,

θ1(x, y) :=

〈
ν(x) + ν(y), x− y

〉
|x− y|3

I2,

and Zm = Tθ + Tθ1 . Now remark that Tθ1 = (N ′ −N)⊗ I2, where

Nf(x) =

∫
Σ

〈
ν(y), y − x

〉
4π|x− y|3

f(y) ds(y), N ′f(x) = −
∫

Σ

〈
ν(x), y − x

〉
4π|x− y|3

f(y) ds(y),

are the so-called Neumann-Poincaré operator and its formal adjoint. For a recent
detailed study of N and a review of available results we refer to the recent works
[18, 19, 20]. In particular, N ∈ Op S−1

1 with an explicitly known real-valued symbol
[18], so N ′ has the same principal symbol as N , and it follows that Tθ1 ∈ Op S−2

2 .
In order to compute the principal symbol of Tθ we again use the above special

coordinates (U, V, ϕ) near some x ∈ Σ and all associated objects. Let ψj ∈ C∞c (V ),
j ∈ {1, 2}, then for any f ∈ C∞(Σ,C2) we have[

ψ2Tθ(ψ1f)
](
ϕ(s)

)
= ψ2

(
ϕ(s)

)
)

∫
U

θ
(
ϕ(s), ϕ(t)

)
ψ1(ϕ(t))f(ϕ(t))gϕ(t) dt,

Using (15) and ν
(
ϕ(s)

)
− ν
(
ϕ(t)

)
= D(ν ◦ ϕ)(s)(s− t) +O

(
|s− t|2

)
we obtain the

representation

θ
(
ϕ(s), ϕ(t)

)
= −σ ·

(
D(ν ◦ ϕ)(s)(s− t)

)
×
(
Dϕ(s)(s− t)

)
4π
〈
(s− t), Gϕ(s)(s− t)

〉 3
2

+ r(s, t)
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with some r bounded near the diagonal s = t. If we introduce the homogeneous
function

ρa : R2 3 t 7→ −σ ·
(
D(ν ◦ ϕ)(a)t

)
×
(
Dϕ(a)t

)
4π
〈
t, Gϕ(a)t

〉 3
2

,

then we arrive at[(
ψ2Tθ(ψ1f)

)]
(ϕ(s)) = ψ2

(
ϕ(s)

)
gϕ(s)

[
ρs ∗

(
(ψ1f)◦ϕ

)]
(s)+

(
ψ2Tθ̃(ψ1g)

)(
ϕ(s)

)
,

with some bounded kernel θ̃, so Tθ̃ ∈ Op S−2
2 . This shows that the principal kernel

of Tθ in the chosen coordinates is gϕ(s)ρ̂s(ξ).
To find a more explicit expression at x we set s = 0. Recall that by the choice

of ϕ we have Gϕ(0) = I2 and gϕ(0) = 1, Dϕ(0)t = t1e1 + t2e2, and, in addition,
D(ν ◦ ϕ)(0)t = κ1(x) t1e1 + κ2(x) t2e2. Then

ρ0(t) = −σ ·
(
κ1(x) t1e1 + κ2(x) t2e2

)
×
(
t1e1 + t2e2

)
4π|t|3

≡ −
(
κ1(x)− κ2(x)

) t1t2
4π|t|3

(σ · ν(x)),

where we used e1 × e2 = ν(x). By applying the Fourier tranform on the both sides
of (19) we arrive at

t̂j
|t|

= −2πi p. v.
ξj
|ξ|3

, j ∈ {1, 2},( t1t2
4π|t|3

)̂
(ξ) =

1

4π

(
− ∂1

t2
2π|t|

)̂
(ξ) =

1

4π
(−iξ1)

( t2
|t|

)̂
(ξ)

=
1

4π
(−iξ1)(−2πi) p. v.

ξ2

|ξ|3
= − ξ1ξ2

2|ξ|3
.

Therefore, the principal symbol of Tθ (and of all Zλ) in the chosen coordinates is

pZλ(x, ξ) = ρ̂0(ξ) ≡ 1

2

(
κ1(x)− κ2(x)

)
(σ · ν(x))

ξ1ξ2

|ξ|3
. �

Remark 7. The operators Wλ are closely related to Poincaré-Steklov operators for
Dirac operators as discussed recently in [9]. The operator Zm is sometimes referred
to as Kerzman-Stein operator, as it represents the imaginary part of the Clifford
algebra-valued Hilbert transform on Σ, see e.g. [10, Sec. 7].

4. Analysis of the Schur complement

We are going to apply all preceding symbolic computation in order to study the
spectrum of the Schur complement Sλ.

Lemma 8. One has Sλ ∈ Op S0
2. Furthermore, consider the operators

Qλ := (σ · ν)ZλWλ ∈ Op S−1
2 , Rλ := LλQλLλ ∈ Op S0

2,

with Rλ viewed as a bounded operator in L2(Σ,C2), then for any λ ∈
(
− |m|, |m|

)
one has the equivalence

0 ∈ specess Sλ ⇐⇒ λ ∈ specess

(2

ε
Rλ −

µm

ε

)
.
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Proof. Recall that we have (ε+ µ)(λ+m) > 0 and Lλ = K
− 1

2
λ , therefore,

Sλ = 1
ε−µL

2
λ + (λ−m)LλKλLλ − LλWλLλ

(
1

ε+µ
L2
λ + (λ+m)LλKλLλ

)−1

LλWλLλ

≡ 1
ε−µL

2
λ + (λ−m)I2 − LλWλLλ

(
1

ε+µ
L2
λ + (λ+m)I

)−1

LλWλLλ

≡ 1
ε−µL

2
λ + (λ−m)I2 − (ε+ µ)LλWλ

[
1 + (ε+ µ)(λ+m)L−2

λ

]−1

WλLλ.

For a := (ε+ µ)(λ+m) > 0 we can represent[
1 + aL−2

λ

]−1

= (1 + aL−2
λ − aL

−2
λ )
[
1 + aL−2

λ

]−1

= I − aL−2
λ

[
1 + aL−2

λ

]−1

(iterate) = I − aL−2
λ

(
I − aL−2

λ

[
1 + aL−2

λ

]−1
)

= I − aL−2
λ + a2L−4

λ

[
1 + aL−2

λ

]−1

.

Recall that Wλ ∈ Op S0
2 and Lλ ∈ Op S

1
2
2 , so L−4

λ

[
1 + aL−2

λ

]−1

∈ Op S−2
2 , and the

substitution into the above expression of Sλ gives, with some B0 ∈ Op S−1
2 ,

Sλ = 1
ε−µL

2
λ + (λ−m)I2 − (ε+ µ)LλWλ

(
I − (ε+ µ)(λ+m)L−2

λ

)
WλLλ +B0

≡ 1
ε−µL

2
λ + (λ−m)I2 − (ε+ µ)LλW

2
λLλ + (ε+ µ)2(λ+m)LλWλL

−2
λ WλLλ +B0.

As Lλ is a scalar operator, so using the commutators one obtains LλWλL
−2
λ WλLλ =

W 2
λ +B1 for some B1 ∈ Op S−1

2 . Note that the principal symbol pWλ
of Wλ satisfies

pWλ
= 1

4
I2 (see Theorem 6), so W 2

λ = 1
4
I2 +B2 for some B2 ∈ Op S−1

2 and then

LλWλL
−2
λ WλLλ =

1

4
I +B1 +B2.

Taking into account 1
ε−µ = ε+µ

4
, the last expression for Sλ can be rewritten as

Sλ = (ε+ µ)
1

4
L2
λ + (λ−m)− (ε+ µ)LλW

2
λLλ +

1

4
(ε+ µ)2(λ+m) +B3

with B3 := B0 +(ε+µ)2(λ+m)(B1 +B2) ∈ Op S−1
2 . This already shows that Sλ has

order zero, so it is defined on L2(Σ,C2). Recall that adding a compact operator does
not change the essential spectrum and that all operators in Op S−1

2 are compact. We
conclude that the condition 0 ∈ specess Sλ is equivalent to

0 ∈ specess

[
(ε+ µ)Lλ

(1

4
−W 2

λ

)
Lλ +

(
λ−m+

(ε+ µ)2(λ+m)

4

)]
. (20)

We use ε+ µ = 4
ε−µ to compute

λ−m+
(ε+ µ)2(λ+m)

4
= λ−m+

ε+ µ

ε− µ
(λ+m) =

2

ε− µ
(λε+mµ),

and the condition (20) takes the form

0 ∈ specess

[
(ε+ µ)Lλ

(1

4
−W 2

λ

)
Lλ +

2

ε− µ
(λε+mµ)

]
.
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If one multiplies the operator on the right-hand side by ε−µ
2

and takes into account
ε2 − µ2 = 4, one arrives at

0 ∈ specess

[
2Lλ

(1

4
−W 2

λ

)
Lλ + (λε+mµ)

]
which is equivalent to

λ ∈ specess

[ 2

ε
Lλ

(
W 2
λ −

1

4

)
Lλ −

mµ

ε

]
. (21)

Using the identity (12) we obtain

W 2
λ −

1

4
= W 2

λ + ((σ · ν)Wλ

)2
+ (m2 − λ2)

(
(σ · ν)Kλ

)2

≡ W 2
λ + ((σ · ν)Wλ

)2
mod Op S−2

2

≡ (σ · ν)(σ · ν)WλWλ + (σ · ν)Wλ(σ · ν)Wλ mod Op S−2
2

≡ (σ · ν)
[
(σ · ν)Wλ +Wλ(σ · ν)

]
Wλ mod Op S−2

2

≡ Qλ mod Op S−2
2 ,

which, by definition, gives Lλ

(
W 2
λ − 1

4

)
Lλ = Rλ mod Op S−1

2 , and the substitution

into (21) concludes the proof. �

Let us recall where we are standing: the characterization (18) of specess H together
with Lemma 8 show that for any λ ∈

(
− |m|, |m|

)
one has the equivalence

λ ∈ specess H ⇐⇒ λ ∈ specess

(2

ε
Rλ −

µm

ε

)
, (22)

while Rλ ∈ Op S0
2.

Let us recall how to compute the essential spectrum of a zero-order pseudodiffer-
ential operator: the result is folkloric and is mentioned e.g. in [20] (in the discussion
just before Theorem 2.1), [11, Thm. 2.1] or [1, Prop. 1.1.5], but we prefer to state
it explicitly.

Lemma 9. Let M be a compact Riemannian manifold, V a smooth finite-dimensional
vector bundle over M , and B : L2(M,V ) → L2(M,V ) a classical pseudodifferential
operator of order zero with principal symbol b0. Then

specessB =
⋃
x∈M

⋃
ξ∈T ∗

xM\{0}

spec b0(x, ξ).

Proof. The argument is borrowed directly from [20, Sec. 2.3]. For a classical pseu-
dodifferential operator T : H n(M,V ) → L2(M,V ) of order n the Fredholmness is
equivalent to the ellipticity, i.e. to the invertibility of the principal symbol. In our
case n = 0 and the principal symbol of B − z is b0 − z, therefore,

specess B =
{
z ∈ C : B − z is not Fredholm

}
=
{
z ∈ C : B − z is not elliptic

}
=
{
z ∈ C : b0(x, ξ)− z is not invertible

for some x ∈M and ξ ∈ T ∗xM \ {0}
}
,

=
{
z ∈ C : z ∈ spec b0(x, ξ) for some x ∈M and ξ ∈ T ∗xM \ {0}

}
. �
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In view of (22) it is sufficient to compute the essential spectrum of

Rλ ≡ Lλ(σ · ν)ZλWλLλ,

with the help of Lemma 9. Its principal symbol pRλ is the product of the principal
symbols of the five factors. If x ∈ Σ and one chooses the special local coordinates
as in Remark 4, one obtains with the help of Theorem 6:

pRλ(x, ξ) =
√

2|ξ|
(
σ · ν(x)

)1

2

(
κ1(x)− κ2(x)

)(
σ · ν(x)

) ξ1ξ2

|ξ|3

· 1

2
σ ·
(
ξ1e1 + ξ2e2

|ξ|

)√
2|ξ|

=
κ1(x)− κ2(x)

2

ξ1ξ2

|ξ|3
σ · (ξ1e1 + ξ2e2).

For any a ∈ R3 the eigenvalues of σ ·a are ±|a|. As |ξ1e1 + ξ2e2| = |ξ|, for any x ∈ Σ
and ξ 6= 0 one has

spec pRλ(x, ξ) =

{
κ1(x)− κ2(x)

2

ξ1ξ2

|ξ|2
,−κ1(x)− κ2(x)

2

ξ1ξ2

|ξ|2

}
,

therefore, ⋃
ξ 6=0

spec pRλ(x, ξ) =

[
−
∣∣κ1(x)− κ2(x)

∣∣
4

,

∣∣κ1(x)− κ2(x)
∣∣

4

]
.

Taking now the union over all x ∈ Σ we arrive at

specess Rλ =
[
− AΣ

4
,
AΣ

4

]
, AΣ := max

x∈Σ

∣∣κ1(x)− κ2(x)
∣∣,

and the substitution into (22) gives(
− |m|, |m|

)
∩ specess H =

(
− |m|, |m|

)
∩
[
− µm

ε
− AΣ

2|ε|
,−µm

ε
+
AΣ

2|ε|

]
,

which finishes the proof of Theorem 1.
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ators in three dimensions: Willmore energy and surface geometry. Adv. Math.
406 (2022) 108547.

[19] Y. Miyanishi, G. Rozenblum: Eigenvalues of the Neumann-Poincaré operators
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