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Abstract. In a recent paper Behrndt, Holzmann, and Stenzel

introduced a new class of two-dimensional Schrödinger operators

with oblique transmissions along smooth curves. We extend most

components of this analysis to the case of Lipschitz curves.

1. Introduction

The recent paper [3] by Behrndt, Holzmann, and Stenzel introduced

a new class of two-dimensional Schrödinger operators with interactions

supported by curves. The case of smooth curves was studied in de-

tail, in particular, it was shown that these operators arise as a kind of

non-relativistic limit of Dirac operators, and some results on the de-

pendence of the eigenvalues on the coupling constant were obtained.

In the present work, we show that a significant part of the qualita-

tive analysis can be extended to Lipschitz curves as well, but, at the

same time, the non-smoothness may lead to an asymptotic behavior of

eigenvalues that is different from that obtained in [3].

Let Ω+ ⊂ R2 be a bounded simply connected domain with Lipschitz

boundary Σ. Set Ω− := R2 \ Ω+ and denote by N = (n1, n2) the

unit normal on Σ pointing to Ω−. It will be convenient to use its

complexification

n := n1 + in2 : Σ → C.
A function f ∈ L2(R2) will be identified with the pair (f+, f−), where

f± is the restriction of f on Ω±. This gives rise to the identifications

L2(R2) ≃ L2(Ω+)⊕L2(Ω−), Hs(R2\Σ) ≃ Hs(Ω+)⊕Hs(Ω−), s ≥ 0,

where Hs stands for the Sobolev space of order s, and similar notations

and identifications will be used for vector-values functions as well. We

further denote by γ± the Dirichlet trace operator from Ω± on Σ, i.e. for

functions f± ∈ C∞(Ω±) with compact support one has γ±f± := f±|Σ,
which extends by density to a bounded linear map between suitable

Sobolev-type spaces on Ω± and Σ (as discussed in greater detail below).
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We are interested in the Laplacian on R2 with the so-called oblique

transmission condition Pαf = 0 on Σ, where

Pαf := n(γ+f+ − γ−f−) + α(γ+∂z̄f+ + γ−∂z̄f−), (1)

the expression

∂z̄ :=
1

2
(∂1 + i∂2)

is known as the Wirtinger derivative and α ∈ R is a parameter. Our

goal is to construct a self-adjoint realization of the above operator and

to understand its spectral properties and the dependence on α.

The paper [3] was dedicated to the case when

Σ is C∞-smooth, (2)

so let us review the available results first. Assume (2), then

γ± : H1(Ω±) → H
1
2 (Σ)

are bounded linear maps. Denote by Ĥα the linear operator in L2(Rn)

acting as

Ĥα(f+, f−) = (−∆f+,−∆f−)

on the domain

dom Ĥα :=
{
(f+, f−) ∈ H1(Ω+)⊕H1(Ω−) :

(∂z̄f+, ∂z̄f−) ∈ H1(R2), Pαf = 0
}
,

then from [3, Theorem 1.1] it is known that Ĥα is self-adjoint with

specess Ĥα = [0,∞). The discrete spectrum is empty for α ≥ 0 and

infinite and unbounded from below for α < 0, without accumulation

at 0, and for any fixed n ∈ N the n-th discrete eigenvalue λn(Ĥα) (if

counted with multiplicities in the non-increasing order) satisfies

λn(Ĥα) = − 4

α2
+O(1) for α → 0−. (3)

In addition, the operator Ĥα can be obtained as a limit of Dirac oper-

ators. Namely, for c, η, τ ∈ R, c ̸= 0, denote by B̂c,η,τ the operator in

L2(R2,C2) acting as

B̂c,η,τ (f+, f−) := (Dcf+, Dcf−),

Dc := −ic

(
0 ∂1 − i∂2

∂1 + i∂2 0

)
+

c2

2

(
1 0

0 −1

)
,

on the domain

dom B̂c,η,τ :=

{
(f+, f−) ∈ H1(Ω+,C2)⊕H1(Ω−,C2) :
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ic

(
0 n̄

n 0

)
(γ+f+ − γ−f−) +

1

2

(
η + τ 0

0 η − τ

)
(γ+f+ + γ−f−) = 0

}
,

then [3, Theorem 1.2] states that for any fixed α ∈ R and λ ∈ C \ R
one has the norm resolvent convergence∥∥∥∥(B̂c,−αc2

2
,αc2

2

−
(
λ+ c2

2

))−1

−
(
(Ĥα − λ)−1 0

0 0

)∥∥∥∥ = O
(1
c

)
, c → ∞.

Our objective is to obtain similar results when the curve Σ is non-

smooth. We will show that the basic properties as the self-adjointness

and the resolvent convergence can be adapted by a suitable extension

of operator domains. On the other hand, the asymptotics (3) turns out

to be false in general.

From now we assume:

the curve Σ is Lipschitz. (4)

For s ≥ 0 and open Ω ⊂ R2 define the space

Hs
∆(Ω) =

{
g ∈ Hs(Ω) : ∆g ∈ L2(Ω)

}
,

which is a Hilbert space with the scalar product

⟨g, g̃⟩Hs
∆(Ω) := ⟨g, g̃⟩Hs(Ω) + ⟨∆g,∆g̃⟩L2(Ω).

Recall that the Dirichlet trace maps γ± can be viewed as bounded linear

maps from Hs
∆(Ω±) to H

s− 1
2 (Σ) for any s ∈ [1

2
, 3
2
], see [2, Corollary 3.7].

For α ∈ R denote by Hα the linear operator in L2(R2) acting as

Hα(f+, f−) = (−∆f+, −∆f−)

on the domain

domHα :=
{
(f+, f−) ∈ H

1
2
∆(Ω+)⊕H

1
2
∆(Ω−) :

(∂z̄f+, ∂z̄f−) ∈ H1(R2), Pαf = 0
}
.

(5)

In Section 2 we show thatHα is self-adjoint, its essential spectrum is the

positive half-line. The discrete spectrum is empty for α > 0 and infinite

(with accumulation at −∞ only) for α < 0. This part of the discussion

represents an adaptation of the analysis of [3] to the Lipschitz case with

the help of recent developments from [2, 4]. In Section 3 we discuss

the behavior of the eigenvalues of Hα for α → 0−. Similarly to [3] we

use a relation with δ-potentials, but due to the lower regularity of Σ

only much weaker assumptions can be used. As a result, we show the

two-sided estimate only: for any n ∈ N there are 0 < A < B such that

−B

α2
≤ λn(Hα) ≤ − A

α2
for α → 0−.
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The asymptotic spectral analysis of Schrödinger operators with δ-

potentials supported on non-smooth curves clearly has its own inter-

est. Due to an expected large number of technicalities, we prefer to

discuss it in detail somewhere else. In the present work, we restrict

our attention to the first eigenvalue and a special geometry to show

that the asymptotic behavior of eigenvalues can be different from the

one in the smooth case. More precisely, we show in Section 4 that for

any B ∈ (1, 4) there exists a non-smooth curve Σ such that for the

associated operator Hα there holds

λ1(Hα) = −B

α2
+ o
( 1

α2

)
for α → 0−,

which is clearly different from (3). The analysis in Sections 3 and 4 is

based on the min-max principle for the eigenvalues.

2. Self-adjointness and basic spectral properties

In addition to the Dirichlet trace maps γ± we will consider the Neu-

mann trace maps γ±
n defined for f± ∈ C∞(Ω±) by γ±

n f± := ±⟨N, f±|Σ⟩
and then extended by continuity in suitable function spaces. In partic-

ular, γ±
n : Hs

∆(Ω±) → Hs− 3
2 (Σ) are bounded for any s ∈ [1

2
, 3
2
], see [2,

Corollary 5.7]

Recall that for any λ ∈ C \ [0,∞) the function

Φ(x) =
1

2π
K0(−i

√
λ|x|), x ∈ R2 \ {0},

is a fundamental solution of −∆ − λ. Here K0 is the modified Bessel

function of the second kind and the convention Im
√
λ > 0 is used.

For λ ∈ C \ [0,∞) let S(λ) : L2(Σ) → L2(R2) be the single layer

potential given by

S(λ)g(x) =

∫
Σ

Φ(x− y)g(y) dσ(y), g ∈ L2(Σ), x ∈ R2 \ Σ, (6)

and S(λ) : L2(Σ) → L2(Σ) be the single layer boundary integral oper-

ator given by

S(λ)g(x) =

∫
Σ

Φ(x− y)g(y) dσ(y), g ∈ L2(Σ), x ∈ Σ. (7)

One has by construction (−∆ − λ)S(λ) = 0 in R2 \ Σ, and it is well

known that

S(λ) : L2(Σ) → H1(R2), S(λ) : L2(Σ) → H1(Σ),
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are well-defined and bounded, and there holds
(
S(λ)g

)
± ∈ H

3
2
∆(Ω±)

and

γ±S(λ)g = S(λ)g and γ+
n S(λ)g + γ−

n S(λ)g = g, (8)

for all g ∈ L2(Σ), see [6, Theorem 1] and [17, Theorem 6.11 and Eq.

(7.5)]. An integration by parts gives

λ
∥∥S(λ)g∥∥2

L2(Ω±)
=
〈
S(λ)g,−∆S(λ)g

〉
L2(Ω±)

=
∥∥∇S(λ)g∥2L2(Ω±) −

〈
γ±S(λ)g, γ±

n S(λ)g
〉
L2(Σ)

,

and by (8) it follows that〈
S(λ)g, g

〉
L2(Σ)

=
∥∥∇S(λ)g∥2L2(Ω+) +

∥∥∇S(λ)g∥2L2(Ω−)

− λ
∥∥S(λ)g∥∥2

L2(R2)
, g ∈ L2(Σ).

(9)

The operator S(λ) : L2(Σ) → L2(Σ) is compact (as it has a Hilbert-

Schmidt integral kernel), and for any λ ∈ (−∞, 0) it is self-adjoint and

non-negative. We further remark that if S(λ)g = 0 for some λ < 0

and g ∈ L2(Σ), then (9) shows that S(λ)g = 0 in Ω±, and the second

identity in (8) shows that g = 0. This means that S(λ) is injective for

all λ < 0.

Let H be the free Laplacian in L2(R2),

domH := H2(R2), Hf := −∆f.

For any f ∈ L2(R2) and λ ∈ C \ [0,∞) we have (H − λ)−1f ∈ H2(R2),

therefore,

γ+
[
(H − λ)−1f

]
+
= γ−[(H − λ)−1f

]
− = γ(H − λ)−1f,

γ+
[
∂z̄(H − λ)−1f

]
+
= γ−[∂z̄(H − λ)−1f

]
− = γ∂z̄(H − λ)−1f,

where

γ : H1(R2) → H
1
2 (Σ), f 7→ f |Σ,

is the standard Sobolev trace, and for the boundary operator Pα from

(1) we have then

Pα(H − λ)−1f = 2αγ∂z̄(H − λ)−1f. (10)

Let us study in greater detail the expression on the right-hand side.

Lemma 1. For any λ ∈ C \ [0,∞) define the operator Ψλ as follows:

Ψλ : L2(R2) → L2(Σ), Ψλf := 2γ∂z̄(H − λ)−1f, (11)

then:

(a) Ψλ : L2(R2) → L2(Σ) is compact with ranΨλ ⊆ H
1
2 (Σ),

(b) Ψ∗
λ = −2∂zS(λ̄) with ∂z :=

1
2
(∂1 − i∂2),
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(c) for any φ ∈ L2(Σ) there holds

γ+(∂z̄Ψ
∗
λφ)+ + γ−(∂z̄Ψ

∗
λφ)− = λ̄S(λ̄)φ, (12)

n
(
γ+(Ψ∗

λφ)+ − γ−(Ψ∗
λφ)−

)
= −φ. (13)

Furthermore, if

Nλ :=
{
f ∈ H

1
2 (R2 \ Σ) : (∂z̄f+, ∂z̄f−) ∈ H1(R2),

(−∆− λ̄)f = 0 in R2 \ Σ
}
,

(14)

then

(d) Ψ∗
λ : L2(Σ) → Nλ is bijective.

Proof. (a) The map Ψλ is the double of the composition of the bounded

linear operators

(H − λ)−1 : L2(R2) → H2(R2), ∂z̄ : H
2(R2) → H1(R),

γ : H1(R2) → H
1
2 (Σ).

As the embedding H
1
2 (Σ) ↪→ L2(Σ) is compact, the claim follows.

(b) Let f ∈ D(R2) and φ ∈ L2(Σ), then〈
− 2∂zS(λ̄)φ, f

〉
L2(R2)

= −
∫
R2

(∂1 − i∂2)S(λ̄)φf dx

= −
∫
R2

(
(∂1 + i∂2)S(λ)φ̄

)
f dx

= −
(
(∂1 + i∂2)S(λ)φ̄, f

)
D′(R2),D(R2)

=
(
S(λ)φ̄, (∂1 − i∂2)f

)
D′(R2),D(R2)

=
(
S(λ)φ̄, 2∂z̄f

)
D′(R2),D(R2)

=

∫
R2

∫
Σ

Φλ(x− y)φ(y) dσ(y) 2∂z̄f(x) dx

=

∫
Σ

φ(y)

∫
R2

Φλ(x− y) 2∂z̄f(x) dx dσ(y)

=

∫
Σ

φ(y) 2γ(H − λ)−1∂z̄f(y) dσ(y)

=
〈
φ, 2γ(H − λ)−1∂z̄f

〉
L2(Σ)

.

One easily checks that (H − λ)−1∂z̄f = ∂z̄(H − λ)−1f (for example,

one applies the Fourier transform on both sides), so the previous com-

putations yield〈
− 2∂zS(λ̄)φ, f

〉
L2(R2)

=
〈
φ,Ψ(λ)f

〉
L2(Σ)

.
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This extends by density to all f ∈ L2(R2) and implies the sought

identity.

(c) By [15, Eq (2.127)] there holds ran S(λ) ⊂ H
3
2
∆(R2 \ Σ), which

yields ranΨ∗
λ ⊂ H

1
2 (R2\Σ). For any φ ∈ L2(Σ) one has (−∆−λ)S(λ) =

0 in R2 \ Σ, and due to ∂z̄∂z =
1
4
∆ we obtain(

∂z̄Ψ
∗
λφ
)
± =

(
− 1

2
∆S(λ̄)φ

)
±

=
λ̄

2

(
S(λ̄)φ

)
± ∈ H

3
2 (Ω±) ⊂ H1(Ω±),

(15)

We have S(λ̄)φ ∈ H1(R2), hence,

γ+
(
S(λ̄)φ

)
+
= γ−(S(λ̄)φ)− = γS(λ̄)φ,

and (15) gives

γ±(∂z̄Ψ∗
λφ
)
± =

λ̄

2
γS(λ̄)φ =

λ̄

2
S(λ̄)φ.

This shows the identity (12) as well as the inclusion((
∂z̄Ψ

∗
λφ
)
+
,
(
∂z̄Ψ

∗
λφ
)
−

)
∈ H1(R2). (16)

Let f = (f+, f−) ∈ H1(R2) with f± ∈ H
3
2
∆(Ω±) and g = (g+, g−) ∈

C∞
0 (R2), then the integration by parts gives

±
∫
Σ

nγ±(2∂zf±)γg dσ =

∫
Ω±

2∂z̄
(
(2∂zf±)g±

)
dx

=

∫
Ω±

(4∂z̄∂zf±)g± dx+

∫
Ω±

(2∂zf±)(2∂z̄g±) dx

=

∫
Ω±

(∆f±)g± dx+

∫
Ω±

4∂z(f± ∂z̄g±) dx−
∫
Ω±

f± 4∂z∂z̄g± dx

=

∫
Ω±

(∆f±)g± dx±
∫
Σ

2n̄γ±f± γ∂z̄g dσ −
∫
Ω±

f±∆g± dx

=

∫
Σ

(γ±
n f+)γg dσ ±

∫
Σ

2n̄γ±f± γ∂z̄g dσ −
∫
Σ

γ±f± γ±
n g± dσ.

We have

γ+f+ = γ−f−, γ+
n g+ + γ−

n g− = 0,

which yields (with h := γg)∫
Σ

n
(
γ+(2∂zf+)− γ−(2∂zf−)

)
h dσ =

∫
Σ

(γ+
n f+ + γ+

n f−)h dσ.

By density this extends to all g ∈ H1(R2), hence, to all h ∈ H
1
2 (Σ),

and then for all h ∈ L2(Σ), and one obtains

n
(
γ+(2∂zf+)− γ−(2∂zf−)

)
= γ+

n f+ + γ+
n f−.
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For f := S(λ̄)φ with φ ∈ L2(Σ) we have 2∂zf = −Ψ∗
λφ, which results

in

n
(
γ+(Ψ∗

λφ)+ − γ−(Ψ∗
λφ)−

)
= −

(
γ+
n S(λ̄)φ+ γ−

n S(λ̄)φ
) (8)
= −φ

and proves (13).

(d) In D′(R2 \ Σ) one has

−∆Ψ∗
λφ = −2∆∂zS(λ̄)φ = −2∂z

(
∆S(λ̄)φ

)
= −2

(
∂zλ̄S(λ̄)φ

)
= λ̄Ψ∗

λφ,

i.e. (−∆ − λ̄)Ψ∗
λφ = 0 in R2 \ Σ. Together with (15) and (16) this

shows the inclusion Ψ∗
λ

(
L2(Σ)

)
⊂ Nλ, and (13) implies the injectivity

of Ψ∗
λ.

It remains to show Ψ∗
λ

(
L2(Σ)

)
= Nλ. Let f = (f+, f−) ∈ Nλ and set

φ := −n(γ+f+ − γ−f−) ∈ L2(Σ), g := Ψ∗
λφ, u := f − g.

We are going to show that u = 0. One has already g ∈ Nλ, hence,

u ∈ Nλ ⊂ H
1
2
∆(R2 \ Σ). Using (13) we get

n(γ+g+ − γ−g−) = −φ = n(γ+f+ − γ−f−),

hence, n(γ+u+ − γ−u−) = 0, and then γ+u+ = γ−u−. Due to u ∈ Nλ

we have (∂z̄u+, ∂z̄u−) ∈ H1(R2), and using the jump formula in D′(R2)

we obtain

∂z̄u = (∂z̄u+, ∂z̄u−) + n(γ+u+ − γ−u−) = (∂z̄u+, ∂z̄u−) ∈ H1(R2).

As ∂z̄ is a first-order elliptic operator, due to the elliptic regularity

theorem one arrives at u ∈ H2
loc(R2). From the inclusion u ∈ Nλ

we obtain (−∆ − λ̄)u = 0 in R2 \ Σ, and from u ∈ H2
loc(R2) it follows

(−∆−λ̄)u = 0 in R2, so u ∈ domH withHu = λ̄u, and then u = 0. □

Theorem 2. Let α ∈ R, then:
(a) For any λ ∈ C \ [0,+∞) there holds

ker(Hα − λ) = Ψ∗
λ̄ ker

(
I − αλS(λ)

)
. (17)

In particular,

λ ∈ specpHα ⇐⇒ 0 ∈ specp
(
I − αλS(λ)

)
.

(b) For any λ ∈ C \ R the operator(
I − αλS(λ)

)−1
: L2(Σ) → L2(Σ)

is well-defined and bounded, and there holds

(Hα − λ)−1 = (H − λ)−1 + αΨ∗
λ̄

(
I − αλS(λ)

)−1
Ψλ. (18)

(c) The operator Hα is self-adjoint.
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Proof. Due to C∞
0 (R2 \ Σ) ⊂ domHα the operator Hα is densely

defined. Let us show that it is also symmetric. Let f ∈ domHα, then

⟨Hαf, f⟩L2(R2) = ⟨−∆f+, f+⟩L2(Ω+) + ⟨−∆f−, f−⟩L2(Ω−).

Using the integration by parts we obtain

⟨−∆f±, f±⟩L2(Ω±) = ⟨−4∂z∂z̄f±, f±⟩L2(Ω±)

= 4⟨∂z̄f±, ∂z̄f±⟩L2(Ω±) ∓ 2⟨γ±∂z̄f±, nγ
±f±⟩L2(Σ).

Due to (∂z̄f+, ∂z̄f−) ∈ H1(R2) one has γ+∂z̄f+ = γ−∂z̄f−, hence,

⟨Hαf, f⟩L2(R2) =4∥(∂z̄f+, ∂z̄f−)∥2L2(R2)

−
〈
γ+∂z̄f+ + γ−∂z̄f−, n(γ

+f+ − γ−f−)
〉
L2(Σ)

.

The transmission condition Pαf = 0 implies

n(γ+f+ − γ−f−) = −α(γ+∂z̄f+ + γ−∂z̄f−),

so one arrives at

⟨Hαf, f⟩L2(R2) = 4
∥∥(∂z̄f+, ∂z̄f−)∥∥2L2(R2)

+ α∥γ+∂z̄f+ + γ−∂z̄f−∥2L2(Σ),
(19)

and the right-hand side is obviously real-valued, which shows the sym-

metry of Hα.

(a) Let λ ∈ C \ [0,+∞). We remark first that

ker(Hα − λ) =
{
f ∈ Nλ̄ : Pαf = 0

}
,

with Nλ from (14). For each function f ∈ Nλ̄ there is a unique φ ∈
L2(Σ) with f = Ψ∗

λ̄
φ, see Lemma 1(d). By Lemma 1(c) there holds

Pαf ≡ n(γ+f+ − γ−f−) + α(γ+∂z̄f+ + γ−∂z̄f−)

= −φ+ αλS(λ)φ = −
(
I − αλS(λ)

)
φ,

showing that Pαf = 0 if and only if φ ∈ ker
(
I − αλS(λ)

)
.

(b) Let λ ∈ C\R. AsHα is symmetric, there holds ker(Hα−λ) = {0},
and then I − αλS(λ) is injective by (a). As S(λ) is compact, the

operator I − αλS(λ) is also surjective due to Fredholm alternative, so

its inverse is well-defined and bounded.

Let f ∈ L2(R2), then
(
I − αλS(λ)

)−1
Ψλf ∈ L2(Σ) is well-defined,

so consider the function

g := (H − λ)−1f + αΨ∗
λ̄

(
I − αλS(λ)

)−1
Ψλf. (20)

We are going to show that g ∈ domHα. The first summand on the

right-hand side of (20) is in H2(R2) and the second one is in Nλ̄, which

yields

g ∈ H
1
2
∆(R

2 \ Σ), (∂z̄g+, ∂z̄g−) ∈ H1(R2).
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Using Lemma 1(c) we obtain

PαΨ
∗
λ̄

(
I − αλS(λ)

)−1
Ψλf

= −
(
I − αλS(λ)

)−1
Ψλf + αλS(λ)

(
I − αλS(λ)

)−1
Ψλf

= −
(
I − αλS(λ)

)(
I − αλS(λ)

)−1
Ψλf = −Ψλf,

and by (10) we have Pα(H − λ)−1f = αΨλf , therefore,

Pαg = Pα(H − λ)−1f + αΨ∗
λ̄

(
I − αλS(λ)

)−1
Ψλf

= −αΨλf + αΨλf = 0,

which shows g ∈ domHα. Finally, in D′(R2 \ Σ) there holds

(−∆− λ)g = (−∆− λ)(H − λ)−1f

+ α(−∆− λ)Ψ∗
λ̄

(
I − αλS(λ)

)−1
Ψλf,

and using (−∆− λ)Ψ∗
λ̄
= 0, see Lemma 1(d), and

(−∆− λ)(H − λ)−1f = (H − λ)(H − λ)−1f = f,

we arrive at (−∆− λ)g = f . This shows g = (Hα − λ)−1f .

(c) We have seen that Hα is symmetric, and due to (b) there holds

specHα ⊂ R, which shows the self-adjointness. □

Remark 3. With the resolvent formula (18), many results obtained

in [3] for smooth Σ can be transferred to the case of Lipschitz Σ. The

resolvent formula has literally the same form as in [3], and most results

used for S(λ) hold for Lipschitz Σ too, as they are mainly based on

L2-estimates for the integral kernels and do not require the smoothness

of Σ. We will address some of the results in a more precise way.

Remark 4. For c, η, τ ∈ R, c ̸= 0, denote by Bc,η,τ the operator in

L2(R2,C2) acting as

Bc,η,τ (f+, f−) := (Dcf+, Dcf−)

on the domain

dom Bc,η,τ :=

{
(f+, f−) ∈ H

1
2 (Ω+,C2)⊕H

1
2 (Ω−,C2) :

(Dcf+, Dcf−) ∈ L2(Ω+,C2)⊕ L2(Ω−,C2),

ic

(
0 n̄

n 0

)
(γ+f+ − γ−f−) +

1

2

(
η + τ 0

0 η − τ

)
(γ+f+ + γ−f−) = 0

}
,

then [4, Theorem 3.1] states that Bc,−η,η is self-adjoint for any c ̸= 0

and η ∈ R and derives a resolvent formula. Namely, if one denotes by

Bc the free Dirac operator in L2(R2,C2),

domBc = H1(R2,C2), Bcf := Dcf,
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then for any λ ∈ C \ R one has the resolvent formula(
B

c,−αc2

2
,αc2

2

−
(
λ+ c2

2

))−1

=
(
Bc −

(
λ+ c2

2

))−1

+ Φ
λ+ c2

2

(
0 0

0
(
I − αc2Θ

λ+ c2

2

)−1

)
Φ∗

λ̄+ c2

2

,

where

Φλ : L2(Σ,C2) −→ L2(R2,C2),

Φλg(x) =

∫
Σ

Gλ(x− y)g(y) dσ(y), x ∈ R2 \ Σ,

Gλ(x) :=
1

2πc
K0

(
− i

√
λ2

c2
− c2

4
|x|
)(λ

c + c
2 0

0 λ
c − c

2

)
+

1

2πc|x|

√
λ2

c2
− c2

4
K1

(
− i

√
λ2

c2
− c2

4
|x|
)(

0 x1 − ix2

x1 + ix2 0

)
,

Θ(λ) := 1
c

(
λ
c
− c

2

)
S
(√

λ2

c2
− c2

4

)
.

With the above resolvent formulas one can use the same computation

as in [3, Theorem 1.2], which only involves L2-estimates for various

integral operators in L2(Σ), to show that for any fixed α ∈ R and

λ ∈ C \ R one has∥∥∥∥(Bc,−αc2

2
,αc2

2

−
(
λ+ c2

2

))−1

−
(
(Hα − λ)−1 0

0 0

)∥∥∥∥ = O
(1
c

)
, c → ∞.

Remark 5. Similarly one derives the basic spectral properties of Hα.

First, due to the compactness of Ψλ, see Lemma 1(a) and the resolvent

formula (18) we conclude that (Hα − λ)−1 − (H − λ)−1 is compact for

any λ ∈ C \ R, which implies

specess Hα = specess H = [0,∞) for any α ∈ R. (21)

For any α ≥ 0 and any f ∈ domHα one has ⟨Hαf, f⟩L2(R2) ≥ 0 due to

(19), which gives specHα ⊂ [0,∞), in particular,

specdiscHα = ∅ for any α ≥ 0.

As for any λ < 0 the operator S(λ) is compact, self-adjoint, non-

negative, and injective (see the beginning of Section 2), we can enu-

merate its eigenvalues µn

(
S(λ)

)
counting the multiplicities such that

0 < µ1

(
S(λ)

)
≤ µ2

(
S(λ)

)
≤ . . .

and for each n ∈ N one shows that the maps

(−∞, 0) ∋ λ 7→ µn

(
S(λ)

)
∈ (0,∞),

(−∞, 0) ∋ λ 7→ λµn

(
S(λ)

)
∈ (−∞, 0)
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are continuous and strictly monotonically increasing with

lim
λ→−∞

λµn

(
S(λ)

)
= −∞, lim

λ→0−
λµn

(
S(λ)

)
= 0.

In fact, the argument of [3, Proposition 2.2(i)] for smooth Σ still applies,

as the proof of the above properties is only based on the integration by

parts and some estimates from [14], which are also valid for Lipschitz

Σ. It follows that for any n ∈ N and any α < 0 the equation

αλµn

(
S(λ)

)
= 1

has a unique solution λn

(
Hα), and by Theorem 2 the number λn(Hα) is

the n-th negative eigenvalue of Hα, if enumerated in the non-increasing

order with multiplicities taken into account. This shows that specdisc Hα

is an infinite discrete subset of (−∞, 0) and does not accumulate at

0. At the same time, specdisc Hα cannot have any accumulation point

in (−∞, 0): any such accumulation point would be in the essential

spectrum of Hα in contraction to (21). As an infinite sequence has

at least one (infinite or finite) accumulation point, it follows that

lim
n→∞

λn(Hα) = −∞ for any α < 0.

The discussion in this section shows that the qualitative spectral

picture for Hα with Lipschitz Σ (essential spectrum, cardinality of the

discrete spectrum) is the same as for smooth Σ. In order to show that

the non-smoothness produced some new effects, we will look at the

asymptotic behavior of λn

(
Hα

)
as α → 0− in the next section.

3. Relations between oblique transmission conditions and

δ-potentials

As already mentioned in the introduction, in [3] it was shown that

for any fixed n ∈ N one has

λn(Hα) = − 4

α2
+O(1) for α → 0−, if Σ is smooth. (22)

The proof of this fact was based on a comparison of the eigenvalues

of Hα with the eigenvalues of Schrödinger operators with δ-potentials

supported by Σ. Namely, for β ∈ R and a simple Lipschitz curve

Γ ⊂ R2, either closed or with a controlled behavior at infinity (which

holds in all subsequent examples), consider the sesquilinear form qΓβ
given by

qΓβ (f, f) =

∫
R2

|∇f |2 dx+ β

∫
Σ

|γf |2 dσ, dom qΓβ = H1(R2), (23)
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which is closed and semibounded below and defines a unique self-

adjoint operator QΓ
β in L2(R2), see [1, Section 3.2]. We will be mainly

interested in the case Γ := Σ, and we abbreviate

qβ := qΣβ , Qβ := QΣ
β ,

but some other auxiliary curves Γ will be used at various intermediate

steps of analysis below.

As Σ is compact, one has specess Qβ = [0,∞) and specdisc Qβ is finite,

and for any λ < 0 one has the equivalence

dimker(Qβ − λ) = dimker
(
1 + βS(λ)

)
, (24)

in particular,

λ ∈ specdisc Qβ ⇐⇒ 0 ∈ specdisc
(
1 + βS(λ)

)
,

see [5, Lemma 2.3 and Theorem 4.2]. By taking the ordering into

account one concludes that for any λ < 0, β < 0 and n ∈ N one has

the equivalence

λ = µn(Qβ) ⇐⇒ − 1

β
= µn

(
S(λ)

)
.

Therefore, the discrete spectra of both Hα and Qβ are closely related

to each other, as both can be determined with the help of the eigen-

values of the integral operator S(λ). The derivation of (22) in [3] was

based on the analysis of Qβ for smooth Σ in [12]: For each fixed n ∈ N
the operator Qβ has at least n negative eigenvalues for all sufficiently

large negative β, and the nth eigenvalue µn(Qβ), if enumerated in the

non-decreasing order with multiplicities taken into account, behaves as

µn(Qβ) = −1

4
β2 +O(1) for β → −∞, if Σ is C4-smooth. (25)

Surprisingly, no similar results seem known for non-smooth Σ: While

some conjectures can be found in the review [8], we are not aware of any

sufficient progress. In this section, we will prove some basic estimates

for the eigenvalues of QΣ
β with Lipschitz or piecewise smooth Σ, which

will in turn produce new results for the eigenvalues of Hα.

Proposition 6. Let 0 < a < b and n ∈ N be such that Qβ has at least

n negative eigenvalues for all sufficiently large negative β and

−bβ2 ≤ µn(Qβ) ≤ −aβ2 for β → −∞, (26)

then

− b

a2
1

α2
≤ λn(Hα) ≤ − a

b2
1

α2
for α → 0−. (27)
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Proof. We have µn

(
S
(
µn(Qβ)

))
= − 1

β
, therefore,

µn(Qβ)µn

(
S
(
µn(Qβ)

))
= −µn(Qβ)

β
,

and in view of (26) we have

bβ ≤ µn(Qβ)µn

(
S
(
µn(Qβ)

))
≤ aβ. (28)

Furthermore (see Remark 5),

aβ =
1
1
aβ

= λn(H 1
aβ
)µn

(
S
(
λn(H 1

aβ
)
))

,

bβ =
1
1
bβ

= λn(H 1
bβ
)µn

(
S
(
λn(H 1

bβ
)
))

,

and the substitution into (28) gives

λn(H 1
bβ
)µn

(
S
(
λn(H 1

bβ
)
))

≤ µn(Qβ)µn

(
S
(
µn(Qβ)

))
≤ λn(H 1

aβ
)µn

(
S
(
λn(H 1

aβ
)
))

.

As the function (−∞, 0) ∋ λ 7→ λµn

(
S(λ)

)
is increasing, it follows

λn(H 1
bβ
) ≤ µn(Qβ) ≤ λn(H 1

aβ
) as β → −∞. (29)

The reparametrization β := 1
bα

with α → 0− in the left-hand side of

(29) gives

λn(Hα) ≤ µn(Q 1
bα
)
(26)

≤ − a

b2
1

α2
.

Similarly, the reparametrization β := 1
aα

with α → 0− in the right-hand

side of (29) gives

λn(Hα) ≥ µn(Q 1
aα
)
(26)

≥ − b

a2
1

α2
. □

Corollary 7. If for some b > 0 and n ∈ N one has

µn(Qβ) = −bβ2 + o(β2) for β → −∞,

then

λn(Hα) = − 1

bα2
+ o
( 1

α2

)
for α → 0−.

Proof. For any ε ∈ (0, 1) one has

−(1 + ε)bβ2 ≤ µn(Qβ) = −(1− ε)bβ2 for β → −∞,

and Proposition 6 shows that for α → 0− there holds

− 1 + ε

(1− ε)2
· 1

bα2
≤ λn(Hα) ≤ − 1− ε

(1 + ε)2
· 1

bα2
.

As ε can be chosen arbitrarily small, the claim follows. □
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Remark 8. By combining the last corollary with (25) we see that for

smooth Σ one has λn(Hα) = 4α−2 + o(α−2) for α → 0−, which is the

result of [3] with a weaker remainder estimate (which can be easily

improved by a small refinement of the above constructions).

We are now going to show that the dependence of the eigenvalues

of Qβ on β can be different from (25), which in turn gives a different

asymptotic for λn(Hα).

For the analysis let us recall the min-max principle. If Q is lower

semibounded self-adjoint operator in an infinite-dimensional Hilbert

space H, generated by a closed sesquilinear form q, then for any n ∈ N
one defines

Λn(Q) := inf
F⊂dom q
dimF=n

sup
f∈F\{0}

q(f, f)

∥f∥2
.

It is known that n 7→ Λn(Q) is non-decreasing with

lim
n→∞

Λn(Q) = inf specess Q (= ∞ for specess Q = ∅),

and for any n ∈ N with Λn(Q) < inf specess Q the number Λn(Q) is

the n-th eigenvalue of Q if counted in the non-decreasing order with

multiplicities taken into account, see [19, Section XIII.1].

Proposition 9. For any n ∈ N there are βn < 0 and 0 < a < b such

that for all β < βn the operator Qβ has at least n negative eigenvalues

(if counted with multiplicities), and

−bβ2 ≤ µn(Qβ) ≤ −aβ2 for all β < βn. (30)

Proof. The standard trace inequality, see e.g. [16, Theorem 1.5.1.10],

implies that there exists c > 0 such that∫
Σ

|γ+f+|2 dσ ≤ c

(
ε

∫
Ω+

|∇f+|2 dx+
1

ε

∫
Ω+

|f+|2 dx
)

for all f+ ∈ H1(Ω+) and ε ∈ (0, 1). (31)

For any f ∈ H1(R2), β < 0 and ε ∈ (0, 1) we obtain then

qβ(f, f) =

∫
Ω+

|∇f+|2 dx+

∫
Ω−

|∇f−|2 dx− |β|
∫
Σ

|γ+f+|2 dσ

≥
∫
Ω+

|∇f+|2 dx− |β|c
(
ε

∫
Ω+

|∇f+|2 dx+
1

ε

∫
Ω+

|f+|2 dx
)

= (1− |β|cε)
∫
Ω+

|∇f+|2 dx− |β|c
ε

∫
Ω+

|f+|2 dx.
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The above inequalities are valid, in particular, for any β < −c−1 and

ε := (−cβ)−1. In that case 1 + βcε = 0, and

qβ(f, f) ≥ −(βc)2
∫
Ω+

|f+|2 dx ≥ −c2β2∥f∥2L2(R2),

showing

Λ1(Qβ) ≥ −c2β2 for all β < −c−1. (32)

Let n ∈ N. Pick n distinct points p1, . . . , pn ∈ Σ. Let j ∈ {1, . . . , n},
then there exist constants A,B > 0 and a Lipschitz function hj :

(−A,A) → (−B
2
, B
2
) and an orthogonal coordinate change

Φj : (−A,A)× (−B,B) ∋ (y1, y2) 7→ R2, Φj(0, 0) = pj,

such that

Φj

(
(−A,A)× (−B,B)

)
∩ Σ

= Φj

({
(y1, y2) : y1 ∈ (−A,A), y2 = hj(y1)

})
,

see [16, Definition 1.2.1.1]. By taking sufficiently small A one may ad-

ditionally assume that the n rectangles Vj := Φj

(
(−A,A)× (−B,B)

)
,

j ∈ {1, . . . , n}, are mutually disjoint and A,B are independent of

j, and denote M := maxj ∥h′
j∥∞. Let g ∈ C∞

c (R2) with supp g ⊂
(−A,A) × (−B

2
, B
2
), g ≥ 0 and g(0, 0) = 1. Let θ ∈ (0, 1) (a precise

value will be chosen later) and for all negative β with |β| > θ−1 define

fj : R2 → C such that supp fj ⊂ Vj and

fj
(
Φ(y1, y2)

)
= g
(
y1, θ|β|

(
y2−hj(y1)

))
, (y1, y2) ∈ (−A,A)× (−B,B).

As fj is Lipschitz with compact support, one has fj ∈ H1(R2), and∫
R2

|fj|2 dx =

∫
Vj

|fj|2 dx =

∫
(−A,A)×(−B,B)

∣∣(fj ◦ Φj)
∣∣2 dy

=

∫ A

−A

∫
R

∣∣∣g(y1, θ|β|(y2 − hj(y1)
))∣∣∣2 dy2 dy1

= (θ|β|)−1

∫ A

−A

∫
R

∣∣g(y1, z)∣∣2 dz dy1 = (θ|β|)−1∥g∥2L2(R2),∫
Σ

|fj|2 dσ =

∫ A

−A

∣∣g(y1, 0)∣∣∣2√1 + |h′
j(y1)|2 dy1 ≥ ∥g(·, 0)

∥∥2
L2(−A,A)

.

We further have∣∣∇(fj ◦ Φj(y)
∣∣2 = ∣∣∣∂1g(y1, θ|β|(y2 − hj(y1)

))
− θ|β|h′

j(y1)∂2g
(
y1, θ|β|

(
y2 − hj(y1)

))∣∣∣2
+
∣∣∣θ|β|∂2g(y1, θ|β|(y2 − hj(y1)

)∣∣∣2
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≤ 4(M2 + 1)(θβ)2
∣∣∣∇g

(
y1, θ|β|

(
y2 − hj(y1)

))∣∣∣2,
therefore,∫

R2

|∇fj|2 dx =

∫
Vj

|∇fj|2 dx =

∫
(−A,A)×(−B,B)

∣∣∇(fj ◦ Φj)
∣∣2 dy

≤ 4(M2 + 1)(θβ)2
∫
(−A,A)×(−B,B)

∣∣∣∇g
(
y1, θ|β|

(
y2 − hj(y1)

))∣∣∣2 dy

≤ 4(M2 + 1)(θβ)2
∫ A

−A

∫
R

∣∣∣∇g
(
y1, θ|β|

(
y2 − hj(y1)

))∣∣∣2 dy2 dy1

≤ 4(M2 + 1)(θβ)2 · (θ|β|)−1

∫ A

−A

∫
R

∣∣∇g(y1, z)
∣∣2 dz dy1

= 4(M2 + 1)θ|β|∥∇g∥2L2(R2).

It follows

qβ(fj, fj)

∥fj∥2L2(R2)

≤
4(M2 + 1)θ|β|∥∇g∥2L2(R2) − |β|∥g(·, 0)

∥∥2
L2(−A,A)

(θ|β|)−1∥g∥2L2(R2)

= cθβ
2,

cθ :=
4(M2 + 1)θ2∥∇g∥2L2(R2) − θ∥g(·, 0)

∥∥2
L2(−A,A)

∥g∥2L2(R2)

,

and we can choose θ > 0 sufficiently small to obtain cθ < 0. Remark

that cθ is independent of j.

Let F := span{f1, . . . , fn}. As f1, . . . , fn have mutually disjoint

support, for any f = b1f1 + · · ·+ bnfn ∈ F with bj ∈ C we have

qβ(f, f) =
n∑

j=1

|bj|2qβ(fj, fj) ≤ cθβ
2

n∑
j=1

|bj|2∥fj∥2L2(R2) = cθβ
2∥f∥2L2(R2),

hence,

Λn(Qβ) ≤ sup
f∈F\{0}

qβ(f, f)

∥f∥2L2(R2)

≤ cθβ
2 < 0 = inf specess Qβ.

This implies that Λj(Qβ) = µn(Qβ) for all j ∈ {1, . . . , n}, and by

combining with (32) we obtain (30) with a := −cθ and b := c2. □

By combining Propositions 6 and 9 we arrive at the following two-

sided estimate:

Corollary 10. For any n ∈ N there are 0 < A < B such that

−B

α2
≤ λn(Hα) ≤ − A

α2
for α → 0−.
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It is not clear if the result can be improved. In particular, we do

not know if the assumption of Corollary 7 holds at least for some n for

general Lipschitz Σ. Nevertheless, we are going to show that at least

for some Σ and n = 1 the asymptotic (25) fails.

4. Analysis of a piecewise smooth curve with a corner

Let us pick θ ∈ (0, π
2
) and denote

Γθ :=
{
(r cosω, r sinω) ∈ R2 : r ≥ 0, |ω| = θ

}
,

which is the union of two half-lines meeting at the origin with the

angle 2θ between them. For the associated operator QΓ
β with β < 0 it

is known that

specess Q
Γθ
β = [−β2

4
,∞), specdisc Q

Γθ
β ̸= ∅,

in particular,

−bθ := µ1(Q
Γθ
−1) < −1

4
, µ1(Q

Γ
β) = −bθβ

2 for all β < 0,

see [12, 18].

Theorem 11. Let Σ ⊂ R2 be a simple closed Lipschitz curve such that

(i) for some r > 0 and θ ∈ (0, π
2
) there holds

Σ ∩B2r(0) = Γθ ∩B2r(0),

(ii) Σ is C4 smooth at all points except at the origin,

(33)

then

µ1(Q
Σ
β ) = −bθβ

2 +O(1) for β → −∞.

Proof. During the proof denote Γ := Γθ and b := bθ. Let χ1, χ2 ∈
C∞(R2) be such that 0 ≤ χj ≤ 1, χ2

1 + χ2
2 = 1, with

χ1(x) = 1 for |x| < r and χ2(x) = 1 for |x| > 2r,

and denote C := ∥|∇χ1|2+ |∇χ2|2∥∞ < ∞. Then a direct computation

shows that for any f ∈ H1(R2) there holds

qΣβ (f, f) = qΣβ (χ1f, χ1f) + qΣβ (χ2f, χ2f)

−
∫
R2

(|∇χ1|2 + |∇χ2|2)|f |2 dx

≥ qΣβ (χ1f, χ1f) + qΣβ (χ2f, χ2f)− C∥f∥2L2(R2).

(34)

Due to the assumption (ii) in (33) by rounding the corner at the

origin we can construct a simple closed C4 smooth curve Σ0 such that

Σ ∩
(
R2 \Br(0)

)
= Σ0 ∩

(
R2 \Br(0)

)
, then obviously

qΣβ (χ2f, χ2f) = qΣ0
β (χ2f, χ2f) for all f ∈ H1(R2). (35)
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Furthermore, let Q̃Σ
β be the self-adjoint operator in L2

(
B2r(0)

)
gen-

erated by the sesquilinear form q̃Σβ given by

q̃Σβ (g, g) =

∫
B2r(0)

|∇g|2 dx+ β

∫
B2r(0)∩Σ

|g|2 dσ

on the domain dom q̃Σβ = H1
0

(
B2r(0)

)
. As each function in dom q̃Σβ can

be extended by zero to a function in dom qΣβ , we have by the min-max

principle

Λ1(Q
Σ
β ) ≤ Λ1(Q̃

Σ
β ), β ∈ R. (36)

For any f ∈ H1(R2) one has χ1f ∈ H1
0

(
B2r(0)

)
with

qΣβ (χ1f, χ1f) = q̃Σβ (χ1f, χ2f).

By combining these observations with (34) we obtain

qΣβ (f, f) + C∥f∥2L2(R2) ≥ q̃Σβ (χ1f, χ1f) + qΣ0
β (χ2f, χ2f), f ∈ H1(R2).

The right-hand side is the sesquilinear form of the operator Q̃Σ
β ⊕QΣ0

β

computed on
(
(χ1f, χ2f), (χ1f, χ2f)

)
and that the map f 7→ (χ1f, χ2f)

preserves the L2-norm, so the min-max principle implies

Λ1(Q
Σ
β )− C ≥ Λ1(Q̃

Σ
β ⊕QΣ0

β ), β ∈ R.

and we have Λ1(Q̃
Σ
β ⊕QΣ0

β ) = min
{
Λ1(Q̃

Σ
β ),Λ1(Q

Σ0
β )
}
, so in combina-

tion with (36) we arrive at

min
{
Λ1(Q̃

Σ
β ),Λ1(Q

Σ0
β )
}
− C ≤ Λ1(Q

Σ
β ) ≤ Λ1(Q̃

Σ
β ), β ∈ R. (37)

The same argument can be applied to QΓ
β instead of QΣ

β , which gives

min
{
Λ1(Q̃

Γ
β),Λ1(Q

Γ0
β )
}
− C ≤ Λ1(Q

Γ
β) ≤ Λ1(Q̃

Γ
β), β ∈ R, (38)

where Γ0 is a C
4-smooth curve coinciding with Γ in R2\Br(0) and Q̃Γ

β is

the self-adjoint operator in L2
(
B2r(0)

)
generated by by the sesquilinear

form q̃Γβ given by

Q̃Γ
β(g, g) =

∫
B2r(0)

|∇g|2 dx+ β

∫
B2r(0)∩Γ

|g|2 dσ

on the domain dom q̃Γβ = H1
0

(
B2r(0)

)
. We have noted above for any

β < 0 we have Λ1(Q
Γ
β) = −bβ2 (while b > 1

4
), and by [13, Section 5]

for β → −∞ one has

Λ1(Q
Γ0
β ) = µ1(Q

Γ0
β ) = −1

4
β2 +O(1).

In particular, for β → −∞ one has Λ1(Q
Γ0
β ) − C > Λ1(Q

Γ
β), and (38)

implies

Λ1(Q̃
Γ
β)− C ≤ Λ1(Q

Γ
β) ≤ Λ1(Q̃

Γ
β), β → −∞,
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in particular,

Λ1(Q̃
Γ
β) = Λ1(Q

Γ
β) +O(1) ≡ −bβ2 +O(1) for β → −∞.

We further remark that due to the assumption (i) in (33) we have

Q̃Γ
β = Q̃Σ

β , and by (25) for Σ := Σ0 for β → −∞ we have

Λ1(Q
Σ0
β ) = µ1(Q

Σ0
β ) = −1

4
β2 +O(1) > Λ1(Q̃

Σ
β ),

so (37) yields that for β → −∞ one has

Λ1(Q̃
Σ
β )− C ≤ Λ1(Q

Σ
β ) ≤ Λ1(Q̃

Σ
β ),

in particular,

Λ1(Q
Σ
β ) = Λ1(Q̃

Σ
β ) +O(1) ≡ Λ1(Q̃

Γ
β) +O(1) = −bβ2 +O(1).

The right-hand side is negative (i.e. lies below the bottom of the es-

sential spectrum of QΣ
β ), so Λ1(Q

Σ
β ) = µ1(Q

Σ
β ) for all sufficiently large

negative β. □

By combining Theorem 11 with Corollary 7 we arrive at the following

observation:

Corollary 12. If Σ satisfies (33), then for the respective operator Hα

one has

λ1(Hα) = − 1

bθα2
+ o
( 1

α2

)
, α → 0−.

Theorem 13. For any B ∈ (1, 4) there exists a simple closed Lipschitz

curve Σ such that for the associated operator Hα there holds

λ1(Hα) = −B

α2
+ o
( 1

α2

)
for α → 0−.

Proof. By [11, Section 5] the function (0, π
2
) ∋ θ 7→ (−bθ) is continu-

ous and monotonically decreasing, and by [7, Theorem 1.11] and [10,

Theorem 2.2] one has

lim
θ→0+

(−bθ) = −1, lim
θ→π

2
−
(−bθ) = −1

4
.

Therefore, for any B ∈ (1, 4) there exists θ ∈ (0, π
2
) with bθ = 1

B
, and

the claim follows by Corollary 12. □
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